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Allogeneic transplantation of hematopoietic cells is the only curative therapy for

several hematopoietic disease in which patients receive cytotoxic conditioning

regimens followed by infusion of hematopoietic stem cells. Although the

outcomes have improved over the past decades, graft-versus-host-disease

(GVHD), the most common life-threatening complication, remains a major

cause of non-relapse morbidity and mortality. Pathophysiology of acute

GVHD characterized by host antigen-presenting cells after tissue damage and

donor T-cells is well studied, and additionally the importance of recipient

microbiota in the intestine is elucidated in the GVHD setting. Oral microbiota

is the second most abundant bacterial flora in the body after the intestinal tract,

and it is related to chronic inflammation and carcinogenesis. Recently,

composition of the oral microbiome in GVHD related to transplantation has

been characterized and several common patterns, dysbiosis and enrichment of

the specific bacterial groups, have been reported. This review focuses on the

role of the oral microbiota in the context of GVHD.
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Introduction

Hematopoietic stem cell transplantation (HSCT) is a curative therapy for refractory

diseases of the hematopoietic system. Graft-versus-host-disease (GVHD), a major adverse

effect of allogeneic HSCT, was first observed in a mouse HSCT model in 1956. The model

demonstrated the clinical manifestations of acute GVHD (aGVHD), such as liver damage,

skin rash, and diarrhea (1). Continued research on aGVHD has revealed that its immune

cell mechanisms mainly involve donor lymphocytes and host antigen presenting cells

(APC)s, and that human leukocyte antigen (HLA) is important for the activation of

allogeneic T cells (2). Acute GVHD is traditionally described in the following steps. First,

the activation of host APCs associated with the conditioning regimen occurs, followed by

the activation of donor T cells and target tissue damage due to cellular and inflammatory

factors (3). Conditioning regimens based on high-dose chemotherapy and total body

irradiation are important to eradicate the hematopoietic disease and immune cells in

recipients that cause graft rejection and can lead to systemic tissue damage. Host tissues
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release inflammatory cytokines such as interleukin (IL)-1, IL-6, and

tumor necrosis factor, which increase the expression of major

histocompatibility complex antigens and cell surface adhesion

molecules on host cells. Tissue damage, including that in the

intestinal tracts, lead to the release of damage-associated

molecular patterns (DAMPs) from host tissues and pathogen-

associated molecular patterns (PAMPs) from the bacterial flora,

resulting in a constant and excessive inflammatory and pro-

inflammatory response (4). This cytokine storm activates host

APCs, which present allogeneic antigens that are recognized

by donor T cells, leading to T-cell activation (5). Second,

activated T-cells proliferate and differentiate; CD4+ T cells

differentiate into various subsets, including Th1, Th2, Th9, Th17,

and Th22, and CD8+ T cells differentiate into cytotoxic T cells,

which migrate and cause tissue damage in target organs such as

liver, skin, and intestine to attack the host (6). Donor T cells are

important targets for immunosuppressive therapy in the prevention

and treatment of aGVHD, including anti-thymocyte globulin,

calcineurin inhibitors, mToR inhibitors, mycophenolic acid,

methotrexate , post-transplant cyclophosphamide, and

corticosteroids (4, 7–9). HLA is the major host protein recognized

by donor T cells (10). HLA class I (A, B, C) is present in almost all

nucleated cells in the body, while class II (DR, DQ, DP) is mainly

expressed in hematopoietic stem cells and its expression can be

induced in other cells by inflammation. The incidence of aGVHD is

related to the degree of HLA mismatch, and all HLA of the donor

and recipient should be identical. About half of allogeneic HSCT

patients develop grade II to IV aGVHD, and most patients respond

to corticosteroids treatment. Approximately 40% of patients who

receive HLA identical grafts develop aGVHD, which requires

treatment with corticosteroids. Some patients experience steroid-

refractory aGVHD with poor overall survival, ranging from 5–30%

(11). This has been attributed to differences in gene-encoding

proteins called minor histocompatibility antigens, which are

located outside the HLA locus (10).

Owing to these limitations of immunosuppressive therapy and

HLA-matched prophylaxis in the prevention and treatment of

aGVHD-targeting immune-cells, a third pathophysiological target

has focused on host tissue factors in the past decade (12, 13). One of

the most extensively studied areas is the relationship between

intestinal microbiota and GVHD. The intestinal tract, injured by

diverse factors such as preconditioning regimens including Total

Body Irradiation (TBI) and high-dose chemotherapy, infection,

decreased oral intake, antibiotics, and immunosuppressive

therapy, is a primary aGVHD target organ and plays a major role

in the pathogenesis of aGVHD (14). Approximately 100 trillion

prokaryotic cells inhabit the intestine, most of which are

biochemically anaerobic bacteria. Three major phyla of these

bacteria, Bacteroidetes, Firmicutes, and Actinobacteria, comprise

over 90% of the community (15). Next-generation sequencing has

revealed that the gut microbiota harbors 1,000–1,150 bacterial

species at the population level, with each individual harboring at

least 160 species (16). The mammalian gastrointestinal tract is a

relatively hypoxic tissue. Aerobic and facultative anaerobic bacteria

consume oxygen in the distal intestinal tract, keeping the lumen

hypoxic, colonized by anaerobic bacteria that produce short-chain
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fatty acids (SCFAs) (17). Intestinal epithelial cells are adapted to this

hypoxic environment and play a central role in the homeostasis of

the entire intestinal tract, including the intestinal microbiota.

Intestinal epithelial cells are continuously renewed from intestinal

stem cells (18). Energy production involves b-oxidation and

oxidative phosphorylation of fatty acids by mitochondria, which

consume large amounts of oxygen and reduce oxygen pressure in

the lumen (19). This oxygen consumption helps anchor the

polarized anaerobic bacteria that produce carbohydrate

metabolites (20). Epithelial metabolism of SCFA is an important

factor in physiological hypoxia of the mucosa with stabilization of

oxygen consumption and hypoxia-inducible factors that promote

intestinal protection (21).

The gut microbiota is significantly less diverse during the

transplant period. Profiling of 8,767 fecal samples from 1,362

patients at four centers showed a lower risk of mortality with

higher diversity of the gut microbiota. A subgroup analysis

showed that lower diversity was associated with a higher risk of

transplant-related mortality and mortality attributable to aGVHD.

Furthermore, groups with low diversity in stool samples before

transplantation had a lower survival rate (22). In a retrospective

analysis of 80 patients, the group with lower diversity of microbiota

in feces at the time of neutrophil engraftment had a significantly

increased mortality rate compared to the group with higher

diversity. This was also evident in a multivariate analysis that

included other clinical predictors and showed that microbiota

diversity was an independent predictor (23). Decreased diversity

of the intestinal microbiota is associated with prechemotherapy,

preconditioning regimens, drugs including antibiotics and

immunosuppressant, loss of appetite, and injury to the

gastrointestinal epithelium attributable to these therapies (24, 25).

Studies have also examined the association between allogeneic

HSCT and specific bacteria. Fecal samples from 38 transplant

patients at a single institution at five time points (preconditioning,

1, 3, 6, and 12 months post-transplant) analyzed using 16S rRNA

analysis showed that an increase in the abundance of Enterococcus

spp. in the gut at 1 month post-transplant was associated with a

decreased overall survival rate, suggesting a promising prognostic

indicator (26). Additionally, a higher bacterial population composed

of Eubacterium limosum in the gut in the early post-transplant

period has been associated with a lower the risk of disease

recurrence and progression, based on the analysis of data from a

single institution (27). It has been observed that an increase in the

abundance of Enterococcus is associated with aGVHD and

mortality. The increase in the abundance of Enterococcus was

dependent on the disaccharide lactose, and dietary lactose

deficiency suppressed Enterococcus abundance, followed by

reduced aGVHD severity in a gnotobiotic mouse model (28). In

patients undergoing allogeneic HSCT, the oral-origin genera Rothia,

Solobacterium, and Veillonella were identified in the stools, and they

were positively correlated with aGVHD (29). The use of multiple

broad-spectrum antibiotics is often unavoidable during allogeneic

HSCT. Undesirable consequences of antibiotic use in cancer

patients have been observed, including antibiotic resistance,

predominance of pathogenic bacteria, transient or profound loss

of microbial diversity, increased susceptibility to infection, and risk
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of recurrent infections (30). While aztreonam and cefepime have

not been associated with aGVHD-related mortality, tazobactam and

piperacillin have been shown to have a profound effect on intestinal

dysbiosis after allogeneic HSCT. Imipenem and cilastatin treatment

in aGVHD mouse model was shown to decrease the protective

intestinal mucus and intestinal barrier function with an increase of

Akkermansia muciniphia, an indigenous bacterium with mucolytic

capacity (31). In a clinical study that evaluated the effects of

prophylactic and therapeutic antibiotic administration prior to

day 0 of allogeneic HSCT, the antibiotic group had a significantly

higher incidence of aGVHD and shorter survival (32). Early

antibiotic exposure in allogeneic HSCT was associated with lower

urinary 3-indoxyl sulfate levels, lower fecal indigenous clostridia,

and higher transplant-related mortality (33). While negative

outcomes of broad-spectrum antibiotic administration are

available, some studies have reported the contrary. In mice with

diet-induced obesity, pre-transplant prophylactic antibiotic

treatment had a protective effect against aGVHD in terms of

production of endotoxin and inflammatory cytokines, pathological

changes in the intestinal tract, and mortality. Some controversial

aspects regarding antibiotics and aGVHD remain (34). Although

prophylactic and systemic antibiotics clearly improve transplant-

related mortality, especially infection-related mortality,

comprehensive decisions regarding antibiotic use around the time

of HSCT may need to be made, taking into account disease status,

donor source, history of antibiotic use, microbial injury status, and

other risk factors (12). In chronic GVHD, plasma levels of SCFAs

propionate and butyrate were found to be low in patients with

chronic GVHD. This finding suggests that the SCFA levels are at

least partially involved in systemic immune regulatory functions due

to reduced gut bacterial function (35). Butyrate is fermented by

anaerobic bacteria in the colon and has a local protective effect by

serving as an energy source for colonocytes, suppressing oxidative

stress, and inducing T cell differentiation into Tregs via histone

acetylation (36, 37). These changes in anaerobic bacteria are affected

by antibiotics and environmental changes associated with tissue

metabolic changes (38). Quinolones, commonly used for

prophylaxis against febrile neutropenia in patients undergoing

transplantation, are broad-spectrum bactericides effective against

many gram-positive and gram-negative bacteria, targeting the

bacterial enzymes DNA gyrase and DNA topoisomerase, which

are essential for DNA replication and repair. When antibiotics were

administered to healthy participants, a single dose of clindamycin, a

lincosamide, and ciprofloxacin, a quinolone, had a negative effect on

butyric acid-producing bacteria in the gut for several months and

had a major effect on SCFA production (39). Butyrate is reduced

during the transplantation period, followed by decreased histone

acetylation (40). These changes result in a loss of intestinal epithelial

integrity, which promotes bacterial lipopolysaccharide exudation

and donor-reactive T cell activation (41). Subsequently, through the

activation of caspase-11, a receptor for LPS, and cleavage of

gasdermin D, IL-1a was released and it exacerbated aGVHD in a

mouse model (42). Therapeutic interventions targeting the gut

microbiota currently include the various approaches (41). Limited

exposure to antibiotics that eliminate mainly anaerobic commensal

bacteria may be considered. However, in many cases where broad-
Frontiers in Immunology 03
spectrum antibiotics are required to prevent or treat severe

infections, including febrile neutropenia, this is difficult to

implement. Therefore, the proper use of antibiotics is encouraged.

Open and two-armed randomized controlled nutrition intervention

trials in patients with hematologic malignancies undergoing

allogeneic HSCT, have examined associations among gut

microbiota, SCFAs, markers of gut barrier function, and clinical

outcomes; however, no differences were observed between the

intervention and control groups (43). Administration of

meropenem, a frequently used broad-spectrum antibiotic, caused

thinning of the intestinal mucous layer via an increase in the

abundance of Bacteroides thetaiotaomicron, followed by the

exacerbation of aGVHD in mice. Interestingly, administration of

xylose, the level which was reduced in the colonic lumen during

allogeneic HSCT, prevented thinning of the mucus layer of the

colon (44). As another strategy that targets gut microbiota, fecal

microbiota transplantation (FMT) is currently being developed, and

several clinical trials have already been conducted. In the most

recent meta-analysis of 242 patients with steroid-dependent GVHD,

100 patients achieved a complete response and 61 achieved a partial

response to FMT. Although 2% of patients had FMT-related

infections, all patients recovered after treatment. Other adverse

effects were mild, and FMT shows a promise as the new treatment

strategy for GVHD (45).

The oral microbiota, the second most abundant bacterial

community in the human gut, has recently attracted attention

with comprehensive research on intestinal microbiota. The oral

microbiota serves as a reservoir of the intestinal microbiota, and

they are jointly involved in systemic disease development (46, 47).

The association between oral bacteria and systemic diseases was

first proposed in 1891 (48). In recent years, development of new

analytical methods such as next-generation sequencing has led to

comprehensive analyses and research on non-culturable bacteria,

which had been challenging to perform in the past (49). Until

recently, the direct transfer of oral bacteria to the intestinal tract was

considered extremely rare, at least in healthy individuals. Recently,

it has become clear that oral bacteria can migrate to the intestinal

tract even in healthy individuals (50). In certain diseases, oral

bacteria migrate directly through the gastrointestinal tract and

establish there. In addition to direct transfer, inflammation in the

oral cavity such as periodontal disease may trigger systemic

inflammation and systemic diseases. The oral microbiota is

closely related to the intestinal microbiota, and the possible

existence of a “mouth–gut axis” has been demonstrated in some

diseases such as inflammatory bowel disease (IBD) (51). In this

review, we focus on the relationship between the two communities

of microbiota in relation to HSCT and the adverse effects, reviewing

the limited literature on oral microbiota and HSCT.
Oral microbiota

In 2007, the human microbiome project analyzed the baseline

microbial and functional diversity of the human microbiota and

established 48 major microbiomes in the human body (52). The oral

microbiota is the second largest, after the intestinal microbiota (53).
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Immunotolerance to the oral microbiota begins before birth.

Microorganisms are present in the placenta, amniotic fluid, and

umbilical cord blood (54). Furthermore, maternal oral bacteria

access the placenta through the gingiva, and fetal regulatory T

cells prevent this undesirable homologous reactivity. As a result, the

fetus acquires prenatal tolerance to the maternal oral bacteria,

which also affects the development of the immune system after

birth (55). Oral bacteria colonize rapidly after birth, establishing

microbiota at each site in cooperation with the host’s immune

system (55). Infants born via vaginal delivery show high diversity in

oral bacteria in the first 3 months of life (56). The microbiota differs

by the mode of delivery. Streptococcus mutans, a causative

microorganism of dental caries, is acquired in infants born via

cesarean section approximately 1 year earlier than those born via

vaginal delivery (57). The oral cavity is considered a challenging

environment for the microbes to survive after birth, due to the daily

fluctuations in nutritional supply, temperature, pH, mechanical

forces of chewing, and hygiene practices, and exposure to

chemicals from hygiene, pharmaceuticals, toxic substances, and

smoking products. However, a study that followed healthy

individuals for 7 years found that the oral microbiota was stable

over a long time and that these factors may cause transient

changes (58).

The human oral cavity contains different habitats, including

teeth, gingival sulcus, tongue, buccal mucosa, hard palate, soft

palate, and tonsils, which are colonized by a wide variety of

bacteria, with about 1000 species at the species level and different

subsets predominating each habitat (49, 59). These surfaces are

exposed to saliva and gingival crevicular fluid in the subgingival

margin. Primary colony formers in the oral cavity are

predominantly facultative anaerobes such as streptococci and

actinomycetes. Streptococcus accounts for over 80% of the initial

components of biofilms. Most of them are commensal and classified

into five groups: mutans, salivarius, anginosus, sanguinis, and mitis

(60). Of these, S. mutans has been studied extensively as a caries-

causing organism in terms of the ability to metabolize sugars and

produce large amounts of extracellular polymers from sucrose, and

resistance to environmental stress. It has also been implicated in

endocarditis, IgA nephropathy, and atherosclerosis (61). In the

subgingival region, the abundance of anaerobic bacteria such as

Bacteroidaceae and Spirochaetes increases due to decreased oxygen

levels (62). The oral cavity has multiple commensal environments,

each with different microbiota, but the microbiomes of the tongue

and saliva are consistent (63, 64). Oral bacteria have been well

studied because of ease of collection; however, more than half of

these oral microbiota are unculturable bacteria. The use of new

analytical methods, such as next-generation sequencing, has

revealed their complex structures (49). Most oral microbiota

exists in the form of oral biofilms, except in the saliva (65).

Biofilms have been studied for their role since Costerton et al.

published the mechanism of bacterial adhesion in the oral cavity in

1978 (66). A biofilm is defined as an aggregate of bacterial cells

adhering to an inert surface or biological surface, surrounded by a

self-produced extracellular polymeric matrix. Oral bacterial

biofilms enable bacterial colonies to adapt to high cell densities;

they are composed of proteins, lipids, polysaccharides, and
Frontiers in Immunology 04
extracellular DNA. Biofilms are microenvironments capable of

regulating pH, oxygen level, and redox status in the oral cavity,

improving nutrient availability for bacteria and protecting them

against environmental stress (67). In addition to bacteria, viruses,

fungi, and yeasts are endemic to the oral cavity. Information on

these oral biomes is limited compared with that on the bacterial

microbiota. The most common viral families present in healthy

individuals include Anaelloviridae, Papillomaviridae, and

Herpesviride (68). A recent study on fungi using sequencing of

the taxonomically informative pan-fungal internally transcribed

spacer gene with DNA extracted from oral rinses revealed 154

fungal species (69). Candida and Aspergillus were isolated from

100% of the participants, Penicillium in 97% of the participants,

Schizophyllum in 93% of the participants, Rhodotorula in 90% of the

participants, and Gibberella 83% of the participants. A trend toward

an increase in the abundance of Candida, which is associated with

periodontal disease, has been observed in individuals with

periodontal disease; this trend is also observed with an increase in

the number of permanent teeth lost (69). In addition, Candida

albicans interacts with Porphyromonas gingivalis, known as one of

the most prominent causative bacteria for periodontal disease, to

exacerbate the virulence of P. gingivalis. A comprehensive study of

the oral biome, not limited to bacteria, is required (70).
Oral dysbiosis

The oral microbiome contains various bacteria that act as a

protective barrier against the establishment of pathogenic bacteria.

Oral dysbiosis can lead to the establishment of pathogenic bacteria

in the oral cavity (71). The saliva contains antimicrobial peptides

and a host glycoprotein component that provides nutrition to oral

bacteria, regulating the balance between protection and attack

against bacteria (72). This fraction in the saliva varies

considerably among individuals with age, health status, and

disease state. For example, patients with type 1 diabetes mellitus

have reduced salivary gland function, resulting in decreased salivary

flow and decreased secretion of antibacterial enzymes such as

lysozyme (73). Dysbiosis involves disruption of microbiome

homeostasis caused by imbalance of microbiota, changes in the

functional composition and metabolic activity of microbiota, and

changes in local distribution of microflora. Dysbiosis is a

combination of the following three conditions: 1) loss of

beneficial microbiota, 2) expansion of pathogens and potentially

harmful microorganisms, and 3) loss of overall microbial diversity

(74). It is not limited to local effects, but can also promote specific

systemic diseases in the host (65) (Figure 1).

Common causes of oral dysbiosis include diet, smoking, oral

hygiene practices, and antibiotics (75). In the diet, the intake of

sugars and certain foods such as farmed animal meat, dairy

products, refined vegetable oils, and processed grains affects the

composition of the microbiota. Although the oral microbiota is not

dependent on diet as an energy source (76), persistent sugar intake

results in dysbiosis associated with a shift to glycolytic and

acidophilic microbiota (77). Regarding smoking, the oral

microbiota of smokers differs from that of nonsmokers in many
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respects, including reduced diversity, bacterial abundance, and

metabolites. In addition, these effects persist for several years after

smoking cessation (78). Bacteria in oral biofilms are more resistant

to antibiotics than planktonic bacteria in the saliva (79). Horizontal

transmission of antibiotic resistance genes in oral biofilms is

observed even in healthy individuals who have not been exposed

to antibiotics (80). Interestingly, the resistance of microbiota in the

saliva is more robust and stable than that of microbiota in the

intestinal tract (39).

Periodontal disease is a disease that is typically associated with

oral microbiota dysbiosis (51); it encompasses a wide range of

chronic inflammatory conditions of the gingiva, bone, and tooth-

supporting ligaments (81). It begins with localized gingivitis caused

by bacteria in biofilms formed on the teeth and gingiva. Periodontal

disease has multiple risk factors such as genetic factors, smoking,

plaque accumulation, diabetes, and socioeconomic status, as

reported by studies in the USA (81, 82). Diabetes mellitus has a

reciprocal risk relationship with periodontal disease, as discussed

below. Here, periodontitis occurs in a state of dysbiosis in which

some pathogenic bacteria are relatively more abundant (83).

Pathogenic bacteria that cause periodontitis are represented by

P. gingivalis and Fusobacterium nucleatum (84). Porphyromonas

gingivalis invades the epithelium and penetrates deep into tissues,

evading humoral immune responses owing to its intracellular

localization. Furthermore, it can degrade cell signaling molecules

and inactivate tissue regeneration and homeostatic functions (85).

As gingivitis progresses, gingiva, bone, and ligaments are damaged,

leading to the formation of periodontal pockets, eventually causing

systemic inflammation. Mouse models of periodontal disease can be

classified as follows: the ligature model, in which periodontal tissue
Frontiers in Immunology 05
is rapidly destroyed locally by threading the teeth (86); the injection

model, in which bacteria are microinjected directly into the

periodontal lesions at the gingival margin (87); the mono-

infection model, in which P. gingivalis is injected daily after oral

administration of antibiotics mixed with vehicle (88); and the multi-

infection model, in which P. gingivalis, Treponema denticola,

Tannerella gingivalis, and F. nucleatum mixed with vehicle and

injected daily (89). Recent research has included not only local

studies in the oral cavity, but also those on the relationship with

systemic diseases. When investigating causative factors of dysbiosis

other than periodontal disease, the oral and intestinal microbiome

in patients with COVID-19 was shown to have lost richness and

evenness compared to those in the healthy group, and these findings

revealed that certain viral infections can also cause oral dysbiosis

(90, 91).
Association between oral microbiota
and systemic diseases

Periodontitis locally damages connective tissue and bone,

followed by extensive inflammatory cell infiltration of periodontal

pockets and connective tissue near the epithelium (92). The

hypothesis that oral bacteria may be associated with systemic

diseases was first proposed by Miller in 1891 (48). This was

followed by the speculation that oral infections caused systemic

diseases such as rheumatoid arthritis (93). The mechanism was

thought to involve the entry of dental plaque and its metabolites

into the blood circulation. Subsequently, a strong link between

systemic immunity and the gut microbiota (94), and the association
FIGURE 1

Schematic of oral dysbiosis. Oral dysbiosis is affected by environmental and genetic factors. In addition, it develops as a complementary
exacerbating factor for periodontal disease and some systemic diseases, such as diabetes mellitus. The resulting systemic transfer of bacteria and
spillover of inflammation contribute to systemic diseases, including GVHD after transplantation. Created with BioRender.com.
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of the oral microbiome with many systemic diseases, including

rheumatoid arthritis, Alzheimer’s disease, cardiovascular disease,

diabetes, inflammatory bowel disease, premature birth, and cancer,

were also demonstrated (95). All these diseases are linked to oral

microbiota dysbiosis. A paradigm shift in microorganisms and

cancer occurred with the discovery of the association between

Helicobacter pylori and gastric cancer and lymphoma (96, 97).

Since then, the association between bacteria and cancer has been

widely studied, and it has become clear that cancer is also associated

with oral microbiota.

The association between P. gingivalis and cancer has been

widely studied, and P. gingivalis is strongly associated with the

development and resistance to treatment of oral, esophageal, and

pancreatic cancers (97–99). Oral gastrointestinal cancer-related

mortality has been found to be associated with P. gingivalis

antibody levels independently of periodontal disease (100).

Porphyromonas gingivalis-infected epithelial cells 1) exhibit anti-

apoptotic properties and inhibit chemically induced apoptosis with

activation of Jak1/Akt/Stat3 signaling that regulates the intrinsic

mitochondrial apoptotic pathway (101), and 2) manipulate CDK

activity and decrease p53 levels, a tumor suppressor factor (102).

Through these mechanisms, P. gingivalis is thought to be associated

with carcinogenesis. While intestinal dysbiosis is a risk factor for

colorectal cancer and colorectal adenomas, there are a few reports of

specific bacteria as etiologic agents. Fusobacterium nucleatum is

present in the epithelium of colorectal adenoma and colorectal

cancer cells; it is relatively abundant compared with that in healthy

controls, and has been found to promote rectal cancer development

through Toll-like receptor (TLR) 2, TLR4, and microRNA-21 (103,

104). It has also been found that F. nucleatum on the buccal mucosa

side migrates to the site of rectal cancer impairing the efficacy of

radiation and anticancer drug therapy and worsening prognosis in a

mouse model (105). In addition, the composition of the

supragingival plaque microbiota in children with acute

lymphocytic leukemia is less diverse than in the healthy group:

the abundance of members of the phylum Firmicutes, the class

Bacilli, the order Lactobacillales, the families Aerococcaceae and

Carnobacteriaceae and the genera Abiotrophia and Granulicatella

were mainly associated with acute lymphocytic leukemia (106).

It has been demonstrated that local inflammation caused by

periodontitis affects not only cancers but also systemic disease a

century after Miller’s first hypothesis. Diabetes and periodontal

disease are mutually aggravating (107); oral microbiota dysbiosis

induces insulin resistance by affecting the body’s immune

inflammation and oxidative stress, adversely affecting diabetes

(95). Conversely, elevated glucose levels in the saliva and tissues

in patients with diabetes result in oral microbiota dysbiosis, with a

shift to glycolytic and acidophilic microbiota (76, 77). Patients with

rheumatoid arthritis, systemic lupus erythematosus, and Sjögren’s

syndrome also have reduced oral microbiota diversity; the

individual candidate pathogens differ among studies (108, 109).

Regarding the cardiovascular system, infectious endocarditis is

often caused by oral microbiota, and an increased risk of

atherosclerotic plaque formation was reported in 1993 in patients

with periodontitis (110). More recently, 23 species of oral bacteria

have been found in treated atherosclerotic plaques, which are
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thought to have migrated hematogenously (111). Alzheimer’s

disease remains an incurable disease that affects 47 million people

worldwide. This disease has also been linked to periodontal disease,

and the severity of periodontal disease, small number of remaining

teeth, and irregular tooth brushing habits are risk factors for

Alzheimer’s disease; preventive effects are expected by improving

these factors (112–114). IgA nephropathy is one of the main causes

of chronic kidney disease. Dysbiosis in saliva microbiome has been

identified in the patient group, with more Neisseria spp. than in the

healthy group (115). An association with preterm delivery has also

been noted (116). In the last trimester of pregnancy, periodontal

disease and dental caries-related oral microbiota predominate.

Among women in the immediate postpartum period, especially

those with poor oral hygiene, multidrug-resistant colonies are

upregulated and a decrease in oral bacterial diversity is observed

compared with that in nonpregnant women, suggesting the

importance of oral management from pregnancy to postpartum

(117). The examination of the gut microbiota of patients with IBD

has revealed many oral microbiota, suggesting a direct recent

migration. In addition, periodontitis and the involvement of

nonbacterial microorganisms, viruses, and fungi such as Candida

albicans have also been found to have an effect on IBD (118).
Translocation of oral microbiota into
the intestinal tract

Previously, it was believed that the oral microbiota did not

migrate to the intestinal tract. Humans ingest 1–1.5 L of saliva daily,

and over 99% of the millions of bacteria in the saliva were believed

to be killed by gastric acid (119) and antibacterial bile acids (120)

while passing through the acidic environment from the stomach to

the small intestine, where both communities were thought to be

separated. Profiling analysis of saliva and fecal samples from healthy

adults for microbial single nucleotide variants revealed that 77% of

the 125 bacterial species that predominate both in the mouth and

intestinal tract showed oral–fecal transmission, indicating that oral

microbiota migrates to the intestinal tract not only in people with

disease but also healthy individuals (50). Conditions that may

accelerate the migration from oral cavity to the intestinal tract

include 1) periodontal disease, 2) systemic conditions, and 3)

external factors such as drugs.

1) In a previous study, fecal and salivary samples from patients

with severe periodontal disease and healthy donors were collected

for analysis using 16SrRNA; the results showed that saliva-derived

microorganisms were present in the feces of the periodontal disease

group. In addition, the saliva-derived microorganisms settled in the

intestinal tract in the mouse model (121). In addition to the

mechanism by which bacteria migrate directly to the intestinal

tract, another pathway has also been identified in which oral

inflammation spills over and leads to intestinal inflammation via

Th17 cells (51). Porphyromonas gingivalis induces oral

inflammation such as periodontitis, which indirectly leads to

systemic inflammation, and also migrates directly to the intestinal

tract, causing dysbiosis of the intestinal microbiota, followed by

disruption of the intestinal barrier (122).
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2) In patients with certain diseases, there is an increase in the

abundance of certain oral bacteria in the gut. For example, in

rheumatoid arthritis, a decrease in the abundanceHaemophilus spp.

and an increase in the abundance of Lactobacillus salivarius have

been observed in feces, teeth, and saliva (123). Furthermore, it has

been found that species commonly considered as opportunistic

pathogens become predominant in the oral cavity of patients with

rheumatoid arthritis and colorectal cancer, and that mouth-to-gut

microbial transmission is more frequent in such patients than in

healthy individuals (50, 124). Mouth-derived bacterial abundance

also increases in the gut of individuals with IBD (125). Klebsiella

strains derived from the saliva of patients with IBD settle in the

intestinal tract when fed to gnotobiotic mice, strongly induce Th1

cells and intestinal inflammation (46). These two pathways of direct

migration and systemic spread of local inflammation exacerbate the

progression of IBD.

3) Long-term use of proton pump inhibitors reduces the

diversity of the gut microbiota and causes an increase in the

abundance of Rothia spp. in the oral microbiome. These

microbiota changes may increase the transfer of oral microbiota

to the intestinal tract and the risk of Clostridium difficile

infection (126).

In addition to bacterial transgastrointestinal migration,

hematogenous systemic dissemination of oral bacteria from

periodontal pockets, including that to the intestinal tract, has

been associated with systemic diseases, especially atherosclerosis

in periodontal disease (127). The oral microbiota serves as an

important reservoir for maintaining the internal stability of the

intestinal microecosystem, whereas pathogenic oral bacteria

sometimes migrate into the intestinal tract via the digestive tract

or blood and mediate diseases such as IBD (46, 47).
Oral microbiota and HSCT

Oral mucositis (OM) is the most prevalent intraoral

complication during HSCT, occurring in approximately 70-86.8%

of patients following HSCT, due to mucosal damage associated with

high-dose chemotherapy regimens and/or TBI (128, 129). This

leads to increased pain, malnutrition, and risk of infection,

resulting in high-risk predisposition to GVHD. Pretreatment

including TBI is associated with a high incidence of OM.

Specifically, cyclophosphamide has a 100% induction rate of OM

over grade 3 as a World Health Organization HSCT complication

(130). Severe OM is associated with days of total parenteral

nutrition and parenteral drug therapy, days of fever, incidence of

serious infections, duration of hospital stay, and total number of

hospitalizations (131). A study on the salivary microbiome and

metabolome in 184 patients showed that they had oral dysbiosis,

and that pre-transplant Kingella and Atopobium levels were

associated with future severe OM. Methylobacterium spp. were

predominantly enriched in patients with severe OM. The

metabolite that showed changes was polyamine, which is

produced by commensal bacteria in the gut and is essential for

mucosal homeostasis, maintenance of the mucosal barrier, and

recovery after damage. This finding indicates that the oral
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microbiome is involved in the development of OM during

transplantation (132).

It is not uncommon for multidrug antibiotic therapy to be

administered as prophylactic or febrile neutropenia therapy during

transplantation. Although the oral microbiota is better preserved

after general antibiotic therapy compared to the gut microbiota,

Staphylococcus spp. and Enterococcus spp. were predominant

following multidrug antibiotic therapy during allogeneic HSCT:

beta-lactam and glycopeptide combination therapy. Ulcerative oral

mucositis after allogeneic HSCT has been observed only in the

combination of multi-antibacterial therapy (133). In the analysis of

oral rinses in patients undergoing allogeneic HSCT, the OM-

affected group showed a substantial decrease in bacterial

microbiota compared to the non-affected group for up to 3 weeks

after transplantation (134). When neutrophil count was included in

the regression model, it was found to be a confounding variable,

affecting both mucositis and bacterial diversity, while there was no

direct effect on diversity. Traditionally, oral hygiene with

mouthwash is used to prevent OM after HSCT. In addition,

treatment with folinic acid is related to a reduced incidence of

OM induced by MTX, whereas there was no relationship in the

incidence of aGVHD (135).

Oral microbiota and intestinal microbiota also undergo dysbiosis

after HSCT, and the relationship between the pattern of microbiota

and the recurrence rate, incidence of adverse effects, including

GVHD, has been studied in humans while the association between

oral microbiota and HSCT in mouse models has not been verified to

date. Dysbiosis was observed in the oral microbiome, from

preconditioning to long after allogeneic transplantation, regardless

of its location. A decrease in diversity was observed in the dorsal

tongue swab at preconditioning (136) and also in the supragingival

dental biofilm early after allogeneic transplantation from

preconditioning (137). Analysis of buccal swabs of children showed

a decrease in diversity at 1 month after allogeneic transplantation,

followed by reconstitution at 1–3 months (138). In addition, in cases

with severe aplastic anemia, brushing of the back of the tongue

showed a decrease in diversity at pre-conditioning, neutrophil

engraftment, and at 100 days after autologous transplantation. A

comparison with the human microbiome project database revealed

that approximately 35% of the bacterial identifiers were unique to this

tongue dorsum sample. Rothia mucilaginosa and Haemophilus

parainfluenzae were significant among participants undergoing

HSCT (139). This bacterial specificity was also evident in a study

comparing the tongue microbiota of 45 patients with that of 164

healthy individuals. At the time of allogeneic transplantation, 146

taxa were identified withing the bacterial microbiota, 34 of which did

not match the bacteria predominantly found in the oral cavity in the

database (140). These changes in the early post-transplant period

may be due to a significant reduction in defense mechanisms due to

the conditioning regimen and associated neutropenia, and they may

also be related to OM, antibiotic use, and decreased oral intake.

Previous studies have shown that these changes return to

approximately the pre-conditioning phase within 1–3 months

(134, 138).

The risk of aGVHD was higher when Streptococcus and

Corynebacterium abundance in the supragingival dental biofilm
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was high during preconditioning (Table 1). Conversely, high

Veillonella abundance was associated with a low risk of aGVHD.

This may be because lactic acid metabolism by Veillonella

contributes to the resilience of the oral microbiota against

acidification (77). Furthermore, Enterococcus faecalis bloom

during transplantation was associated with acute and severe

aGVHD risks (137). In pediatric data, the composition of the

buccal microbiota was associated with the development of

aGVHD and with CD4+ T cell , Th17 cell , and B cell

reconstitution (138). Unfortunately, no study has directly

examined whether the oral microbiota affects the intestinal

microbiota , leading to subsequent transplant-re lated

complications. A study simultaneously analyzing the intestinal,

oral, and nasal microbiota at the time of transplantation in

pediatric cases showed that not only the intestinal microbiota

but also the relative increase in the abundance of oral

Actinomycetaceae, Prevotellaceae, and Propionibacteriaceae at

preconditioning could be a predictor of the development of

aGVHD of grade II or higher. Risk assessment using oral

microbiota, which is easier to collect than feces, is useful for

clinical application (138) While some reports suggest that an

increase in pathological bacteria and a decrease in indigenous

bacteria are associated with the incidence of GVHD, it has been

reported that dysbiosis of the tongue microbiota is not associated

with the risk of acute and chronic GVHD (136). Similarly, it has

been reported that there was no difference between the microbiota

in oral rinses at preconditioning and that at the onset of chronic

oral GVHD, and the observed dysbiosis during HSCT might not

have been associated with the onset of chronic oral GVHD (134).
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The relationship between oral microbiota and GVHD remains

controversial and open to further study. In an analysis of the

tongue microbiota at preconditioning, predominance of a

single genus was associated with a higher risk of recurrence at 3

years, PFS, and 3-year OS after allogeneic HSCT; decreased

Solobacterium abundance was associated with an increased risk

of recurrence (136). In the tongue microbiota at the time of

transplantation, Staphylococcus haemolyticus and/or Ralstonia

pickettii were significantly associated with a higher risk of death

(140). Regarding the other complications during allogeneic

HSCT, it has been reported that Campylobacter rectus and/or

Campylobacter concisus were predominant in patients with

respiratory complications within 100 days after HSCT,

suggesting an association between oral microbiota and post-

transplant respiratory complications (141).
Conclusion

The relationship between oral microbiota and post-transplant

complications and survival and recurrence rates has been

reviewed. Conditioning regimens, antibiotic combination

therapy, and periodontal disease may cause oral dysbiosis, which

may lead to direct transfer of pathogenic bacteria to the intestinal

tract. Furthermore, local oral inflammation caused by oral

dysbiosis may spread to systemic inflammation including GVHD.

Further accumulation of evidence is important to determine

the mechanism.
TABLE 1 Human oral microbiota and HSCT.

Study Year Type of
HSCT

Follow-
up in
months
(median)

Increased strain Sample
collection
site

Sample collection period Characteristics

Ames
et al.
(141)

2012 Allo-HSCT
(Adults)

100 days Campylobacter rectus
and Campylobacter
concisus

Saliva, tongue,
buccal
surfaces and
supragingival
plaque

Before the conditioning regimen, at aplasia and at
engraftment

Association
between
respiratory
complications by
100 days after
HSCT

Oku
et al.
(140)

2020 Allo-HSCT
(adults)

9-42
(23)

Staphylococcus
haemolyticus,
Ralstonia pickettii

Tongue The day of transplantation Higher risk of
mortality

Heidrich
et al.
(137)

2021 Allo-HSCT
(adults)

25-46
(37)

Staphylococcus,
Corynebacterium,
Enterococcus faecalis

Dental biofilm Before the conditioning regimen, at aplasia and at
engraftment

Higher risk of
acute GVHD

Vellionella Dental biofilm Before the conditioning regimen, at aplasia and at
engraftment

Lower risk of
acute GVHD

Campos
de Molla
et al.

2021 Allo-HSCT
(adults)

25-46
(37)

Solobacterium
absence at
preconditioning

Tongue Before the conditioning regimen and the oral
medicine specialist intervention, at aplasia, and at
engraftment.

Higher risk of
relapse

Ingham
et al.
(138)

2021 Allo-HSCT
(pediatrics)

10-32
(21.4,
average)

Actinomycetaceae,
Prevotellaceae, and
Propionibacteriaceae
at preconditioning

Buccal mucosa At 10 time points over a 1-year period: twice prior
to HSCT, on the day of HSCT, weekly during the
first month after HSCT, and at three follow-up
time points up to 12 months post HSCT.

Higher risk of
acute severe
GVHD
Relative increase in oral bacteria during HSCT in relation to the outcome and complications. GVHD, graft-versus-host-disease; HSCT, hematopoietic stem cell transplantation; Allo, allogeneic.
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