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Carbon dot-based
nanomaterials: a promising
future nano-platform for
targeting tumor-associated
macrophages

Yingying Miao, Shuang Wang, Butian Zhang* and Lin Liu*

Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
The tumor microenvironment (TME) is the internal environment that tumors

depend on for survival and development. Tumor-associated macrophages

(TAMs), as an important part of the tumor microenvironment, which plays a

crucial role in the occurrence, development, invasion and metastasis of various

malignant tumors and has immunosuppressant ability. With the development of

immunotherapy, eradicating cancer cells by activating the innate immune system

has yielded encouraging results, however only a minority of patients show a

lasting response. Therefore, in vivo imaging of dynamic TAMs is crucial in patient-

tailored immunotherapy to identify patients who will benefit from

immunotherapy, monitor efficacy after treatment, and identify alternative

strategies for non-responders. Meanwhile, developing nanomedicines based

on TAMs-related antitumor mechanisms to effectively inhibit tumor growth is

expected to become a promising research field. Carbon dots (CDs), as an

emerging member of the carbon material family, exhibit unexpected

superiority in fluorescence imaging/sensing, such as near infrared imaging,

photostability, biocompatibility and low toxicity. Their characteristics naturally

integrate therapy and diagnosis, and when CDs are combined with targeted

chemical/genetic/photodynamic/photothermal therapeutic moieties, they are

good candidates for targeting TAMs. We concentrate our discussion on the

current learn of TAMs and describe recent examples of macrophage modulation

based on carbon dot-associated nanoparticles, emphasizing the advantages of

their multifunctional platform and their potential for TAMs theranostics.
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Introduction
Overall, 1,918,030 new cancer cases are expected to be diagnosed

in the United States in 2022, equivalent to 5,250 new cancer patients

per day. Men have a lifetime cancer probability of 40.2%, slightly

higher than women (38.5%), and it is also the leading cause of death. In

recent years, immunotherapy has emerged as a rising star in the cancer

therapeutics spectrum and is a promising strategy for cancer treatment

(1). Regrettably, definitive durable therapeutic effects are observed in a

small proportion of patients. But the majority show limited clinical

benefit or no response at all (2). In order to overcome the resistance of

immunotherapy, the mechanism of immunosuppression has been

studied in depth in recent years. Numerous studies have shown that

the tumor microenvironment (TME) plays an important role in

immunosuppression. Multiple inhibitors in the tumor

microenvironment (TME) have been identified through analysis.

Cell populations, among which tumor-associated macrophages

(TAMs) stand out, are promising new targets for tumor

immunotherapy (3). TAMs are a prevalent type of inflammatory cell

found in the stroma of various tumors. They exhibit a diverse range of

phenotypic characteristics and contribute to tumor growth, metastasis,

and recurrence by facilitating an immunosuppressive environment. In

solid tumors, TAMs are closely associated with poor prognosis.

Despite the complex phenotype, macrophages can be divided

into two subtypes based on function: M1 (anti-tumor immunity)

and M2 (immunosuppression and tumor immune evasion through

suppression of T cell function). M1 macrophages secrete pro-

inflammatory cytokines and chemokines, present antigens

professionally, participate in positive immune responses, and play

a role in immune surveillance. In contrast, M2 macrophages have

weaker antigen presentation abilities and primarily inhibit immune

responses through their secretions. Cytokines such as IL-10 and

TGF-b can down-regulate immune responses, with M2

macrophages as the central players. When combined with other

immunosuppressive cells in the tumor microenvironment (TME),

these factors not only cannot exert anti-tumor activity but can also

create a favorable environment for tumor growth and metastasis.

Therefore, evaluating the balance between M1 and M2

macrophages can be a useful strategy for characterizing the

immune landscape of the tumor microenvironment. Higher levels

of tumor-infiltrating M2 were significantly associated with shorter

survival, while higher proportions of M1 with pan-macrophages (%

M1) showed a positive correlation with longer overall survival (4).

At present, a variety of related small molecule drugs have been

developed targeting TAMs (5). Nevertheless, the lack of targeting of

these small molecule drugs and the complex microenvironment of

solid tumors in clinical trials have limited the efficacy of these small

molecule drugs to a certain extent (6). Nanomaterials possess a

diverse range of physicochemical properties that enable them to

function as both delivery carriers and immunomodulators, making

them a promising avenue for improving the immunosuppressive

microenvironment of tumors. Research on polarization induced by

nanomaterials has focused on a variety of materials, including

carbon-based materials, iron oxide nanoparticles, gold particles,

zinc oxide particles, and more (7).
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As a new member of the family of carbon nanomaterials, CDs

are small carbon-based nanoparticles that have gained a lot of

attention in recent years due to their unique optical, electrical, and

chemical properties, such as small-scale morphology, easily

functionalized surface, and tunable optical properties (8). These

properties make CDs attractive for a range of applications,

including in medicine.

One of the most promising applications of CDs in medicine is in

the field of bioimaging (9, 10). CDs can be easily conjugated with

biomolecules such as proteins, antibodies, or nucleic acids, and can

be used as fluorescent probes to visualize cells, tissues, and

organs (11).

Carbon dots offer several advantages compared to traditional

organic dyes or semiconductor quantum dots, such as low toxicity,

good biocompatibility, and high photostability. They can be used in

various bioimaging applications, including fluorescence imaging,

intracellular imaging, and biosensors. Carbon dots have a high

quantum yield, making them effective fluorescent probes for

detecting cancer cells, pathogens, and other biological targets (12,

13). Their small size and ability to penetrate cell membranes make

them ideal for imaging intracellular structures and studying cellular

processes such as endocytosis, exocytosis, and cell division (14–16). In

addition, carbon dots can be used as biosensors to detect specific

biomolecules or environmental factors, such as glucose, heavy metals,

and other chemicals in biological and environmental samples (17, 18).

Another potential application of CDs in medicine is in drug

delivery (19). CDs can be functionalized with different types of

molecules such as drugs, peptides, or nucleic acids, and can be used

to deliver these molecules to specific cells or tissues. CDs have

shown promise for delivering drugs to cancer cells, for example, by

targeting tumor-associated macrophages or by enhancing the

therapeutic efficacy of chemotherapy drugs (20, 21).

In addition to their potential applications in bioimaging and

immunotherapy, carbon dots have also been investigated for their

antibacterial and antiviral properties (22–24). These nanoparticles

have been found to inhibit the growth of various types of bacteria

and viruses, including drug-resistant strains, and have been

proposed as a potential alternative to traditional antibiotics or

antiviral drugs (25–27).

Overall, the theranostic potential of carbon dots (CDs) and

associated nanoparticles is rapidly advancing due to their unique

optical properties and versat i l i ty in preparation and

functionalization. CDs have been utilized for imaging

macrophages and tracking their movement in tissues, due to their

high quantum yield and photostability (28). Given the intrinsic

physicochemical properties and multifunctionality of CDs, their

interactions with TAMs offer exciting possibilities that are worth

exploring. Currently, there is limited research on carbon dot-

targeted TAM imaging, diagnosis, and treatment, although studies

have demonstrated their potential in inflammation and

antibacterial applications. CDs have also shown promise in

immunotherapy, where they can stimulate the immune system to

fight diseases. This review paper primarily focuses on analyzing the

potential of CD-associated nanoparticles in targeting TAMs,

summarizing their application in monitoring and regulating

macrophages, and highlighting current challenges in this field.
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Characteristics of tumor-associated
macrophages
Origin, phenotypes, and function of TAMS

Macrophages are distributed throughout body tissues with the

functions of phagocytosis and in response to inflammatory signals

strategically. Tissue macrophages are derived from embryonic or

adult hematopoietic stem cell (HSC) progenitors, and the relative

contribution of these cell populations varies from tissue under

homeostasis conditions (29). A monocyte is a kind of white blood

cell that is made in the marrow and travels through the blood to

tissues in the body where it becomes a peripheral monocyte

reservoir or non-classical patrolling monocyte or tissue-resident

macrophage in the steady state (30). Macrophages respond to the

combined stimulation of the origin and resident tissue which

contribute the polarization responses (31).

In most human solid malignancies, tumor-associated

macrophages (TAMs) and their precursors occupy the most

significant portion of bone marrow infiltration, which can

account for up to 50% of the total solid tumor volume (32). A

large number of current studies show that the localization and

density of TAMs are related with poor clinical outcomes in some

kinds of solid cancers, including bladder, breast, liver, renal,

prostate, and gastric cancer (33–40). Monocyte-derived TAMs

take a large part of tissue-resident macrophages in tumors, except

for a small part of TAMs derived from tissue-resident macrophages

(41). Monocytes are recruited by chemokines (CCL1, CCL2, and

CCL5), VEGF, PDGF, TGF-b and CSF -1. Among these cytokines,

CCL2 plays a major role in the recruitment of monocytes (42–48).

Studies have shown that targeting the CCL2-CCR2 axis could

effectively reduce tumor growth and metastasis in mouse models

(49). After being recruited to the TME, monocytes can differentiate

into M1-like macrophages (pro-inflammatory and usually anti-

tumor) and M2-like macrophages (anti-inflammatory and pro-

tumor) due to the heterogeneity of the microenvironment (50–

52). More and more evidence suggests that TAMs are similar to

normal macrophages in their capacity for adopting a broad range of

intermediate act ivat ion states , reflect ing the diverse

microenvironmental conditions and rich plasticity according to

different signals in the tumor microenvironment (5, 53).

The phenotype of tumor-associated macrophages (TAM) is

driven by both the tumor microenvironment (TME) and the

tumor immune microenvironment (TIME). Under the influence

of TIME, adaptive and innate immune cells provide chemical

messengers for regulating the functional phenotype of

macrophages, such as immunoglobulin secreted by B cells, IL4

and IL13 secreted by TH2 cells, Treg cells secreted IL10 and TGFb,
as well as IFNg and TNF secreted by NK cells, CTL and TH1 cells.

In the TME, cytokines secreted by tumor cells, tumor-associated

fibroblasts, directly affect the phenotype of TAMs, while oxygen

deficiency, fibrosis, and cellular stress also customize the phenotype

of TAMs. Thus, immune-related and non-immune-related

factors jointly drive functional or dysfunctional antitumor

immune. TAMs are programmed to drive inflammation when the
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microenvironment has functional vasculature, normoxia, low

extracellular matrix density, more TH1 cells than TH2 cells, and

high cytotoxic T cell (CTL) infiltration. Macrophages exhibit a

robust antitumor adaptive immune response. In contrast, tumor

hypoxia and fibrosis are combined with infiltration of large

amounts of cancer-associated fibroblasts (CAFs) and

immunosuppressive cells, and macrophages are programmed to

promote a pro-tumor phenotype of immunosuppression and tissue

remodeling, resulting in cytotoxicity T lymphocyte (CTL) rejection

and suppression.

Studies have shown that M1 phenotype macrophage is

stimulated by cytokines such as IL12, TNF, and IFNg, microbe-

associated molecular patterns (MAMPs) such as bacterial

lipopolysaccharide (LPS), or other Toll-like receptors (TLR)

agonists (54–57). In contrast, anti-inflammatory M2 macrophages

are polarized by the stimulation of some of cytokines such as IL4,

IL5, IL10, IL13, CSF1, TFGb1 and PGE2 (58, 59).

M1-type TAMs can express factors such as nitric oxide synthase

(iNOS), reactive oxygen species (ROS), and IL-12 that have the

functions of phagocytosis and killing target cells (60). M2-type

TAMs are associated with high expression of IL-10, IL-1b and

VEGF in vivo. They can also express a large amount of scavenger

receptors, which have the functions of clearing debris, promoting

angiogenesis, tissue reconstruction, and injury repair and promote

the function of tumorigenesis and development (61–63). Patients

with more M2 TAMs infiltration have a lower survival rate and an

increased lymph node metastasis rate (64). In general, both M1 and

M2 TAMs exhibit strong intrinsic plasticity, can cross-regulate each

other’s functions, and do not represent a fixed, frozen phenotype; M1

and M2 TAMs can co-exist in the same tumor microenvironment;

therefore, molecular targets that control polarization balance may be

important avenues for tumor immunotherapy. Polarization

biomarkers for M1-type macrophages include CD86 and CD80,

and for M2-like macrophages include CD163, CD204, CD206,

CD115, and CD301 (65).

The induction of monocytes into the tumor microenvironment

into M1/M2 macrophages also changes dynamically with the

development of tumors. In the early stages, macrophages can

recognize and present malignant cells to lymphocytes. Early stages

of tumors exhibit a limited degree of hypoxia, at which time the

immune microenvironment exhibits an immunostimulatory state,

such as a massive infiltration of effector T cells and polarization of

tumor-associated macrophages (TAMs) to an M1-like state (66). As

the tumor progresses, cancer cells consume a large amount of glucose.

They produce more lactate, which promotes the generation of a

hypoxic environment, and the secretion of cytokines also facilitates

the recruitment of hematogenous monocytes. It promotes them to an

immunosuppressive M2-like state of polarization (67).

TAMs are the center of inhibiting the ability of T cells in tumors

to respond, and the current limitations of various immunotherapies

are closely related to this, especially those related to immune

checkpoints. One study showed that TAM and CD8+ T cells

engage in specific, persistent, antigen-specific synaptic

interactions that not only fail to activate T cells but actually

exhaust them and accelerate the process under hypoxic

conditions (68). The current findings indicate that TAMs can
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regulate T cells through direct and indirect pathways, respectively

(69). Tumor-associated macrophages (TAMs) can directly inhibit

cytotoxic T cells through three pathways. Macrophages are involved

in immunosuppression through a variety of mechanisms, such as

expressing immune checkpoint molecules, including programmed

cell death 1 ligand 1 (PDL1) (51), producing inhibitory cytokines

like IL-10 and transforming growth factor-b (TGF-b) (52), and

modulating their metabolic activity by consuming metabolites (such

as L-arginine) and producing reactive oxygen species (ROS) (70,

71). In this summary, we highlight the effects of immune cells and

the alterations in macrophage phenotype that occur within the

tumor microenvironment and immune microenvironment

(Scheme 1).
Modulating TAMs for tumor
immunotherapy

Depending on the different sources and phenotypes of TAMs,

tumor immunotherapy targeting macrophages can be divided into

four categories (1): inhibiting the migration of monocytes or M-

MDSCs to tumors (2), depleting TAMs (3), repolarizes TAMs (4),

altering TAM metabolism (72), as shown in (Scheme 2). Since

conventional modulators of TAMs face challenges such as non-

specific targeting, limited drug delivery efficiency, rapid blood

clearance, and systemic toxicity, nanoparticles are rationally

designed to deliver them or directly participate in regulation, as

they can be designed with tunable dimension and surface charge,

Moreover, nanoparticles can be easily internalized by the

phagocytosis inherent in macrophages, which promotes the

effective accumulation of nanoparticles and their payloads in

tumors to enhance their tumor penetration (73). Therefore,

engineered nanoparticles for targeted delivery of TAMs to tumors

or direct modulation of TAMs have enormous potential to

strengthen tumor-specific accumulation and modulator blood

circulation time and thus reduce side effects, which can enhance
Frontiers in Immunology 04
TAMs modulatory efficacy (7). Here, we will analyze whether CDs-

associated nanoparticles can regulate the possibility of TAMs based

on the above four strategies.
Mechanism and importance of carbon
materials in TAMs

The remarkab le phys i cochemica l proper t i e s and

biocompatibility of carbon-based materials have sparked

significant interest in their potential applications in cancer

immunotherapy. These nanomaterials exhibit distinctive

characteristics that make them highly promising for biomedical

imaging and therapy. They have been extensively investigated for

their ability to facilitate one-photon and two-photon imaging,

which makes them ideal for both shallow and deep-tissue

imaging. Additionally, their ease of functionalization and

biocompatibility allow for targeted delivery of therapeutic agents

and imaging agents. As research progresses, carbon-based

nanomaterials have the potential to become valuable tools in the

diagnosis and treatment of a range of diseases, including cancer

(74–78). Rajendra K. Singh and Hae-Won Kim and their team have

developed a novel type of nanoparticles called fluorescent

mesoporous bioglass nanoparticles (fBGn) that can be used for

cancer diagnosis and treatment. These nanoparticles are based on

carbon dots (CD) and possess a variety of beneficial properties,

including triple-mode imaging, photodynamic and photothermal

therapeutic effects, and the ability to deliver anticancer drugs in a

pH-dependent manner. The researchers were able to demonstrate

the effectiveness and biocompatibility of fBGn in vivo using a nude

mouse model. The authors suggest that fBGn hold great promise for

cancer theranostics due to their multifunctional capabilities for

imaging, drug delivery, and therapy (79). Singh and Kim have

developed a novel nanoplatform called C-dot bioactive organosilica

nanosphere (C-BON) that has the potential for therapeutic and
SCHEME 1

The role of TAMs in the tumor microenvironment.
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diagnostic purposes in tissue repair and disease treatment. This

platform has several advantages, including its ability to label cells

and tissues, load and deliver drug molecules, and exhibit

photothermal activity. Additionally, the C-BON has demonstrated

excellent bioactivity and cell compatibility, making it a promising

candidate for future applications in theranostics. Overall, this

innovative technology offers a multifunctional approach to

chemotherapy and photothermal therapy with optical imaging,

paving the way for improved treatments in the future (80).

Carbon-based materials, such as carbon nanotubes, graphene

oxide, and fullerenes, have been shown to modulate TAMs’

activation state and promote an anti-tumor immune response

(78, 81, 82). One of the mechanisms by which carbon-based

materials can achieve this is through the regulation of TAMs’

phagocytic activity. Carbon-based materials have been shown to

enhance TAMs’ phagocytosis of tumor cells, leading to their

subsequent destruction and increased activation of the immune

system against the tumor (83).

In addition, carbon-based materials can also promote the

polarization of TAMs towards an M1-like phenotype, which is

associated with an anti-tumor immune response (82). This is

achieved through the activation of toll-like receptors (TLRs),

which are involved in the recognition of pathogen-associated
Frontiers in Immunology 05
molecular patterns (PAMPs) and damage-associated molecular

patterns (DAMPs) on the surface of cancer cells (77, 84, 85).

Moreover, carbon-based materials can also act as a drug

delivery platform for targeted delivery of anti-cancer agents to

TAMs (86). This targeted delivery can increase the efficacy of

anti-cancer agents and minimize their off-target effects.

Overall, carbon-based materials have emerged as a promising

strategy for modulating TAMs’ activation state and promoting an

anti-tumor immune response. The unique properties of carbon-

based materials make them an attractive candidate for further

development in cancer immunotherapy.
Characteristics of CDs

Carbon-based nanostructured substances, such as graphene,

carbon nanotubes and fullerenes, have attracted wide attention

due to their unique physical and chemical properties and diverse

applications. Compared to the above carbon nanostructures,

carbon dots (CDs) exhibit excellent dispersion, low toxicity,

biocompatibility, biodegradation, abundant raw materials,

low cost , and abundant photoluminescence (PL) and

photoelectrochemical properties (8, 87). Historically, In 2004 CDs
SCHEME 2

Schematic representation of modulating tumor-associated macrophages as immunotherapy.
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was discovered in arc emission carbon soot, whose PL emission

attracted the attention of researchers (88). In 2006, polymers (i.e.,

PEG, etc.) were used for surface passivation to enhance the PL

emission of CDs (89). In 2010, well-crystallized CDs were

s yn th e s i z ed and pu r ifi ed , s how ing s i z e -d ependen t

photoluminescence (90). In general, CDs can be thought of as

spherical carbon particles (graphitic fragments) less than 10 nm in

size (91). The chemical structure of carbon dots can be a hybrid

carbon structure of sp2 and sp3, with a single-layer or multi-layer

graphite structure, or it can be aggregated particles of polymers.

Specifically, carbon dots include graphene quantum dots (GQDs),

carbon quantum (CQDs), and polymer dots (CPDs). GQDs refer to

a carbon core structure with a single layer or less than 5 layers of

graphene and chemical groups bonded to the edges. The size of

graphene quantum dots has a typical anisotropy and carbon lattice

structure, and the lateral dimension is larger than the vertical

height; CQDs are spherical and have a clear lattice, and the

surface has abundant chemical groups CQDs have an intrinsic

state luminescence mechanism and a quantum confinement effect

of particle size. CPDs are usually cross-linked flexible aggregates

formed from non-conjugated polymers through dehydration and

partial carbonization, and there is no carbon lattice structure.

Currently, four fluorescence mechanisms have been reported as

follows (1) quantum confinement effect (QCE) (2), defect state (3),

molecular (fluorophore) state, and (4) crosslink-enhanced emission

state (92). The characteristics of carbon dots have attracted

widespread attention in the field of biomedicine. Currently, CPDs

are the core of research and development of carbon dot materials.

The excellent properties of CPDs, such as photostability, excellent

biocompatibility, simple synthetic route, flexible designability, deep

red/NIR emission, and two-photon/multiphoton fluorescence,

make CPDs an ideal candidate for fluorescent probes for in vitro

and in vivo bioimaging (19, 93).
Synthesis strategy of carbon dots for
bioimaging and therapy

There are many methods for preparing carbon dots, which can

be generally divided into top-down method (Top-down) and

bottom-up method (Bottom-up). The top-down synthesis method

is mainly to thoroughly pulverize the carbon skeleton to generate

CDs, while the bottom-up method uses some organic molecules as

precursors (carbon sources) to synthesize CDs (94). In the history of

carbon dots, the top-down strategy was first used to prepare carbon

dots, which refers to the synthesis of carbon dots by physically or

chemically stripping carbon nanoparticles from large carbon

skeletons, including discharge methods, electrochemical methods,

etc. method, laser ablation method, etc. (95, 96). Although these

methods can generate CDs in relatively large quantities, they often

suffer from expensive instrumentation, complex synthesis

procedures, long synthesis times, low yields, high impurities,

complex purification procedures, and still require post-synthesis

procedures to tune optoelectronic properties (97). From the

perspective of fluorescence properties of CDs, the oxidative
Frontiers in Immunology 06
cleavage of carbon sources leads to more structural defects, which

leads to the degradation of photoluminescence performance, which

is the most restrictive issue for their biomedical applications (98).

Bottom-up synthesis is more prevalent now (99). The advantage

of this strategy is the availability of a large number of molecular

precursors, among other benefits including multiple heat treatment

options, faster reaction times and more uniform properties of the

final material. The selection of precursors and synthesis procedure

(i.e., pre-synthesis control) affects the physicochemical properties of

CDs in terms of size, degree of graphitization, surface functional

groups, and doping. However, some structural and functional

features of the precursors can be retained in the nanoparticles,

which allows a certain degree of predictability in the designed

nanoparticles. At the same time, the strategy of using heteroatom

doping can enrich the functional properties of carbon dots and

adjust the range of photoluminescence.

Bottom-up synthetic strategies can obtain nanoparticles

emitting from the blue to the near-infrared (NIR) region (100).

The bottom-up method mainly uses some organic molecules as

precursors to prepare CDs through a series of chemical reactions,

including template method, microwave digestion synthesis method,

ultrasonic oscillation method, solvothermal method, strong acid

oxidation method and hydrothermal method, etc. Among these

methods, hydrothermal method, solvothermal method and

template method are widely used (101). CDs can be

functionalized by surface passivation and heteroatom doping

(102). With proper functionalization, carbon dots have promising

applications in biomedical fields such as biosensors, bioimaging,

and photodynamic therapy; magnetic resonance imaging of

chemical exchange saturation transfer; photodynamic and

photothermal therapy; PH and ROS in microenvironments

monitor and treatment (103–109).
Application of carbon dot-associated
nanoparticles in monitoring
macrophages

Currently, cancer treatment response is routinely assessed with

the Response Evaluation Criteria in Solid Tumors (RECIST), based

on changes in tumor size and the presence or absence of new

tumors (110). However, in immunotherapy, pseudoprogression has

emerged as a distinct response mode in which activated immune

cells infiltrate the tumor environment leading to increased tumor

volume and delayed treatment response (111). Because TAMs are

the highest proportion of immune-infiltrating cells in tumors and

their substantial impact on immunotherapy, immunoimaging of

TAMs is essential to evaluate changes in tumor burden, allow early

treatment intervention, reflect the dynamic shift in immune

markers during immunotherapy, and avoid early termination of

effective therapy according to RECIST criteria (112).

Thanks to carbon dots’ inherent fluorescence characteristics

and physical and chemical properties, it has the intrinsic advantage

of being a macrophage imaging agent. Raja S and co-workers

synthesized a carbon dot derived from curauá that exhibited a
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graphitic-like structure with an average diameter of 2.4 nm, good

water solubility, sophisticated carboxyl and hydroxyl functional

groups, excitation-dependent multicolor fluorescence emission (in

the range of 450 nm to 560 nm) and excellent photostability. Cell

experiments show that carbon dots tolerate the J774.A1 mouse

macrophage cell line, can effectively internalize carbon dots into its

cytoplasmic compartment and is an excellent nanoprobe for

effective long-range cell imaging (113).

Xiaowei Xu and colleagues aimed to develop a carbon

nanoparticle incorporating aspirin. They synthesized fluorescent

aspirin-based carbon dots (FACD) through a one-step microwave-

assisted method, condensing aspirin and hydrazine. Imaging data

revealed that FACD effectively penetrated mouse monocyte-

macrophage cells in vitro (114).

Shi Y et al. synthesized highly fluorescent and ultra

biocompatible N-doped carbon quantum dots derived from

aminated alkali lignin green precursors for cellular imaging and

intracellular irons detection of RAW 264.7 cells. AL-CQDs

produced in the 4–10 nm range exhibited excitation-dependent

and pH-stable fluorescence properties. They were used to detect

iron ions ranging from 100 nm to 1 mm with a detection limit as

low as 8 nm, where Fe3+ ions could be detected by the AL-CQDs.

The amine group is trapped, forming an absorbing complex that

results in significant fluorescence quenching (115).

Yawei Li and colleagues fabricated stable nanoparticles

composed of the supramolecular assembly of carbon dots (CDs)

and RTBs, which could be taken up and visualized by macrophages.

Notably, the CDs-RTB nanoparticles were found to promote

macrophage proliferation, as well as the production of NO, IL-6,

and TNF-a in RAW264.7 cells, and increase mRNA expression,

indicating enhanced immunomodulatory activity. These findings

highlight the potential of CDs as a simple and stable platform for

assembling RTB, thereby facilitating the application of RTB as an

immunostimulant (116).

The photoluminescent properties, low toxicity, and

biocompatibility characteristics of these carbon dots exhibit

excellent properties in bioanalysis and bioimaging. However,

fabricating stable highly near-infrared (NIR) fluorescent GQDs

using facile methods remains a challenging task. Reagen S and a

co-worker developed NIR CDs from the biomass-derived organic

molecule cis-cyclobutane-1,2-dicarboxylic acid via one-step

pyrolysis. The prepared GQDs exhibit excellent photostability and

stability over a wide pH range. Using biomass as raw material to

prepare carbon dots is a very convenient and economical method.

Most importantly, there were two peaks in the fluorescence

emission spectra of GQDs, one in the NIR region around 860

nm. The results of cell experiments on the mouse macrophage cell

line RAW 246.7 showed that GQDs entered cells by endocytosis on

fluorescence images and were nontoxic to cells at concentrations up

to 200 mg/mL (117).

At the same time, the CDs-based composite material has more

prosperous functions, which can significantly improve CDs’ cellular

uptake and imaging potential. It was shown that nanocomposite

formulations of carbon dots (<5 nm) encapsulated in lipid-based

lyotropic liquid crystal nanoparticles (~250 nm) enhanced the

bioimaging potential of carbon dots by improving cellular uptake
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efficiency and converging carbon dot light emission (118). Carbon

dot-associated nanoparticles enable multimodal imaging by doping

with heteroatoms or forming assemblies. Sun S and co-workers

anchored a small amount of photosensitizer chlorin e6 (Ce6)

(0.56% by mass) on amino-rich red-emitting carbon dots (RCD).

They synthesized Ce6-modified RCD (named Ce6-RCD)

multimodal imaging capability (i.e. , fluorescence (FL),

photoacoustic (PA), and PT) (119).

Saladino GM et al. synthesized metallic rhodium (Rh)

nanoparticles conjugated and cross-linked with nitrogen-doped

carbon quantum dots, which combine optical and X-ray

fluorescence as multimodal bioimaging contrast agents. CQDs

confer optically fluorescent properties to Rh NPs and improve

their biocompatibility, as demonstrated in vitro by real-time cell

analysis (RTCA) on a macrophage cell line (RAW 264.7) (120).

Su Y and colleagues developed Hafnium-doped carbon dots

(HfCDs) using a simple one-pot pyrolysis method. This innovative

nanoparticle exhibited remarkable capabilities for CT/fluorescence

imaging (9).

By doping Gd (iii) into CQDs via one-pot pyrolysis, Pan Y et al.

reported an efficient and mild method for the facile synthesis of

carbon quantum dots (CQDs)-based bimodal fluorescent (FL)/

Magnetic resonance (MR) imaging probe cryogenic process.

Nanoparticles doped with heavy N elements can significantly

improve the quantum yield. Gd3+ is stably captured and

sequestered by the carbon dot framework, maximizing its role in

shortening the longitudinal relaxation time. Therefore, the

synthesized nanoparticles have the advantages of strong

fluorescence brightness and high MR response with minimal

Gd3+ extravasation, making them an ideal dual-modality imaging

probe (121).

He X et al. prepared novel carbon dots (CDs) L-CD/C-CD from

Gd (iii) salt/complexes, cationic polymers, and citric acid, which

combine the abilities of gene delivery and multi-modal (MR/FL)

imaging (122).

Weng Y and co-workers et al. report a multifunctional

nanocarrier (CDs/ICG-uLDHs) prepared by simple self-assembly

of red-emitting carbon point (CDs) and indocyanine green (ICG),

which can be used for three-mode fluorescence/photoacoustic/two-

photon bioimaging and high-efficiency photothermal therapy (123).

By doping rare earth ions, carbon dot composites can obtain

excellent UCL imaging, magnetic resonance imaging (MRI), and

computed tomography (CT) imaging performance (124).

The multifunctional hybrid nanoparticles prepared by Wang H

et al. have fluorescence/MRI dual-mode imaging capabilities, which

are made by embedding a magnetic Fe3O4 core into a mesoporous

silica shell of carbon point (CD) and paclitaxel (PTX), covered by

another layer of silica (21).

In addition to direct cell imaging, carbon dots also serve as

sensitive sensors to rapidly image reactive oxygen species (ROS)

and reactive nitrogen species (RNS) signals involved in various

biological processes and many pathologies with high selectivity and

contrast. Gong Y et al. developed phosphorus and nitrogen co-

doped carbon dots (PC-NDs). ROS and RNS can sensitively and

selectively quench the strong fluorescence of PN-CD in vitro and in

vivo. It can be used for live-cell imaging of reactive oxygen species
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(ROS) and reactive nitrogen species (RNS) in macrophages. The

carbon dots prepared by Yu C et al. are highly selective for NO and

can be operated in an utterly aqueous medium, which can track

exogenous NO levels in various cell lines such as Raw 264.7, L929

and Hela cells; it is also used to visualize endogenously produced

NO stories in the Raw 264.7 macrophage cell line (125).

Studies as shown in Figure 1 illustrate that different protocols for

multimodal imaging in monitoring macrophages can be achieved

with appropriate surface functionalization, heteroatom doping, and

assembly of carbon dot-associated nanoparticles (Figure 1).

Application of carbon dot-associated
nanoparticles in regulating
macrophages

CDs are generally soft and nontoxic in vitro and in vivo.

However, due to their efficient light harvesting in an extensive

spectral range from ultraviolet to near-infrared, CDs exhibit strong

photodynamic effects, and photoexcited CDs can generate reactive

oxygen species (ROS). ROS is a crucial mediator of oxidative stress

and redox signal transduction in immune cells (126–128). The

regulation of ROS by CDs may have a profound impact on the

immune response. Yu Jin et al. found that CDs can reprogram

macrophages by eliminating ROS to suppress pro-inflammatory

responses and promote pro-reparative M2 conversion (129). Huibo

Wang and colleagues found that carbon dots (CDs) produced

through a one-step hydrothermal process using citric acid and

glutathione exhibited excellent intracellular reactive oxygen species

(ROS) scavenging activity in macrophages. This scavenging activity

was e ff e c t i v e i n r educ ing inflammat ion caused by

lipopolysaccharide (LPS) induction in macrophages, suggesting

that CDs have potential as a therapeutic agent for inflammatory

conditions. Studies have found that CDs can effectively remove up

to 98% of intracellular ROS, especially inhibit the nuclear factor

kappa-light chain enhancer (NF-kB) signaling pathway of activated
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B cells, reduce the expression level of inflammatory factor IL-12,

thereby regulating Macrophage phenotype (130). At the same time,

many studies have shown that carbon dots can induce autophagy

(131–133). Mitochondrial ROS plays a key role in promoting

macrophage polarization into an inflammatory phenotype by

damaging the autophagolysosome system (134). Therefore,

carbon dots may regulate immune responses through these two

aspects and impact on macrophages (135–137). A study shows that

degradable carbon dots (CDs-1) prepared from L-ascorbic acid can

up-regulate the expression of HMOX1 in animal cells and tissues,

and can increase the expression of HMOX1 by 5 times in a short

period of time, thereby reducing cell inflammation ROS levels in

models with therapeutic effects on LPS-induced acute lung injury in

mice (138).

In another study, researchers synthesized highly biocompatible

CDs (Gly-CDs) by hydrothermal method using glycyrrhizic acid, an

active ingredient of Chinese herbal medicine, as a raw material. The

results indicated that Gly-CDs inhibited the invasion and

replication of PRRSV, stimulated the antiviral innate immune

response, and inhibited the accumulation of intracellular reactive

oxygen species (ROS) caused by PRRSV infection (139).

Osteoclasts, specialized cells derived from the fusion of

monocyte/macrophage hematopoietic lineage precursors, are the

primary cells involved in normal bone remodeling and pathological

bone destruction in vivo. One of the main causes of hyperactivation

of osteoclasts is the overproduction of reactive oxygen species.

Chitosan-derived nitrogen-doped carbon dots (N-CDs)

synthesized by Chen Runfeng et al. have the ability to scavenge

reactive oxygen species (ROS). Experiments showed that N-CD

effectively abolished the RANKL-induced increase in ROS

generation, thereby attenuating the activation of NF-kB and

MAPK pathways, whereby osteoclast genesis and bone resorption

were effectively attenuated in vitro. Furthermore, N-CD protected

mice from lipopolysaccharide (LPS)-induced calvarial destruction

and breast cancer cell-induced tibial bone loss. Based on the

excellent biocompatibility and efficient ROS scavenging ability of
B
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FIGURE 1

Bioimaging of macrophages with various CDs :(A) Fluorescence images indicated AL-CQDs could detect iron ions of RAW 264.7 cells. (B) The RTCA
assay demonstrated that Rh-CQDs NPs can enable multimodal imaging in the RAW 264.7 cell line. (C, D) Transmission electron microscopy and
Fluorescence microscopy analysis shows that C-dots can be stably imaged in B16F1 and J774.A1 cytoplasm.
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N-CDs, for the first time, it provides a nanomaterial treatment plan

for the clinical treatment of osteolytic diseases (140).

Cai H et al. synthesized a carbon dot capable of simultaneously

achieving cell labeling and regulating mesenchymal stem cell (MSC)

behavior. Bifunction CDs were prepared with D-glucosamine

hydrochloride and sodium p-styrene sulfonate as raw materials by

one pot hydrothermal method. The synthesized CDs had uniform

particle size (about 4 nm), was well dispersed in aqueous solution,

and showed excellent fluorescence stability under other conditions.

More importantly, CDs can effectively promote osteogenic and

chondrogenic differentiation of rBMSCs through the production of

reactive oxygen species (ROS), without affecting their pluripotency

(141). Shao D et al. also had similar results with citrate-based

carbon dots, which significantly provided long-term tracking and

promoted the differentiation of rBMSCs into osteoblasts through

the ROS-mediated MAPK pathway (142).

Injection of GQDs was able to penetrate the blood-brain barrier,

inhibited the loss of cerebellar Purkinje cells, and demonstrated

reduced microglial activation. Microglia are macrophages in the

brain, suggesting that carbon dots can regulate macrophages

through autophagy (143) . Another study shows that

electrochemically produced CDs irradiated with blue light (470

nm, 1W) produce reactive oxygen species, including singlet oxygen.

Light-excited CD-induced cell death is manifested by apoptosis

(externalization of phosphatidylserine, activation of caspases, DNA

fragmentation) and autophagy (autophagy vesicles formation, LC3-

I/LC3-II transformation, morphological and/or biochemical

characterization of autophagy target p62) (144).

The results of Yiru Qin et al. revealed that CDs slightly affected

the cell viability and membrane integrity of macrophages, while

CDs significantly increased reactive oxygen species (ROS)

production as well as apoptotic and autophagic cell death, while

Bax, Bad, caspase 3, caspase 9 increased expression levels of beclin 1

and LC3-I/II and decreased Bcl-2. In addition, low concentrations

of CDs significantly increased the expression of tumor necrosis

factor-a (TNF-a), interleukin-1b (IL-1b), IL-8. In contrast, high

concentrations of CDs had a negative effect on cytokine production

opposite effect. SB202190 is a selective inhibitor of p38 mitogen-

activated protein kinase (MAPK), which abolishes the cytokine

induction of CD in macrophages. Furthermore, CDs significantly

increased the phosphorylation of p38 MAPK and p65 and

promoted the nuclear translocation of nuclear factor-kB (NF-kB).
These results suggest that CDs induce ROS production, apoptosis,

autophagy, and inflammatory responses in THP-1-activated

macrophages through p38MAPK and NF-kB-mediated signaling

pathways. This indicates that carbon dots have the function of

regulating stimulatory factors in macrophages (145).

Carbon dots also offer enormous potential due to their

enzymatic properties compared to natural enzymes. Yao L et al.

report a carbon dot-based nanozyme prepared from chlorogenic

acid (ChA), a primary bioactive natural product in coffee. The study

found that ChA CDs exhibited significant GSH oxidase-like activity,

which recruited a large number of tumor-infiltrating immune cells,

including T cells, NK cells, and macrophages, thereby transforming

“cold” tumors into “hot” tumors, activating systemic anti-tumor

immune response (146).
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Although ricin-binding subunit B (RTB) can promote the

activation of macrophages and regulate cell-mediated immunity,

its application is severely limited due to the inherent properties of

the protein, such as poor stability and low cellular uptake efficiency.

In the work of Li Y et al., stable nanoparticles were prepared by

supramolecular assembly of carbon dots (CDs) and RTBs. The

formed CDs-RTB are highly durable and can protect RTB from

enzymatic hydrolysis. More importantly, CDs-RTB could promote

the proliferation of macrophages, increase the production of NO,

IL-6, and TNF-a in RAW264.7 cells, and increase the expression of

mRNA , i n d i c a t i n g t h a t CD s - RTB e n h a n c e d t h e

immunomodulatory activity. This work highlights the potential of

CD as a simple and stable assembly platform that effectively

facilitates the application of RTB as an immunostimulatory agent

(147). At the same time, it suggested that CD has the potential to be

an excellent immune adjuvant.

Sun Q et al. have developed a novel nanocomposite to target

activated macrophages in the colon with real-time imaging and

therapeutic capabilities. The nanocomposite was formed by

covalent conjugating mannosylated NPs (Man-NPs) with carbon

dots (CDs). Cellular experiments showed greater uptake of

nanocomposites by inflamed macrophages compared to untreated

macrophages and the mannose receptor-negative cell line 4T1. This

indicates that carbon dots can target and recognize M2

macrophages after functionalization (148).

The above studies indicate that carbon dots have the ability to

influence macrophage plasticity through several mechanisms. Firstly,

they can induce ROS production and autophagy, which can alter

macrophage phenotype from M2 to M1-like, resulting in an

enhanced immune response against tumors. Secondly, carbon dots

can modulate macrophage polarization by inhibiting the expression

of cytokines such as IL-10 and TGF-b, leading to an increase in the

M1/M2 ratio and improving the characterization of the tumor

immune microenvironment. Additionally, carbon dots can act as

immunomodulators and delivery vehicles, improving the uptake of

therapeutic agents by macrophages and potentially improving the

immunosuppressive microenvironment of tumors. These findings

suggest that carbon dots may hold promise as a therapeutic approach

for targeting TAMs. A relevant mechanism is illustrated in Figure 2.
Concluding remarks and future
perspectives

TAMs contribute to tumor initiation, progression, and

metastasis. Therapeutic agents that eliminate TAMs, inhibit TAM

infiltration, and/or activate TAM polarization toward the M1

phenotype have shown remarkable clinical potential. Considering

the critical role of TAMs in tumor immune suppression, various

macrophage-targeting nano theranostics formulations have been

developed in recent years. As a new type of nanomaterial, CDs have

evolved from a single functional capability of diagnosis (or

treatment) in nanomedicine theranostics by their inherent

photoluminescence characteristics, excellent physical and

chemical properties, and rich tunability. It is an intelligent
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treatment and diagnosis system. So far, there are few studies on the

application of carbon dots in evaluating and regulating TAMs.

However, through literature analysis, this review found that CDs

have apparent advantages in the imaging and regulation of

macrophages. Here, we illustrate the potential of carbon dots in

macrophage imaging and regulation (Scheme 3). The fluorescence
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visible in the whole range provides a basis for monitoring

macrophage distribution, polarization state, and functional

changes. At the same time, the carbon dots exhibited the role of

nanozyme and immune adjuvant, which can regulate the

polarization state of macrophages and promote the infiltration of

immune cells through the ROS generated by photoluminescence
B

C
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FIGURE 2

Regulation ROS and autophage with CDs. (A, B) CDs orchestrated macrophage repolarization in vitro and indicating the immunomodulatory
mechanism of CDs mediated OA therapy. (C, D) CDs with radical-scavenging activity in alleviating the LPS-induced inflammation in macrophages.
(E, F) N-CDs downregulated ROS with suppressed ROS downsteam signaling pathway.
SCHEME 3

Application of carbon dots in macrophage imaging and modulation.
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and the induction of autophagy. In addition, TAMs are highly

enriched in tumor hypoxic sites. This shows that CDs have inherent

advantages and great potential for monitoring and regulating

TAMs. However, compared with other nanomaterials that have

been applied for a long time, the application of CDs in diagnosis

and therapy needs to solve more difficulties.

First, further theoretical breakthroughs are required to fine-tune

the properties of carbon dots. On this basis, the demand for near-

infrared photoluminescence can be stably realized. Second, the

tumor microenvironment is complex, and how to achieve safe

and efficient target recognition of TAMs is a crucial point that

needs to be studied. Third, the current application of carbon dots in

macrophages shows a bidirectional effect of ROS and autophagy.

Therefore, how to correctly evaluate the state of TAMs and change

the immunosuppressive effect of TAMs is very important in the

future. Developing multimodal CDs with synergistic strategies may

be feasible to achieve this maximal theranostic purpose.

Therefore, with nanomedicine development, CDs are a suitable

carrier and a promising reagent for nanomedicine theranostics. If

scientists and engineers adequately resolve the above problems, CDs

are expected to make outstanding contributions to the development

of immunotherapy.
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