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The tumor microenvironment (TME), which includes both cellular and non-

cellular elements, is now recognized as one of the major regulators of the

development of primary tumors, the metastasis of which occurs to specific

organs, and the response to therapy. Development of immunotherapy and

targeted therapies have increased knowledge of cancer-related inflammation

Since the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCB)

limit immune cells from entering from the periphery, it has long been considered

an immunological refuge. Thus, tumor cells that make their way “to the brain

were believed to be protected from the body’s normal mechanisms of

monitoring and eliminating them. In this process, the microenvironment and

tumor cells at different stages interact and depend on each other to form the

basis of the evolution of tumor brain metastases. This paper focuses on the

pathogenesis, microenvironmental changes, and new treatment methods of

different types of brain metastases. Through the systematic review and

summary from macro to micro, the occurrence and development rules and

key driving factors of the disease are revealed, and the clinical precisionmedicine

of brain metastases is comprehensively promoted. Recent research has shed

light on the potential of TME-targeted and potential treatments for treating Brain

metastases, and we’ll use that knowledge to discuss the advantages and

disadvantages of these approaches.
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1 Introduction

Metastasisoccurswhencancer cells divideandspread fromthemain

tumor to other parts of the body via the circulatory or lymphatic systems

(1). 90% of cancer-related fatalities are caused by metastasis (2, 3). In

particular, brain metastasis is a significant problem that often results in

terrible effects for the patient (4). Some tumors have a propensity to

colonize specific organs like the brain, which presents a significant

challenge in studying the biology ofmetastasis. Priority organ tropism is

mediated by geneticmarkers that have been found (5). The components

that help tumor cells get past tissue-specific barriers (such the blood-

brain barrier) or create cancer permit-niches in possibly hostile

environments are typically linked to gene expression differences in

tumor cell types with strong organ-specific tropism (6, 7). The ability

of tumor cells to rapidly absorb niches cells in foreign systems for their

function as well as to suppress or evade anti-tumor activity determines

the success of metastatic colonization in addition to the tumor cells’

inherent characteristics.

Upon entering the central nervous system (CNS), Tumor cells are

greeted with a vastly different cellular and matrix structure,

metabolism, and immunological milieu than they encountered in the

primary site (8, 9). In addition to neurons cells, the brain also contains

astrocytes, oligodendrocytes and microglia, which support the brain’s

normal functioning. Recent research has focused on immune and

inflammatory cells generated from the blood as significant mediators

of inflammation linked with brain metastases and cell types already

known to reside in the brain (10). Tumor-infiltrating lymphocytes

indicate a favorable prognosis and response to immunotherapy;

nevertheless, many myeloid cells are linked to immunosuppression,

tumor development, and treatment resistance (11).

Brain metastases are an important cause of treatment failure and

death in cancer patients (12). As one of the most common tumor

metastasis targets, the brain has an extremely complex anatomical

structure, diverse cell types, and important physiological functions

(13). Tumor cells in the blood circulation are transferred to various

regions in the brain in multiple ways, and the local microenvironment

conditions are different. The weak CNS barrier and the considerable

geographic variability of brain metastases make successful therapeutic

therapies challenging (14, 15).Thus, it is important to investigate the

signaling pathway of the tumor microenvironment in depth and

actively seek new therapeutic targets according to the initial

formation of distinct brain metastases, so as to offer a fresh

viewpoint on how to improve the prognosis of patients with new

therapeutic approaches of brain metastases (16).This review sheds

insight into the intricate relationshipbetween tumor cells and theniche

cells surrounding tumors. We also go through the current state of our

understanding of the tumor microenvironment’s (TME) cell type-

specific precursors’ anticancer role in brain metastases (BrM). Using

this research, we will examine the potential and limitations of TME-

targeted immunotherapies for brain metastases.
2 Brain metastasis diagnosis

According to the location of metastasis, central nervous system

metastases can be divided into brain parenchymal metastasis
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(BrM), leptomeningeal metastasis (LM), and dural metastasis

(dural metastasis DM), there were significant epidemiological

differences among different metastases. Parenchymal brain

metastases are the most general type of central nervous system

metastases, mainly from hematogenous spread, common in the

middle cerebral artery distribution of the gray matter junction and

the arterial circulatory junction between the middle cerebral artery

and the posterior cerebral artery. In solid tumors, the incidence of

BrM is 20%-40%, and its incidence is 10 times that of primary

malignant brain tumors (17). The most common primary types of

BrM are breast cancer (15-30%), melanoma (5-20%),lung cancer

(40-50%), and rectal cancer (3-8%) (18), and the median survival

time is generally 3-6 months. LM is a complication of cancer in

which tumor cells diffuse into the cerebrospinal fluid (CSF) and

subarachnoid space to form multifocal or diffuse growth. LM

generally occurs in the late stage of the disease. Breast, lung, and

melanoma are the most common primary tumors leading to LM. In

breast cancer and lung cancer patients, the incidence of LM is 5% to

20%. Given the lack (19)of specificity in clinical presentation and

the short survival time (4 to 8 weeks), it is difficult to accurately

determine the incidence of LM in the population.

Therefore, the incidence of LM is greatly underestimated. DM

lesions are mainly located in the epidural space, and the incidence of

DM in cancer patients is 9%. Breast and prostate cancer are the two

most common primary cancers leading to DM (20). It has been

reported that DM tends to have bone metastasis and is easier to

colonize in the dural environment close to the cranial bone. Some

patients with dural metastasis are complicated with BrM or LM

(21). The median survival time of DM patients is about 6 months,

and the onset of DM is dangerous. It has not received enough

attention in clinical practice, and there is a lack of effective

treatment methods and animal model studies.

Furthermore, the difficulties of acquiring intracranial tissue

make deciphering the molecular pathways behind brain

metastases more challenging (22). In order to guide therapeutic

treatment, it is urgently necessary to look at the immunological

environment of brain metastases. In recent years, with advances in

neuroimaging and the development of new cancer therapies, more

effective clinical interventions have prolonged the overall survival of

patients with primary tumors. The risk of central nervous system

metastasis of tumors is increasing year by year, and the prevention

and control of brain metastases should be paid enough attention to

in clinical and basic research (23).
3 Molecular mechanism of
brain metastasis

Most intracranial tumors are brain metastases, originating most

frequently in lung cancer (24). NSCLC (non-small cell lung cancer)

metastatic brain disease makes up about half of all cases of metastases

to the brain.Brain metastases will appear at some time in the disease

course in about one-third of NSCLC patients (25). Current therapy

options for NSCLC brain metastases are ineffective due to the unique

architectural and physiological characteristics of the central nervous

system, and the prognosis is dismal (CNS). Another drawback is the
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dearth of comprehensive studies on brain metastases in NSCLC.

Immunotherapy has had a rapid uptake in the treatment of non-

small-cell lung cancer (NSCLC) (26, 27). Results from preliminary

clinical studies suggest that immune checkpoint inhibitors may

benefit certain patients with advanced non-small cell lung cancer

(NSCLC) (28). However, because of genetic variations between brain

metastases and original tumors and variances in the tumor

microenvironment, intracranial and extracranial lesions may react

differently to systemic immunotherapy.

NSCLC metastases frequently and preferentially spread to the

neurological system (29). Capillary endothelial cells produce

cytokines in response to CTCs (Circulating tumor cells) when

they pass through the brain’s capillaries slower than the blood.

Brain metastases from when tumor cells with high invasive

potential travel through the circulatory system, the brain’s

lymphatic system, or the cerebrospinal fluid. Once there, they

establish themselves in the brain parenchyma, the leptomeninges,

or the epidural region (30).

Up to 30% of breast cancer patients whose disease has

progressed to other organs, as shown by autopsy, have BM (31).

In addition to this, there is evidence to support the contention that

the incidence of brain abscesses caused by breast cancer is on the

rise (32, 33). According to the prognosis index, people who were

diagnosed with breast cancer BM had the best chances of surviving

the disease (median OS, 13.8 months) (34);. Researchers have

identified a variety of oncogenes that are associated with breast

cancer (35). Breast cancer People who have breast cancer that is

positive for human epidermal growth factor receptor 2 (HER2) have

the highest risk of developing breast hyperplasia, followed by those

who have endovascular breast cancer and those who have triple-

negative breast cancer (TNBC) (36). Patients who have metastatic

HER2-positive breast cancer have a risk of acquiring breast

metastases that is two to four times higher than the risk that

persons who have breast cancer but no HER2 mutations (37).

Among the several barriers present in the central nervous

system, the blood-brain barrier (BBB) and the blood-

cerebrospinals fluid barrier (BCSFB) are among the most essential

(BTB) (38). In the healthy brain, the initial CNS gatekeepers were

the BBB and BCSFB. Protection of the central nervous system

against inflammatory injury is achieved by capillary endothelial

cells forming tight connections with adjacent connective tissue

(brain edema) (39). The spinal cord and brain are not entirely

spared by the immune system. For the larger part of the last century,

researchers have considered the brain to be a special organ in terms

of immunity due to the presence of the blood-brain barrier and the

blood-cerebrospinal fluid barrier (40). The discovery of the

meningeal lymphatic vessels and the lymphatic system in the

brain, however, completely disproved this theory (41).

Furthermore, experimental evidence demonstrates that brain

metastases contain T lymphocytes and other immune cells from

circulation (42). A connection exists between immune cells carried

by the blood and brain-based immunological components (43). To

reach the deep cervical lymph nodes, particularly immune cells of

the central nervous system must first enter the cerebrospinal fluid

via the endolymph system, then travel through the olfactory bulb,

olfactory neuron, lamina Lacrimosa, and the nasal mucosa.
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However, immune cells can still enter the CNS via the hyaline

tapetum and lymphatic capillaries in the cerebrospinal fluid.

Additionally, CD4-positive memory cells and macrophages T cells

play a crucial role in immunological surveillance in the central

nervous system (44). They can be found in the ventricles, peripheral

nerves, and perivascular spaces.

Numerous malignancies contain tumor-associated macrophages

(TAMs), and the actions of stromal cells in the tumor

microenvironment suggest that TAMs stimulate a variety of

inflammatory and wound-healing processes (45–47). Three primary

functional classes of TAMs have been established, each of which

performs a particular role. Macrophages called perivascular

macrophages are found in the perivascular niche, which is located

around blood vessels. These macrophages help tumor cells invade

blood arteries and proliferate throughout the body, which in turn

promotes tumor angiogenesis (Figure 1). It is possible that TAMs in

circulation will migrate together with cancer cells to a migration and

proliferation niche, where they will promote matrix remodeling,

tumor progression, and the development of a suppressive

microenvironment. A third set of TAMs accumulates in a pre-

metastatic niche and helps tumor cells spread extravasatively, seed

lesions, and grow them into metastatic lesions. Tumor-associated

macrophages (TAMs) disrupt surrounding tissues, inhibit the

immune system locally and systemically, and may help tumor cells

withstand cytotoxic chemotherapy (49). Tumor microenvironment

(TME) stromal cells, in contrast to tumor cells, are genetically stable,

making them an appealing target for therapeutic methods because

they are not likely to develop drug resistance or lead to tumor

recurrence. Researchers Joyce et al. have compiled a wealth of

information about the immunological landscape, which they say

can shed light on how we might circumvent the TME’s tumor-

promoting characteristics and instead use it to our advantage in the

battle against cancer (50).

4 The main pathways of tumor
cell invasion into the central
nervous system

Despite the presence of blood brain barrier, blood-derived

cancer cells can still infiltrate the nervous system in a variety of

ways (51). The blood-brain barrier (BBB) comprises endothelial

cells and parenchymal nerve cells. As the main barrier structure for

central-peripheral material exchange, BBB helps the CNS to actively

absorb nutrients, block the entry of harmful substances, and ensure

the normal physiological homeostasis of the CNS (52). In the

process of brain metastasis, tumor expansion, vascular

heterogeneity, BBB barrier structure damage. Tumor cells in the

proliferative stage selectively absorb nutrients through BBB,

maintain a highly active metabolic level, and further damage the

normal function of blood vessels and neurons (53). The

neuropeptide substance P(SP) secreted by breast cancer cells can

induce the expression of TNF-a and Ang-2 in human

microvascular endothelial cells. Severely affects zonula occludens-

1 (zonula occludens-1), which constitutes a blood-brain barrier.

ZO-1 localization and distribution and claudin-5 structural
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1131874
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Khan et al. 10.3389/fimmu.2023.1131874
changes, thereby increasing the permeability of the BBB (54). In

addition, serine proteases released by melanoma cells can degrade

the interendothelial bonding complex (55), Additionally, the

deepness to which cancer cells invade the central nervous system

is considerably increased by the high expression of heparanase

during the process of brain metastasis. From the tumor tissues of

individuals with advanced breast cancer, researchers extracted cells

with a great propensity to spread to the brain (56). By analyzing

these cells and clinical samples, COX2, EGFR ligand HBEGF, a2, 6-
xylosyl transferase, and a2, 6-sialic acid transferase ST6GALNAC5

were specifically upregulated during brain metastasis to promote

tumor cell crossing the BBB.

Tumor cells can also break through the blood CSF barrier

(BCSFB) and enter the cerebrospinal fluid circulation, forming

distal meningeal metastases (57). Recent reports have shown that

acute lymphoblastic leukemia (ALL) is characterized by central

nervous system metastasis. Tumor cells can migrate to the pia mater

through vertebrae, calf bone marrow, and blood vessels in the

subarachnoid space but rarely involve solid neural tissues (58). In

addition, the Batson plexus, spinal nerve plexus, and cranial nerve

plexus can provide direct pathways for tumor cells to enter the

nervous system from the periphery. However, in-depth mechanism

research on this method is still lacking at present. Dural metastasis

generally comes from the direct extension of skull metastasis (such

as advanced nasopharyngeal cancer) or hematogenous metastasis

(59). In special cases, it can also be compressed to the dura and

surrounding tissues by solid metastasis. Although the epidural

annulus is thought to be isolated from the central nervous system,

with the growth of epidural metastases, the tumor compresses

adjacent blood vessels, nerve roots, and spinal cord, leading to

local pain, radiculopathy, and spinal cord disease (60).
Frontiers in Immunology 04
5 Microenvironment characteristics of
brain metastases

Given the complexity of brain anatomy and the differences in

the immune environment, different types of brain metastases show

different evolutionary trajectories with the development of the

disease (Figure 2).
5.1 How can neurons contribute to
brain metastases?

Neurons are specialized cells that carry signals between neurons

and are one of the most important and numerous cell types in the

brain and spinal cord (62). However, little is currently known

regarding their function in BrM (brain metastasis). Researchers in

the field of BrM are mostly interested in studying astrocytes,

microglia, and activated peripheral immune cells at the moment

(63). It is generally accepted that neuronal cell loss and dysfunction

are unintentional side effects of BrM progression and treatment

(64). Constant neuroinflammation triggered by tumor-initiating

microglia and astrocytes leads to neuronal cell loss. Myelin glial and

oligodendrocyte function is similarly compromised in this tumor-

responsive milieu, resulting in neurological disorders (65).

It is interesting to note that many adverse effects of

chemotherapy are linked to glial dysfunction and its influence on

myelin formation. The chemical brain is the term used to describe

these distinctive cognitive problems (66). More recently, Seano

et alinto neuronal cell death in the presence of BrM provided

even more detail about the underlying mechanisms involved (67).

The scientists showed that solid tumors cause indirect neural
FIGURE 1

The primary steps in the progression of brain parenchyma cancer cell colonization. Reproduced under common creative licenses from (48).
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dysfunction and vascular degeneration in the peritumor region,

leading to neuronal cell death through crucial distortion of the

neuronal body (Figure 3); interestingly, the authors showed that

common neuroprotective lithium medications efficiently prevent

neurological damage and ameliorate some unfavorable cognitive

symptoms (68). Neurons play a vital role, but their importance to

cancer growth was not realized until recently. Monje et al. found that

soluble extracellular NLGN3 protein related to synaptic adhesion can

stimulate the PI3K pathway to promote tumor growth. As a result of

these discoveries, more cancer treatments are now available. Despite

breakthroughs in microfluidics devices that can detect the effects of

environmental stimuli on glial cells, human astrocyte sensitivity, and

myelination, few models still study the interaction between

cancer cells and neurons (69). Lei et al. demonstrated through a

compartmentalized microfluidic system that inhibition of nerve

conduction impairs neurite support for tumor cell movement. The

multiple factors that cause other organs to migrate to the brain were

studied using machine learning. These methods can identify

glioblastoma from a single BMS, find early tumor changes that

indicate BMS, and develop new biomarkers for accurate and cost-

effective detection of brain disease (70). Some in vitromodels state the

connection between nerves and cancer. Many of the mechanisms that

attractmetastatic cells to thebraincanbe studiedusing theorgan-on-a-

chipmodel to understand the function of the nervous system in cancer

formation and development.
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5.2 Leptomeningeal microenvironment

The pia mater is a solid monolayer of connective tissue glial and

elastic fibers that lies at the very bottom of the meninges. Due to the

BCSFB barrier, the CSF microenvironment is significantly cell-free,

with hypoxia and nutrient deficiency (71). The low concentration of

metabolic intermediates and nutrients poses a severe challenge to the

growth of tumor cells. Therefore, the mechanisms of invasion,

colonization, and expansion of LM are different from those of BrM,

and tumor cells gradually adapt and evolve in the CSF of

subarachnoid space.

Some immune cells, including monocytes, macrophages,

neutrophils, and lymphocytes, were found to infiltrate the

cerebrospinal fluid of LM patients (72). Scientist found that

tumor cells with leptomeningeal metastasis highly expressed C3

(complement component 3) and bound to the C3a receptor in

choroid plexus (CP) epithelial cells (73). Amphiregulin and

other mitogen nutrients are introduced into the cerebrospinal

fluid circulation, disrupting the BCSFB barrier structure, which

aids in the proliferation of cancer cells and improves their ability

to adapt to the leptomeningeal microenvironment. Restoring the

integrity of the BBB can prevent metastasis from occurring and

progressing, which will provide a fresh perspective for the

development of medications that target leptomeningeal

metastasis (74).
FIGURE 2

The microenvironment regulates transmission cascades. Cell types residing in the brain and those recruited from elsewhere in the body can have
pro-tumor or anti-tumor effects on brain metastases depending on the cell type and the cancer stage. (1) Microglia-derived factors, such as
proteases (e.g., Ctss, Mmp3, and Mmp9), Wnt regulating elements, and chemokines (e.g., Cxcl12), are implicated in facilitating tumor cell
transmigration across the blood-brain barrier (BBB) and into the brain parenchyma. (2) However, astrocytes can prevent metastasis by inducing
tumor cell death via soluble FASL. Serpin released by tumor cells can mitigate this effect by preventing the manufacture of active plasmin, which
converts FasL to sFasL. Tumor cells die upon their initial contact with astrocytes, but continued contacts between the two cells, controlled by gap
junctions, promote tumor cell proliferation and confer chemotherapy resistance. CGAS-STING activates IRF, which generates IFN and TNF when
tumor cells and astrocytes exchange cGAMP. (4) Eliminating tumor cells, cytotoxic T cells are a crucial component of the adaptive immune system’s
response against brain metastases. Tumor cells acquire neural markers that cause spherocytosis during brain colonization, allowing them to reside in
glial niches. Reproduced under common creative licenses from (61).
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5.3 Dural microenvironment

The dura is a nerve-immune interface containing numerous

immunological cells, in contrast to the leptomeningeal environment.

The dural sinus, a cerebral venous pipeline that divides the duramater’s

inner and outer layers, is crucial to the monitoring of epidemic disease

(75). Recently, several reports have shown that the dura is a reservoir for

the brain’s immune cells (76–78). With CSF circulation, CNS-derived

antigen gathers in the vicinity of the dural sinus, is recognized by local

antigen-presenting cells, and is then transmitted to the dural T cells.

Immune monitoring can be facilitated by T-cell identification of CSF-

derived antigens and immune cell tissues residing in the dura (79).Dural

macrophages are an important part of the immune microenvironment

of the dura mater. T cells can recognize antigens on the surface of dural

macrophages and release chemokines. Dural macrophages are

polymorphic and migrate to non-inflammatory tissues to perform

immune surveillance or to inflammatory tissues to provide effectors

functions (80). Inaddition,B lymphocytesgenerated in thebonemarrow

of the skull and vertebrae in the central nervous system can reach the

dura through lymphatic ducts (81). Themeningeal immunity mediated

by themparticipates in different neuroinflammatory reactions and plays

a key role in the occurrence and development of dura metastasis and

other neurological diseases (82).
6 Microenvironmental response and
tumor progression

Tumor invasion breaks the homeostasis of the central nervous

system, and the microenvironment responds to foreign cells, thus

affecting the progression of tumor development (83). Under the

selective pressure of a new environment, a single cell or

subpopulation develops into a premetastatic niche (PMN) with

high spatial heterogeneity, presenting a variety of tumor cell

subclasses that differ markedly from the characteristics of the

primary tumor (84). Accordingly, when tumor cells initiate new
Frontiers in Immunology 06
adaptive mechanisms, the microenvironment system is reshaped to

achieve a new state of equilibrium. In the LM animal model, CSF

infiltrates many macrophages and releases proinflammatory factors

IL-6 and TNF, which act on tumor cells and up-regulate the high-

affinity iron transport system LCN2/SLC22A17 to “hijack” rare iron

elements in themicroenvironment and reduce the phagocytic function

of macrophages (85). To escape immune surveillance and maintain

their growth in the pia space. In the early stage of brain solidmetastasis

formation, PCDH7 is highly expressed inmammary adenocarcinoma

and lung cancer cells. Pcdh7 interacts with astrocytes to promote the

assembly of cancer-astrocyte gap junction composed ofCx43, which is

used by brainmetastatic cancer cells to transport cGAMP to astrocytes

(86, 87). The activation of the STING pathway and its downstream

STAT1 and NF-kB pathways affect the immersion and expansion of

brain metastases (88). In addition, astrocytes express microRNA

targeting PTEN, which is transported to tumor cells through

exosomes to inhibit the expression of PTEN, thereby activating

PI3K/AKT/mTOR pathway, increasing the secretion of CCL2,

recruiting myeloid cells, reducing cell apoptosis, and promoting

tumor growth (89).

The response mechanism of the microenvironment is closely

related to tumor type. Multiple data analyses have shown that the

microenvironment ecology of primary tumors, brain metastases, and

gliomas is significantly different (90). The microenvironment change

depends on cell subclasses’ function, location, and characteristics

(91). Brain metastasis in melanoma patients is characterized by an

abundance of T cells, while brain metastasis in breast cancer patients

is characterized by a predominance of neutrophils (92). There are

abundant macrophages and microglia in the glioma but almost no T-

cell infiltration.For brain parenchymal metastases, another study used

the molecular characteristics of vascular endothelial cells and parietal

cells to re-annotate the blood tumor-tumor interface (BTI) formed in

brain parenchymal metastases (17, 93). It is revealed that the change

of functional T-cells in the microenvironment from activation to

inactivation at the single-cell level is related to metabolism and

microenvironment reprogramming (94). Therefore, the mechanistic
FIGURE 3

shows the stages of brain metastasis. There are four primary actions in the BMS cascade: There are four stages that metastatic cells must pass
through before they may establish themselves in the CNS: 1) separation from the primary tumor, 2) surviving in the bloodstream, 3) invading the
brain parenchyma, and 4) surviving in the brain’s microenvironment. Reproduced under common creative licenses from (39).
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analysis of microenvironmental responses in different brain tumors

provides a theoretical basis and guidance for developing

immunotherapies (95).
6.1 Interactions between tumor and stroma

Micro environmental factors, such as cell composition, division

structure, hardness, tensile strain, chemotaxis, and hypoxia,

primarily affect tumor growth and the ability to metastasize to the

brain (50). The extracellular matrix (ECM) structurally supports

cells in tissues and organs, regulating signals that influence several

cell activities, including development, differentiation, and

migration. ECM is composed of large molecules with specific

tissue and organ components, such as glycoproteins and collagen,

which regulate the mechanical properties of tissues, such as tensile

strength. Surface receptors on the cell surface regulate cell activity

by interacting with ECMs to produce signaling cascades.

Malignancies arise from the interaction of cells with extracellular

matrix components (96). Tumor cells can modify ECM structure,

content, and stroma secretion to help them survive and grow.

Glioma cells alter the extracellular matrix (ECM) structure of

these components and the expression of cell surface receptors

(97). Some malignant changes in breast and pancreatic cancer are

associated with loss of the basement membrane, suggesting how

altering ECM can produce conditions conducive to tumor cell

invasion. The extracellular matrix in the brain regulates cellular

behavior and influences tumor progression (98), so it is critical to

creating physiologically accurate and suggestive in vitro platforms.

Brain ECMs control cell development, communication, and

movement in healthy brain tissue. The ECM of the brain is

dynamic, and tumor cells can change the function of various

components of the brain matrix to meet their physiological needs.

Aggressive malignant glioblastoma of the brain (GBM) alters the

ECM of the brain to improve its viability and spread throughout the

brain tissue (99). Because collagen normally supports cell

movement, collagen produced by GBM increases tumor cell

invasion. The main component of the brain’s ECM, hyaluronic

acid (HA), is a molecule that tumor cells can alter to extend their

lifespan and make them more resistant to treatment.

Several 3D bioengineering platforms, such as gelatin, have been

created to assess patient-sourced brain tumor responses, combined

with microenvironmental signals from underlying tumor ECMs

(100). As microfluidic devices have become more sophisticated,

microfluidic devices have been modified to simulate healthy and

malignant tissues better using flexible extracellular matrix gels.

Despite developing several biocompatible synthetic and natural

biomaterials to reconstruct brain ECMs, a clearer definition of

brain tissue in vitro and in vivo is still needed. This will greatly

affect the way Microsystems are used to study brain diseases.
6.2 Neurovascular system

The vital organ bridging peripheral blood flow to the brain’s

central nervous system is known as the blood-brain barrier (BBB).
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In addition to controlling cerebral blood flow, the neurovascular

unit (NVU) maintains the very selective BBB-brain tissue balance.

The neurovascular unit comprises many cell types, such as neurons,

perivascular astrocytes, microglia, pericytes, endothelial cells (EC),

and the basement membrane neurovascular unit (NVU). It is

difficult to replicate these parts in a lab setting because of the

tight connections that keep them together as a single unit. By fusing

a vascular chamber with a brain chamber, the BBB and the NVU

have been modelled using microfluidic devices (101). This allowed

for both cellular interaction and independent hydration in the two

membrane-separated regions. There have also been attempts to

recreate the neurovascular environment in vitro using microfluidic

devices containing iPSCs, with the latter yielding results that are

comparable to those observed in vivo.

There is growing interest in replicating NVU in vitro because

the mechanisms that lead to the deterioration of the blood-brain

barrier in neurological diseases and cancers are not fully

understood. Microfluid-based blood-brain barrier chip technology

allows the co-culture of human stromal cells and tumor cells in a 3D

extracellular matrix provided by perfusion microvessels (102).

However, current limitations prevent optimal interactions

between EC, pericytes, and astrocytes, essential for maintaining a

favorable tumor microenvironment that largely influences cancer

development. Neurovascular unit cells affect the viability of brain

parenchyma but also the ability of cerebral vessels to transport

metastatic tumor cells. Multiple roles of endothelial cells in brain

tumor progression have been demonstrated. These include stem cell

maintenance and increased therapeutic responsiveness. The role of

pericytes in maintaining blood-brain barrier function has long been

recognized, but only recently has it been discovered that they may

also contribute to the growth of glioblastoma tumors (103). The

relationship between higher pericyte concentrations in the arteries

of GBM and patients’ inadequate response to chemotherapy,

suggesting that these cells are potential targets for anticancer

drugs. According to these studies, removing pericytes from

glioblastoma increases the availability of small molecules that

alter the vascular permeability of brain tumors. Understanding

the biology of pericytes in the GBM microenvironment may

contribute to developing more effective treatment options, as they

are produced when glioma stem cells differentiate into pericytes to

promote vascular development and support tumor growth. More

recently, microvascular systems on a chip are beginning to meet

functional requirements for assessing the dynamics of patient-

derived tumors (104).

GBM tumors have a very poor prognosis for patients due to

their rapid progression, invasion, and apparent resistance to current

therapies. Effective distribution to tumor sites while avoiding the

blood-brain barrier’s unique permeability is a significant obstacle in

brain tumor treatment. The tumor’s vasculature has not changed

enough to penetrate the drug effectively. The spatial and temporal

distribution of drugs in blood vessels and perivascular areas can be

monitored using micro-physiological platforms replicating specific

functions of the human blood-brain barrier. The development of

micro-NVU technology has made it possible to test potential drugs

used to treat brain problems in a stable preclinical environment

(105). Additional human glioblastoma samples must be made
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available in these microscopic tissue platforms to increase the

transferability of these data to humans.
7 Treatments

Treating patients with brain metastases is based on systemic

therapy, and the common treatment methods include surgical

surgery and chemoradiotherapy (106). As mentioned above, the

microenvironment response mechanism can have an important

impact on the occurrence and development of brain metastases.

Therefore, targeting the microenvironment is an important

approach to clinical treatment (107). Immune checkpoint

molecules play an increasingly prominent role in anti-tumor

therapy regulating the immune microenvironment (108).

Activated effector cells infiltrate tumor tissues and extensively

reshape the tumor microenvironment. Clinical trials are actively

carrying out comprehensive multidisciplinary treatment combined

with immune checkpoint and traditional therapy (109), which

prioritizes maintaining the nervous system’s normal function

while also successfully inhibiting the formation of brain

metastases, reducing patients’ symptoms and improving their

quality of life (Table 1).

Despite it Widespread use of corticosteroids in cancer therapy

has been shown to be particularly helpful for patients with brain

cancer who have severe peritumoral edema and related neurological

impairments (124). Corticosteroids have been widely used and have

had a huge impact in clinical oncology over the course of several

decades, but little is understood about the mechanisms by which

they produce their biological and clinical effects.
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7.1 Surgical treatment

The importance of surgical treatment for patients with brain

metastases cannot be stated (125, 126). Since 1990, Scientist (127)

have divided patients with brain metastases into a surgery group,

whole brain radiotherapy group, surgery, and whole brain

radiotherapy group according to different treatment methods and

compared them. The local recurrence rate was reduced from 52% to

20% compared to the whole-brain radiotherapy group. Patients who

underwent surgery and whole-brain radiation therapy saw an

increase in their median survival duration from 15 to 40 weeks.

With the ongoing development of diverse new techniques in the

field of neurosurgery, such as functional neuroimaging,

intraoperative ultrasonography, and fluorescence-guided surgery,

surgical treatment has been beneficial for patients with

brain metastases.

Although surgical treatment of metastatic lesions is not the

standard treatment for leptomeningeal metastases, it can effectively

reduce obstructive hydrocephalus and intracranial pressure

according to the cerebrospinal fluid hyper pressure characteristics

microenvironment (128). To treat hydrocephalus caused by

leptomeningeal metastases, a ventriculoperitoneal shunt (VPS)

can be performed to reduce intracranial pressure, alleviate clinical

symptoms, and avoid retrograde lumbar puncture required by

intrathecal chemotherapy (129, 130). Therefore, the VPS system

is an effective option for patients with malignant leptomeningeal

metastases, and as palliative care, it can significantly improve the

quality of life of such patients. However, VPS systems in the use of a

certain risk, such as infection, bleeding, and other complications

should actively explore safer treatment means.
TABLE 1 The overview of targeted drugs and clinical progress in brain metastasis.

Targeted agent Target Progression-free-survival/month Overall survival/month Phase of trail References

Iniparib PARP 21.40 NA IV (110)

Abemaciclib CDK4/6 6.00 22.32 II (111)

Everolimus P13K/Akt >6.00 15.80 II (112)

Veliparib PARP 6.30 11.20 III (113)

Lapatinib HER2, EGFR 6.60 22.70 III (114)

Neratinib Her2 8.80 24.00 III (115)

Rituximab CD20 64.80 102.00 II (116)

Trastuzumab HER2 8.05 27.30 III (117)

Dabrafenib BRAF 7.20 24.30 II (118)

Vemurafenib BRAF 3.68 8.87 II (119)

Trametinib MEK1, MEK2 4.90 15.60 III (120)

Osimertinib EGFR 11.10 22.80 III (121)

Alectinib ALK 10.90 27.80 III (122)

Lorlatinib ALK, ROS1 5.60 NA II (123)
Source: https://clinicaltrials.gov/, NA: 95% CI (confidence interval) could not be estimated due to insufficient number of participants with response.
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7.2 Radiation and chemotherapy

Radiotherapy at the symptomatic site is the standard palliative

care modality, and a focused approach to the lesion is more effective

in the neuro-rich parenchymal microenvironment. At present, a

variety of radiotherapy regimens are available, including whole

brain radiotherapy (WBRT), craniospinal radiotherapy, or focal

radiotherapy to large disease areas (stereotactic irradiation) (131–

133). WBRT can alleviate the neurological symptoms of patients

with brain metastases and improve the local control of tumors, but

it does not have a significant survival advantage (134, 135).

Stereotactic irradiation is more targeted than whole-brain

radiotherapy (136). However, due to its accompanying

considerable bone marrow suppression, the activity of blood cell

precursors in the bone marrow decreases, which affects the

hematopoietic and immune functions of patients, severely

limiting the application of this protocol in the treatment of

chemotherapy patients (137). In addition, craniospinal irradiation

(CSI) also plays an important role in the multidisciplinary

treatment of brain metastases in children and adults (138).

Postoperative CSI combined with chemotherapy is not only the

current standard of treatment for medulloblastoma but also can be

used for brain metastases spreading in cerebrospinal fluid.

Advances in radiotherapy technology are breaking the stereotype

of traditional radiotherapy and providing new possibilities for the

remission of patients with brain metastases (139).

Intrathecal drug delivery, which allows drugs to cross the BBB

to reach the leptomeningeal space, is a common method of drug

delivery for leptomeningeal diseases. However, this technology is

not fully mature compared with systemic drug delivery. Lumbar

puncture or a surgically implanted Ommya capsule are two

methods for administering intrathecal chemotherapy directly into

the meningeal cavity or lumbar cisternae (140). The toxicity of

intrathecal treatment of catepib, methotrexate, and cytarabine is

comparable; their side symptoms, like headache, nausea, vomiting,

and fever, are common sequelae of biochemical meningitis and

fungal meningitis and cannot be avoided (141).
7.3 Immune checkpoint therapy

For a long time, the treatment options for patients with brain

metastases have been limited to several traditional cancer treatment

methods, such as radiotherapy, chemotherapy, and surgery, which

are not specific to the pia space and thus have poor efficacy (142).

Checkpoint therapy provides new treatment options for patients

with brain metastases by using particular cell types in the

microenvironment and precisely regulating immune mechanisms

(143). T cell checkpoint receptors play a negative role in immune

regulation, which can avoid excessive immunity to autoantigens.

Although this negative immune regulation avoids the occurrence of

inflammation, it also provides an opportunity for the tumor to

escape the immune system surveillance. By blocking T cell

checkpoint receptors, immune checkpoint treatment boosts the

ability of T cells to kill tumors. One of the immune checkpoint

treatment medications with the highest clinical usage is ipilimumab.
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It can successfully block CTLA-4 on T cell surfaces (cytotoxic T

lymphocyte-associated antigen-4). preventing T lymphocytes from

being inhibited by CTLA-4 ligand B7 (144).

In contrast, Nivolumab and Pembrolizumab inhibit

programmed death protein-1 (PD-1) on the surface of T cells.

Programmed death protein-ligand 1(PD-L1) is prevented from

binding to programmed death protein 1(PD-1), which prevents

the inhibition of T cell activity and makes T cells have the

continuous killing effect (145).Durvalumab prevents the

immunosuppressive effect of PD-L1/PD-1 on T cells by binding

to PDL1 on T and blocking its binding to PD-1. Clinical trial data

demonstrate that immune checkpoint therapy-related agents

effectively treat brain metastases (146, 147). In a phase II non-

randomized open-label study of pembrolizumab, patients with

NSCLC and melanoma brain metastases were included.

Participants in the trial included 18 people with cancer and 18

people with NSCLC (148). Two-thirds of patients and two-thirds of

control patients fulfilled the RECIST(response assessment methods

in solid tumors) assessment criteria, and this response was

maintained throughout the follow-up period. Median survival

time for patients treated with Pembrolizumab was 7.7 months,

compared to only 4–6 weeks for patients with NSCLC who did not

receive any treatment (149). Metastatic melanoma patients with at

least one nonirradiated brain metastasis and no neurologic

symptoms were given nivolumab (1 mg/kg of body weight) +

ipilimumab (3 mg/kg of body weight) every 3 weeks for up to

four doses, then nivolumab (3 mg/kg of body weight) every 2 weeks

until progression or intolerable toxic effects in a phase 2 study.

Clinical benefit was measured by the proportion of patients who

achieved a complete response, partial response, or disease

stabilization for at least 6 months due to treatment of intracranial

tumors. In melanoma patients with untreated brain metastases,

nivolumab plus ipilimumab demonstrated clinically significant

intracranial effectiveness, consistent with extracranial action (150).

Although clinical trials related to treating leptomeningeal

metastases have been carried out, immune microenvironment

response, cell-cell interactions, and the inflammatory effects of

cerebrospinal fluid and neural networks in leptomeningeal

metastases are still inconclusive. In addition, the potential risk of

adverse effects should be considered when administering

immunotherapy for brain metastases. Immunotherapy

overactivated the immune system, triggering a cytokine storm

that can lead to the side effects of CNS. For example, immune

checkpoint therapy may aggravate perifocal edema and increase the

risk of radiation necrosis at previously exposed sites (151), and

other adverse effects include intracranial hemorrhage, epilepsy, and

headache (152). How to avoid the toxic and side effects of

immunotherapeutic agents will also become the focus of research

related to immune checkpoint therapy.
8 Conclusions

It is becoming better acknowledged how important the TME is

to BrM. Particularly in BrM, the subject of tumor immunology is

has begun to be explored. Although the brain has long been thought
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of as an immunological safe haven, Recent studies have revealed that

BrM cause immune cells to migrate inwards from the periphery, and

that antigen presentation routes exist between the brain and the rest of

the body. Having both native brains and recruited cells from the

periphery, BrM increases the potential for TME-targeted therapies or

immunotherapies. Recently published research has begun to provide

light on the intricacy of tumor-stroma interactions and heterotypic

communication across niche cells that mutually control effector

activities, all of which are related with BrM.

When compared to extracranial tumors, the immune milieu

surrounding intracranial malignancies is markedly different and

more specialized. The microenvironment of brain metastases has

been extensively studied, leading to the identification and validation

of certain potential targets and therapeutic approaches. The advent

of cutting-edge tools like single-cell sequencing and liquids biopsy

has allowed for significant progress in the study of the tumor

microenvironment in recent years. From the vantage point of cell

mapping, single-cell sequencing explores the cooperative operating

style of cells. This is performed by identifying cell specificity and

variations among small cells. The needs of studies examining tumor

heterogeneity are mostly met by this method. Using a combination

of studies based on interactomics, we can not only precisely define

the disease depending on the type of the cell layer, but also establish

the spatial and temporal diversity of the microenvironment and

track the development of brain metastases frommalignancies. Brain

metastases must be treated specifically for their immunosuppressive

properties. Considering a balance between inducing anti-tumor

responses and maintaining tissue protective mechanisms is

especially crucial for the brain because of its central role in

managing higher cognitive functions. More in-depth study is

needed to pave the way for the development of novel

immunotherapeutic approaches for their management.
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