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The Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1R) families are of

paramount importance in coordinating the early immune response to pathogens.

Signaling via most TLRs and IL-1Rs is mediated by the protein myeloid

differentiation primary-response protein 88 (MyD88). This signaling adaptor

forms the scaffold of the myddosome, a molecular platform that employs IL-1R-

associated kinase (IRAK) proteins as main players for transducing signals. These

kinases are essential in controlling gene transcription by regulating myddosome

assembly, stability, activity and disassembly. Additionally, IRAKs play key roles in

other biologically relevant responses such as inflammasome formation and

immunometabolism. Here, we summarize some of the key aspects of IRAK

biology in innate immunity.
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1 Introduction

Pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) and nucleotide

oligomerization domain-like receptors (NLRs) are of paramount importance in the innate

host resistance to microbial infections. These receptors recognize pathogen-associated

molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs),

transducing these signals into biological responses. TLRs accomplishes this by recruiting

the signaling adaptors myeloid differentiation primary-response protein 88 (MyD88) and/or

TIR domain-containing adaptor protein inducing IFN-b (TRIF) and their respective co-

adaptors MyD88-adapter-like (Mal) and TRIF-related adaptor molecule (TRAM) (1–8).

Most TLRs employ MyD88 as signaling adaptor, with the exceptions being TLR3 that signals

exclusively via TRIF and TLR4 that uses both TRIF and MyD88 (2). In addition to PRRs,

many of the early inflammatory responses are modulated by the interleukin (IL)-1 family of

cytokines, which include IL-1a, IL-1b, IL-18 and IL-33 (9). Responses to these cytokines are

mediated by the IL-1 receptor (IL-1R) and the closely related IL-18R and IL-33R, all of which

employs MyD88 as signaling adaptor, similarly to TLRs (9–11).

Engagement of IL-1R or most TLRs results in the hierarchical recruitment of MyD88,

IL-1 receptor-associated kinase (IRAK) 4, and IRAK2, or alternatively IRAK1, followed by E3

ubiquitin ligase TNF receptor associated factor 6 (TRAF6) (10–18), forming a
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supramolecular organizing center (SMOC) termed myddosome

(14, 19). This SMOC controls the inflammatory response by

mediating transcriptional and non-transcriptional events. These

include regulation of transcription factors, control of post-

transcriptional mRNA stability and transport, metabolic responses

such as glycolysis, oxidative phosphorylation, and inflammasome

activation (20–26).

Activation of the ubiquitin ligase TRAF6, in addition to ubiquitin

ligases of the Pellino family (17, 27–32), are tightly regulated by

upstream IRAK proteins. This event controls the activation of

mitogen-activated protein kinases (MAPK), leading to transcription

of activation protein 1 (AP-1) target genes, in addition to activation of

IkB kinase complex, responsible for activation of transcription factors

such as nuclear factor kappa B (NF-kB), interferon regulatory factor

(IRF) 5 and IRF7 (8, 33–40) (Figure 1). This review will discuss how

IRAK proteins regulate myddosome signaling: from assembly to

disassembly, including stability, stimulation and inhibition of

transcriptional and non-transcriptional responses.
2 Regulation of cell signaling by the
IRAK family

IRAK proteins are serine/threonine kinases originally discovered

in the context of IL-1R signaling (10, 12, 18, 41–45). Their
Frontiers in Immunology 02
recruitment to IL-1Rs is mediated by the signaling adaptor MyD88

(11), which is also shared by most TLRs (except TLR3) (2, 8). These

proteins act as the main regulators of myddosome activity and are

required for controlling a wide range of infections (12, 46–48). As

such, mutations in these proteins are often associated with enhanced

susceptibility to infections, sepsis, sterile inflammation, cancer (48–

54), etc., and many pathogens have evolved evasion mechanisms that

interfere with IRAKs (55–60).
2.1 The structure of IRAK proteins

IRAKs are highly conserved in vertebrates and contain a N-

terminal death domain (DD), a ProST domain, a kinase domain

(KD), and finally a C-terminal domain containing TRAF6 binding

motifs (TBMs) (61, 62). DDs present in IRAKs are involved in

homotypic protein-protein interactions, such as the interactions

between IRAK4 and MyD88 discussed below. ProST domains (rich

in proline, serine and threonine residues) are targeted by

autophosphorylation, and are involved in activation of IRAK

proteins. Close to its ProST domain, IRAK1 may also contain two

PEST domains (63, 64) (rich in proline (P), glutamate (E) or aspartic

acid, serine (S), and threonine (T)) which usually target proteins for

degradation (65). All IRAKs contain a kinase domain, which is

inactive in IRAK-M, due absence of a key aspartate residue (66).
FIGURE 1

Pro-inflammatory responses are coordinated by the myddosome. The myddosome is a supramolecular signaling complex assembled upon dimerization
of IL-1Rs and most TLRs (except TLR3), and is composed of MyD88, IRAK4, IRAK1 and/or IRAK2, in addition to TRAF6. Its activity coordinates the
inflammatory response by activating NLRs, modulating metabolic responses, and regulating gene transcription via activation of transcription factors such
as NF-kB, AP-1, IRF5, and IRF7.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1133354
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pereira and Gazzinelli 10.3389/fimmu.2023.1133354
IRAK2 also lacks this aspartate residue, but this protein has kinase

activity and behaves like an atypical kinase, discussed below (67).

Interestingly, IRAK-M contains an active guanylate cyclase (GC)

center in its kinase domain (68, 69). Finally, the C-terminal domain

contains TBMs: three in IRAK1, two in IRAK2, and one in IRAK-M.

IRAK4 does not contain a C-terminal domain and has no TBMs (62,

70) (Figure 2).

Recognition of its ligand results in receptor dimerization followed

by conformational changes in their cytoplasmic Toll/IL-1 receptor

(TIR) domains. These conformational changes allow the receptor TIR

domains to interact with 6 to 8 molecules of MyD88 via TIR-TIR

homotypic interactions directly or via 2 molecules of Mal (also named

TIR domain containing adaptor protein, TIRAP). Next, the MyD88

DDs interact with IRAK4’s DDs, in a stoichiometry of 6 to 8

molecules of MyD88 to 4 molecules of IRAK4. This stable

interaction allows IRAK2 molecules (and presumably IRAK1) to

interact with IRAK4 in a stoichiometry of 4:4. This forms a three-

layered structure, arranged as a single-stranded left-handed helix. The

proximity of multiple IRAK4 and downstream IRAKs 1 and 2 allows

for sequential activation of their kinase activities to occur (15, 71, 72).

IRAK4 molecu l e s bound to MyD88 can au to t rans -

autophosphorylate, which then recruits IRAK1 to the myddosome

and phosphorylates it (44, 73). This initial phosphorylation step

activates IRAK1 and stimulates auto-hyperphosphorylation in its

ProST region (rich in proline, serine and threonine residues)

(Figure 3) (64). In resting cells, Toll-interacting protein (Tollip)

interacts with the DD and kinase domain of IRAK1 (and

presumably IRAK2), keeping these kinases in an inhibited state (74,

75). Upon receptor activation, PTEN induced protein kinase 1

(PINK1) interacts with Tollip/IRAK1 dimers, facilitating the

delivery of IRAK1 to the myddosome (76).

The details involved in IRAK2 activation are less clear, but it is

generally assumed to be similar to IRAK1. Initially, IRAK2 was

thought to be a pseudokinase due its low in vitro kinase activity and

substitution of a key aspartate residue to asparagine in its kinase
Frontiers in Immunology 03
domain (45), but later studies rebutted this claim and demonstrated

that IRAK2 does possess kinase activity, which is activated by

IRAK4-mediated phosphorylation on its lysine 237. Accordingly,

point-mutated IRAK2 K237A fails to induce cytokine production,

and no IRAK2 phosphorylation is observed in kinase-deficient

IRAK4 macrophages (67, 77). Instead of a pseudokinase, IRAK2

can be classified as an atypical kinase, due substitution of residues

333 (Asp to Asn) and 351 (Asp to His) in its kinase domain (24, 78).

Following activation by IRAK4, IRAK2 is autophosphorylated on

residues S136 and T140 (24, 79). These autophosphorylation events

are involved in IRAK2 translocation to the nuclei and to the

mitochondria, where IRAK2 can act as a transporter of mRNAs to

the cytoplasm and as an inhibitor of oxidative phosphorylation,

respectively (24, 26). It is unclear whether these are the

same autophosphorylation events necessary for NF-kB and

MAPK activation.

The model of myddosome formation suggested above implies that

either IRAK1 or IRAK2 can be recruited by IRAK4. In reality, the

details about which IRAK is recruited to the myddosome are largely

unknown. Immunoprecipitation experiments from murine

macrophages suggests that IRAK2 is the main protein recruited to

the myddosome, and IRAK1 is only detectable bound to the

myddosome at early time-points and in situations where IRAK4

kinase activity is deficient (77, 80, 81). This could be a consequence

of IRAK1 degradation (which requires IRAK4 kinase activity (80–83)

and suggests that IRAK1 is recruited to early myddosomes, while later

complexes contain IRAK2. This model is consistent with the

observation that IRAK1 and IRAK2 are redundant at early time-

points, but IRAK2 is required for later responses (Figure 4) (67).

However, other cell types require IRAK1 (43). The molecular basis for

this preference is unknown but may involve differences in IRAK1 and

IRAK2 expression levels, half-life, splice variants, and regulation by

additional molecules.

Via their C-terminal TBM, activated IRAK1 or IRAK2 can

interact and activate TRAF6 (17, 84–86). IRAK2 binding to TRAF6
FIGURE 2

Organization of human IRAK proteins. IRAK proteins contain a death domain (DD), ProST domain, kinase domain (inactive in IRAK-M) and a C-terminal
domain (absent in IRAK4). IRAK1 has two putative PEST sequences in its ProST region. IRAK-M contains a guanylate cyclase (GC) center in its kinase
domain. The C-terminal domain contains up to three TRAF6 binding motifs (TBMs), and is absent in IRAK4.
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requires its E528 residue (mouse E525) (84, 87), and full activation

requires its last 55 amino acids (88), while IRAK1 binding requires

either of its two TBMs (70). Although the molecular mechanism of

how IRAKs 1 and 2 activate TRAF6 are not completely understood,

evidence suggests that IRAK-TRAF6 interactions results in TRAF6

auto-activation via auto-K63-ubiquitination (89), followed by its

translocation from the myddosome to the cytosol (86), where it

catalyzes the K63-ubiquitination of various targets such as IkB
kinase (IKK) and IRAK1 (90, 91).

Recently, the IRAK4 scaffold was implicated in TRIF-mediated

TRAF6 activation (77), and previously it was found that IRAK4 and

IRAK1 can physically interact with TRAM (92). IRAK4 lacks the C-

terminal TBM, which is present in IRAKs 1 and 2 (85), thus making it

possible that the TRIF-mediated TRAF6 activation requires either
Frontiers in Immunology 04
IRAK1 or IRAK2 in addition to IRAK4, in a MyD88-independent

way (77). While experimental evidence is still required to confirm the

existence of the triffosome, these data raise the possibility that IRAKs

are part of the putative triffosome and can lead to TRAF6 activation in

the TLR4-TRIF pathway.
3 Control of myddosome stability and
termination of signal transduction

The myddosome is a multifunctional SMOC formed at the cell

membrane within minutes of TLR or IL-1R stimulation, and its

assembly is essential for regulating biological responses such as

production of inflammatory cytokines and metabolic responses (16,
FIGURE 3

Steps of myddosome assembly. Dimerization of IL-1R or TLRs (except TLR3) leads to conformational changes in their cytoplasmic TIR domains, allowing
TIR-TIR interactions with molecules of MyD88 to occur, either directly or via Mal dimers. This leads to formation of small and unstable MyD88 oligomers,
which grow if receptor activation is sustained. After reaching a certain size threshold, MyD88 oligomers are stabilized by IRAK4. Interactions with MyD88
allows IRAK4 to trans-autophosphorylate and recruit IRAK1. Next, IRAK1 is activated by phosphorylation events mediated by IRAK4, and then further
activated by auto-phosphorylation in its ProST regions, allowing signaling to occur.
FIGURE 4

IRAK2 is essential for late-phase TLR signaling. TLR activation at the membrane triggers the sequential recruitment of Mal, MyD88, IRAK4, IRAK1 and
TRAF6, forming the myddosome. These early membrane-bound complexes are short-lived and detectable only within minutes of stimulation. Sustained
TLR stimulation leads to formation of cytosolic myddosomes containing IRAK2.
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19). As such, tight regulation of myddosome formation, stability, and

disassembly is of paramount importance. We find IRAK4 at the

center of these tightly regulated processes.
3.1 MyD88 oligomerization and myddosome
stability is controlled by IRAK4

Stimulation of IL-1R results in rapid formation of small and

unstable MyD88-oligomers. Prolonged exposure to IL-1b, however,
favors the formation of larger oligomers that are sensed by IRAK4

(80). This mechanism ensures that only bona fide receptor

activation can propagate signal. Live-cell microscopy suggests that

MyD88 signaling is required for sustained activation of

transcription factors (93), but early membrane-bound complexes

containing MyD88, IRAK4 and IRAK1 are short-lived and

detectable on a scale of a few minutes after stimulation (80, 94).

Interestingly, biochemical isolation of endogenous myddosomes are

often accomplished at time-points of 30 minutes or more, and these

complexes predominantly contain IRAK2 instead of IRAK1 (77, 81,

95). Evidence suggests that stable MyD88-containing helical

complexes occur in the cytosol, and can recruit IRAK4 after

stimulation (96). Indeed, transfection of MyD88L265P (gain-of-

function mutation) triggers myddosome formation and signaling

in the cytosol, bypassing assembly in the membrane (97). Thus, it is

feasible that early myddosome assembly in the membrane is a

process regulated by IRAK4, and act as a nucleating step that

results in the formation of stable signaling complexes in the

cytosol, detectable by immunoprecipitation at later time-points

(Figure 4) (25, 80, 94, 96, 98, 99).

Formation of longer MyD88 oligomers with enhanced stability is

observed in IRAK4 knockout cells, while signal transduction is

severely inhibited (12, 80). Similarly, IRAK4 inhibition or presence

of kinase-dead IRAK4 increases myddosome stability, with severe

deficiency in signal transduction. This is accomplished without

increasing the size of MyD88 oligomers, as this activity is kinase-

independent (80–82). Interestingly, IRAK4 inhibition does not affect

IRAK2 recruitment to the myddosome, while recruitment of IRAK1 is

in fact enhanced (25, 77, 80, 81, 98). In this case, neither IRAK1 or

IRAK2 appear to be active (77), and the enhanced IRAK1 recruitment

could be a consequence of enhanced myddosome stability and/or

deficient IRAK1 degradation, normally triggered by IRAK4 kinase

activity (64, 77, 83). Recruitment of IRAK4 to the myddosome leads

to recruitment and phosphorylation of IRAK 1 and 2, turning on their

autophosphorylation activities (67, 73, 100). In humans, however,

IRAK1 can auto-phosphorylate when IRAK4 kinase activity is lost,

and its activation likely involves an allosteric mechanism triggered by

its interaction with IRAK4 in the myddosome (101, 102). No

experimental evidence exists for similar compensatory mechanism

involving IRAK2. Although in murine macrophages these IRAK4

kinase-deficient myddosomes fail to lead to cytokine production (77),

it is possible that recruitment of IRAK1 and/or IRAK2 to this complex

could compensate for the lack of IRAK4 kinase activity in other cell

type or species (101, 103).
Frontiers in Immunology 05
3.2 IRAK4 activation initiates a negative
feedback loop

Myddosome formation leads to induction of pro-inflammatory

and other adaptations, all of which are required for an efficient

response. However, uncontrolled myddosome activation is

detrimental, as evidenced by gain-of-function mutations linked to

diseases (104, 105). Thus, termination of the response can be as

important as its initiation. IRAK4 activity is central to the

myddosome-mediated pro-inflammatory responses, but it also

initiates a series of adaptations that inhibits myddosome signaling,

forming a negative feedback loop. Amongst these adaptations are

induction of antagonists such as IRAK-M and A20, post-translational

modifications such as S-Nitrosylation, and the degradation of

myddosome components such as Mal, IRAK1, TRAF6 and MyD88

itself (64, 66, 83, 106–109). This ensures tight regulation of the pro-

inflammatory response initiated by TLRs and IL-1Rs (Figure 5).

Study of neuregulin receptor degradation protein-1 (NRDP1)

revealed that this E3 ubiquitin-ligase modulates cytokine

production via K48 ubiquitination of MyD88 and K63

ubiquitination of tank binding kinase 1 (TBK1). This results in

production of type I interferons due TBK1 activation, and

inhibition of pro-inflammatory cytokines due proteasomal

degradation of MyD88 (108). This MyD88 ubiquitination requires

physical interactions between myddosome components, NRDP1 and

A20 (108, 110). Although no direct links between NRDP1 and IRAKs

were established, A20 expression is induced by NF-kB (111),

suggesting that MyD88 degradation requires a functional

myddosome capable of driving A20 expression. Additionally, other

molecules were linked to MyD88 ubiquitination and degradation

(112, 113), including Speckle-type BTB–POZ protein (SPOP) (114,

115). SPOP is a ubiquitin ligase highly expressed in hematopoietic

stem cells (HSC), and while the details on how SPOP regulates

MyD88 degradation are largely unknown, evidence suggests that

IRAK4 is required for SPOP-mediated K48 ubiquitination of

MyD88 (114).

TLR4 activation leads to ubiquitination and degradation of the

co-adaptor Mal, likely playing a role in termination of signal and

myddosome disassembly (106) . Exper iments involving

overexpression or pharmacological inhibition of IRAK1 and IRAK4

demonstrates that these IRAKs are required for Mal phosphorylation

and subsequent ubiquitination and degradation (106). This is likely

mediated by suppressor of cytokine signaling (SOCS) 1 and 3, as

evidence suggests that upon TLR activation SOCS1 (and potentially

SOCS3) ubiquitinate Mal leading to its proteasomal degradation and

suppression of cytokine production (116–118). While Mal

degradation is observed within 15 to 30 minutes of TLR2 or TLR4

activation (117), TLR-dependent production of nitric oxide (NO) can

upregulate SOCS1 expression, contributing to hypo-responsiveness

upon long lipopolysaccharide (LPS) stimulations (119). High

concentrations of NO produced by either endothelial nitric oxide

synthase (eNOS) or inducible nitric oxide synthases (iNOS) can

directly inhibit myddosome signaling, due nitrosylation of cysteine

residues in the MyD88 protein (109).
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IRAK1 activity rapidly decreases after TLR stimulation, which

correlates with its degradation. Interestingly, IRAK2 is not degraded

and can sustain signaling for longer (67, 77). One proposed

mechanism for this behavior involves the presence of two putative

PEST sequences in IRAK1 (ranging from amino acids 117 to 133 and

153 to 180), which are absent in IRAK2 (63, 64). It was suggested that

IRAK4 kinase activity triggers hyperphosphorylation in or adjacent to

the IRAK1 PEST sequences, targeting it for degradation (64, 83). It is

presently unclear whether the proteasome is responsible for IRAK1

degradation: while some reports suggests that IRAK1 is K48-

ubiquitinated by b-transducin repeats-containing proteins (b-TrCP)
and degraded by the proteasome following IL-1R or TLR stimulation

(120–122), other studies suggest that IRAK1 is mainly targeted by

K63-ubiquitination and its degradation is proteasome-independent

(83, 123). Whatever the case may be, the PEST-hypothesis cannot be

ruled-out, as PEST-containing proteins can also be targeted by other

proteases such as calpain (65) and functional validation of PEST

regions in IRAK proteins is still required.

The E3-ubiquitin ligase TRAF6 is a key mediator of TLR and IL-1R

responses, and downregulation of its expression is one of the reported

mechanisms involved in termination of MyD88-dependent responses.

TRAF6 expression levels decreases after long periods of TLR activation

(around 24 hours in vitro) due proteasomal degradation. The presence

of IRAK1, but not its kinase activity, is involved in downregulating
Frontiers in Immunology 06
TRAF6. One suggested mechanism is that IRAK1 bound to TRAF6 is

K48 and K63 ubiquitinated, and this interaction directs both proteins to

the proteasome (107). Accordingly, mutations on IRAK1’s TBM can

inhibit TRAF6 degradation. IRAK1 contains three C-terminal TBMs,

and while deletion of all TBMs fail to transduce signal and induce

cytokine production due deficient TRAF6 interaction, TRAF6

degradation, however, requires the DD in addition to one TBM (70).

This suggests that depending on context IRAK1 can induce TRAF6

activation or degradation, but the molecular mechanisms for these

antagonic activities are presently unknown.

In resting cells, Tollip is bound to IRAK1, supressing its activity

(74, 75). Upon stimulation, Tollip releases IRAK1, which is then

recruited to the myddosome. Interestingly, Tollip itself is a target of

IRAK1-mediated phosphorylation (75), and is involved in the

degradation of IL-1R and signal termination (124). It is presently

unclear if Tollip phosphorylation triggers IL-1R degradation, but it is

tempting to speculate that release and phosphorylation of Tollip is

another negative feedback mechanism.
3.3 Myddosome inhibition by IRAK-M

While IRAKs 4, 1 and 2 are, in most conditions, responsible

for amplifying the signal from activated TLRs or IL-1Rs, the
FIGURE 5

Myddosome signaling is regulated at nearly every step. Signaling through the myddosome leads to transcription of negative regulators such as SOCS1,
iNOS, IRAK-M and A20. Proteasomal degradation of components such as Mal (controlled by SOCS1), MyD88 (controlled by A20 and NRDP1, in addition
to SPOP in HSC), IRAK1 (controlled by b-TrCP), and TRAF6 (triggered by IRAK1) are likely involved in myddosome disassembly and signal termination.
IRAK-M antagonizes the myddosome by inhibiting the binding between IRAK1 and TRAF6, besides stimulating A20 expression. Production of NO by
eNOS and iNOS leads to S-Nitrosylation of MyD88, inhibiting signal transduction.
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pseudokinase IRAK-M (also known as IRAK3) is a negative regulator

of this response (66). In humans, IRAK-M expression is restricted to

cells of the myeloid lineage (45), but murine IRAK-M is detectable in

a wider range of cell types (125). In macrophages, IRAK-M represses

NF-kB and MAPK by a variety of mechanism, such as inhibition of

the interaction between IRAK4 and IRAK1 with TRAF6 (66),

stabilization of MAPK phosphatase 1 (MKP-1, a phosphatase

responsible for inactivating the MAPK p38), and transcription of

inhibitory molecules (66, 126, 127).

Despite negligible kinase activity, IRAK-M can induce a specific

subset of NF-kB target-genes, which collectively inhibit the

inflammatory response. Indeed, overexpression experiments

originally described IRAK-M as a positive regulator of NF-kB
signaling, not unlike IRAK1 and IRAK2 (45). Evidence suggests

that in physiological conditions, IRAK-M can interact with MyD88

and IRAK4, forming a myddosome that activates transforming

growth factor-b-activated kinase 1 (TAK1) and stimulates

inhibitory genes such as A20 and NF-kB inhibitor-a (IkB-a) (127).
Surprisingly, IRAK-M can also, in specific contexts, induce the

expression of pro-inflammatory genes. Upon IL-33 stimulation of

murine dendritic cells, the prolyl cis-trans isomerase PIN1 interacts

with IRAK-M, promoting its nuclear translocation and transcription

of genes involved in type 2 immunity and airway inflammation such

as Il6, Csf3, Cxcl2 and Ccl5 (128). It is unclear how the pseudokinase

IRAK-M activates gene transcription, but one intriguing possibility

involves cGMP as second messenger: bioinformatics studies suggested

that IRAK-M possess guanylate-cyclase activity (68), which was later

experimentally confirmed (69). Transduction experiments

demonstrates that wild type IRAK-M attenuates LPS-induced NF-

kB activity, but a IRAK-M mutant with impaired guanylate cyclase

activity does not (69). The details regarding this pathway are currently

unknown, and further studies are required to confirm its importance

in physiological conditions.

Notably, TLR activation leads to a NF-kB-dependent IRAK-M
upregulation, forming a negative feedback loop that contributes to

signal termination and tolerance (66, 129). This is not exclusive to

TLRs and IL-1Rs, and is likely part of a more general mechanism for

resolving inflammation, as IRAK-M can also be induced by other

transcription factors including glucocorticoid receptors (130, 131).

Due its generally anti-inflammatory activity, the induction of IRAK-

M can be exploited by different pathogens as an evasion mechanism

(59, 132).
4 IRAK4 scaffold and kinase activities

While IRAK4 is the main regulator of myddosome activity, its

roles can be divided into “scaffold activity” and “kinase activity”, as

suggested by various studies where cells expressing kinase-deficient

IRAK4 do not phenocopy IRAK4 knockout cells (77, 133–135).

Another surprising observation is that the IRAK4 scaffold, but not

its kinase activity, is required for the production of pro-inflammatory

cytokines in TLR-stimulated human cells (136). Understanding the

subtle differences between IRAK4 scaffold and kinase activities is

relevant from a medical standpoint, as IRAK4 inhibitors and

degraders are currently under investigation (137).
Frontiers in Immunology 07
IRAK4 is a key component of the myddosome, and it is believed

that loss of IRAK4 or inhibition of its kinase activity phenocopies the

loss of MyD88 (12, 46–49, 77, 133–135, 138). This is, however,

context-dependent, as there are important differences between the

IRAK4 scaffold and kinase activities depending on stimuli, cell type,

species, etc. Kinase-deficient IRAK4 murine macrophages fail to

produce pro-inflammatory cytokines upon stimulation of IL-1R and

TLRs 2, 7, and 9 (77, 133–135). Interestingly, inhibition of IRAK4

kinase activity in human macrophages or fibroblasts does not impact

cytokine production (101, 136). In murine macrophages inhibition of

IRAK4 kinase activity impacts NF-kB andMAPK activation (77, 133–

135), while in human monocytes this inhibition has no impact on NF-

kB and MAPK, and only IRF5 activation is impaired (139).

In TLR4-stimulated mouse macrophages, inhibition of IRAK4

kinase activity does not completely impairs cytokine production,

while loss of IRAK4 scaffold does (77, 133–135). This is likely due

the fact that TLR4 signals viaMyD88 and TRIF, and suggests that the

putative triffosome employs the IRAK4 scaffold to activate TRAF6,

which is the hub that links MyD88 and TRIF in TLR4 signaling (17,

77, 140). Although physical interactions between TRAM, TRAF6,

IRAK4 and IRAK1 were previously described (92, 141), little is known

on how the triffosome is assembled and how it activates TRAF6.

In the absence of IRAK4 kinase activity, an enhancement in

IRAK1 recruitment is observed as long as the IRAK4 scaffold is

present (77, 81). Previous studies suggest IRAK1 can bypass the initial

phosphorylation performed by IRAK4, in situations where IRAK4

kinase activity is deficient (64, 102). While this is unlikely the case in

murine macrophages, this compensatory mechanism could play a role

in human fibroblasts (101, 103, 136, 142). This is further suggested by

the D329A mutant in human IRAK4. This mutant lacks kinase

activity, but IL-1b-stimulated IRAK4D329A fibroblasts has partial

cytokine production likely caused by the decreased interaction

between IRAK4 and IRAK1, and not by the lack of IRAK4 kinase

activity (82). This compensatory mechanism is not perfect, as IRAK4

kinase activity is required for IRAK1 degradation (83), suggesting that

IRAK4 enzymatic activity controls both the initiation and

termination of myddosome signaling.
5 IRAK1 and IRAK2 are not redundant in
every context

Early studies on IL-1R demonstrated that the cytoplasmic fraction

of this receptor physically interacts with a serine-threonine kinase

responsible for signal transduction (41, 42). It was postulated at the

time that a protein kinase termed IRAK was the responsible for this

activity (42). Further study in human cells identified IRAK, a protein

that shared high similarity to Pelle, responsible for activation of a NF-

kB homolog in Drosophila (18). Generation of IRAK knockout mice,

however, revealed that in vivo responses to IL-1b or IL-18 were only

partially blocked, suggesting the existence of an alternative pathway

(43). Additionally, Irak1-/- mice challenged with LPS showed only a

subtle improvement in survival, further suggesting an alternative

pathway (143). While these developments occurred, another Pelle-

like protein termed IRAK2 was identified, also capable of interacting

with IL-1R and the then discovered adaptor MyD88, and required for
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NF-kB activation (10). Development of IRAK2 knockout mice

strongly suggested that this protein was involved in production of

cytokines in response to TLR4 and TLR9 stimulation, but NF-kB
activation was not completely deficient in IRAK2 knockout cells (67,

144). Finally, study of TLR and IL-1R responses in murine

macrophages lacking both IRAK1 and IRAK2 demonstrated that

these proteins are somewhat redundant in those cells, albeit with key

differences in their behavior (67).

The crystal structure of the myddosome reveals a helical

architecture containing multiple copies of MyD88, IRAK4 and

IRAK2. While this model does not include IRAK1 due technical

limitations (the authors were unable to express IRAK1), the IRAK2

residues required for interaction with IRAK4 in the myddosome are

also found in IRAK1 (15). This, in addition to immunoprecipitation

data showing that IRAK1 is found in the myddosome when IRAK4 is

present, strongly suggests that either IRAK1 or IRAK2 are recruited to

this SMOC and can play similar roles (41, 42, 103).

The history of the discoveries of these IRAKs, as well as the

myddosome structure, suggests that these proteins are somewhat

redundant, and only double knockout cells show a clear phenotype.

This is, however, an oversimplification. The roles played by IRAK1

and IRAK2 on cytokine production can be context dependent,

varying according to species, cell type, duration of stimuli, etc.

Additionally, other biologically relevant activities such as

inflammasome activation and metabolism regulation appears to

employ one IRAK and not the other.
5.1 IRAK2 is required for sustained signaling
in murine macrophages

In murine macrophages, IRAK1 and IRAK2 show redundancy at

early time-points. Knockout or knockdown of either IRAKs in those

cells fail to decrease NF-kB and MAPK activation, while IRAK1/

IRAK2 double knockout macrophages are highly deficient. Despite

this early redundancy, IRAK2 knockout cells are critically impaired in

inflammatory cytokine production while IRAK1 knockouts behave

like wild type controls (67, 77, 87). One possible explanation for this

phenomenon is that IRAK1 is degraded after stimulation, making

IRAK2 essential for sustained signaling. This hypothesis is further

corroborated by the existence of IRAK1b, a splice variant with

prolonged stability and capable of sustaining NF-kB activation in

human cells (145). This partial redundancy, however, appears to be

context dependent. For instance, Irak1-/-mouse embryonic fibroblasts

fail to activate NF-kB in response to IL-1b or IL-18 (43), whereas

Irak1-/- macrophages activate NF-kB unimpaired in response to a

variety of TLR agonists (67, 77). In humans, IRAK1-deficient

macrophages are greatly deficient in TNF production, while IRAK2

deficiency has little to no impact, opposite to what is observed in

mouse macrophages (136).
5.2 IRAK1 activates IRFs 1, 5 and 7

The activation of transcription factors and control of gene

transcription are possibly the most important responses mediated

by the myddosome. Although NF-kB activation is often used as
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surrogate for myddosome activity, this is not the only family of

transcription factors controlled by this SMOC. The IRF family, in

particular IRFs 1, 5 and 7, are also activated downstream MyD88 in a

variety of conditions (2). As discussed above, NF-kB activation often

displays redundancy regarding the use of IRAK1 and IRAK2. This

redundancy, however, is not observed on the activation of

IRF proteins.

In plasmacytoid dendritic cells (pDCs), activation of TLRs leads

to a MyD88-dependent production of interferon-a (IFN-a), tumor

necrosis factor (TNF), and IL-12 (146), with the IFN-a output

primarily regulated by the transcription factor IRF7 (37). Similar to

what is observed in murine macrophages, IRAK1 knockout pDCs are

not deficient in MAPK and NF-kB activation upon stimulation of

TLRs 7 or 9. Accordingly, these Irak1-/- pDCs produced normal levels

of TNF and IL-12. Surprisingly, the production of IFN-a was highly

deficient in Irak1-/- pDCs (147). TLR stimulation of pDCs leads to

physical interactions between MyD88, IRAK4, IRAK1, TRAF6 and

IRF7 (36, 147). IRAK1 kinase activity is required for IRF7 activation,

possibly by controlling IKK-a, responsible for IRF7 phosphorylation.
This leads to IRF7 dimerization and nuclear translocation (34, 147–

150). Contrary to NF-kB and MAPK activation, IRAK1, but not

IRAK2, is responsible for IRF7 stimulation (84, 151). In fact, TLR9-

stimulated IRAK2 knockout pDCs shows higher IFN-a production

than WT controls, suggesting that this kinase inhibits IRF7 by an yet

unknown mechanism (151).

In TLR9-stimulated macrophages and myeloid dendritic cells

(mDCs), production of IFN-b is controlled by the transcription

factor IRF1 (152). IRF1 activation requires physical interaction with

the myddosome, and most likely involves phosphorylation mediated

directly or indirectly by IRAK1 (152, 153). Although it is tempting to

speculate that IRF1 activation is, like IRF5 and IRF7, a process that

requires IRAK1 and not IRAK2, experimental evidence is still

required to rule out the involvement of IRAK2 in this pathway.

IRF5 activation occurs downstream MyD88-dependent TLRs,

with MyD88, TRAF6, and IRAK1 required for its activation (34,

35). This suggests that myddosome formation and physical

interaction between IRF5 and its components is essential. Indeed,

IRAK1:IRF5 interaction precedes IRF5 ubiquitination by TRAF6 and

activation (34, 154). In addition to ubiquitination, IRF5

phosphorylation by IKK-b is required to its dimerization and

nuclear translocation (39, 40). This activity appears to be mediated

by IRAK1 exclusively, as inhibition of IRAK2 signaling by the

poxvirus A52 protein failed to impact IRF5 activation (55, 84). The

precise timing of all the sequential steps involved in IRF5 activation is

unclear, and whether ubiquitination by TRAF6 occurs in

physiological conditions remains an open question. Regardless,

s tudies on human monocytes expressing physiological

concentrations of IRAK1 and IRF5 also suggests that this

transcription factor requires IRAK1, as loss of this IRAK

antagonizes IRF5 signaling (155).

While IRFs 1 and 7 regulate the production of type I interferons

(37, 38, 156), IRF5 is involved in the control of various pro-

inflammatory cytokines (35). Indeed, the set of genes regulated by

IRF5 and NF-kB show overlap, and physical interaction between IRF5

and NF-kB is a potential mechanism for gene regulation (157). How

IRF5:NF-kB interactions occur and how this process is regulated

remains poorly understood.
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5.3 IRAK1 controls rapid
inflammasome activation

Activation of the NLR family pyrin domain containing 3 (NLRP3)

Inflammasome occurs in two phases. In the first phase, a signal

primes the cell, enabling it to respond to a DAMP. In the second

phase, recognition of a DAMP triggers the assembly of the

inflammasome, a macromolecular structure responsible for

triggering pyroptosis via caspase-1 activation and maturation of

pro-IL-1b and pro-IL-18 (158). The priming phase includes both

transcriptional and non-transcriptional responses, such as

upregulation of key-components (pro-IL-1b and NLRP3 itself for

example), and control of post-translational modifications that enables

the inflammasome to respond.

It is well established that transcriptional priming in many

situations involves the myddosome (and consequentially IRAKs)

(2), but study of non-transcriptional priming of the NLRP3

inflammasome revealed an additional role for IRAK4 and

IRAK1. IRAK1-deficient mouse macrophages fails to activate

caspase-1, whereas IRAK2-deficient cells behave like wild type

controls (23). This response is rapid, precedes transcriptional

priming, and allows the NLRP3 inflammasome to quickly release

pre-synthesized IL-18 in response to DAMPs (22, 23). While it is

unclear how this happens, it is tempting to speculate that IRAK1

phosphorylates components of the inflammasome to fine-tune its

assembly. Phosphorylation in the NLRP3 leucine rich repeat

controls inflammasome assembly, and mutations on a key serine

residue blocks non-transcriptional priming (159). This is further

suggested by the observation that kinase-deficient IRAK1 and

IRAK4 fai l to pr ime the inflammasome, and physica l

in t e rac t ions be tween IRAK1 and component s o f the

inflammasome can be observed (23).

While IRAK1 appears to stimulate NLRP3 activity in the context

of rapid inflammasome activation, it can also act as a negative

regulator in other conditions. Upon TLR and IL-1R activation,

IRAK1 is ubiquitinated by the ubiquitin ligase Pellino 2 (28, 32).

Ubiquitinated IRAK1 cannot interact with NLRP3, which allows

Pellino 2 to ubiquitinate and activate NLRP3. In IRAK1-deficient

macrophages (or containing a kinase-dead IRAK1), NLRP3

ubiquitination occurs at a higher rate and inflammasome activation

is increased. When macrophages are deficient for Pellino 2, however,

interactions between IRAK1 and NLRP3 are enhanced, and

inflammasome activation is deficient (160).

These seemingly contradictory reports present an incomplete

view on how IRAK1, as well as other IRAKs, fine-tunes

inflammasome priming and activation. Further investigation is

required to understand the different roles that these kinases have

on inflammasome activity.
5.4 IRAK2 inhibits oxidative metabolism

While this review has primarily focused on how IRAKs regulates

cytokine production, a large amount of recent studies have

highlighted another important aspect involved in innate immune

responses: modulation of cell metabolism (161). We are only

beginning to understand the links between IRAKs and metabolism,
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with recent studies suggesting that these kinases both regulate and are

regulated by cell metabolism.

TLR activation in myeloid cells leads to rapid transition to aerobic

glycolysis and increase in succinate concentration. Succinate then acts

as a positive regulator of the transcription factor hypoxia inducible

factor-1a (HIF-1a) which stimulates the expression of genes such as

IL1B and IRAKM (162–164). HIF-1a also controls the transcription

of microRNA-146a, which act as a negative regulator of pro-

inflammatory gene expression by downregulating the expression of

TRAF6 and IRAK1 (165, 166). Another important player in the rapid

stimulation of glycolysis via TLRs is TBK1 (167). This protein kinase

is known to mediate IRF3 activation downstream TRIF (168), but

surprisingly, induction of glycolysis by TBK1 requires myddosome

assembly and physical interaction with its components (25). It is

presently unknown which IRAKs, if any, mediate myddosome-

dependent TBK1 activation.

A more direct link between IRAKs and metabolism comes from

the observation that IL-1b inhibits mitochondrial oxidative

phosphorylation in adipocytes (26). Upon IL-1R activation, MyD88,

IRAK4 and IRAK2 translocate to the mitochondrial outer membrane.

From there, IRAK2 further translocates into the mitochondrial inner

membrane and inner membrane space via the translocators TOM20

and TIMM50. IRAK2 then inhibits oxidative phosphorylation by

disrupting the interaction between prohibitin (PHB) and optic

atrophy protein 1 (OPA1), key in the formation of the

mitochondrial respiratory chain complex. Importantly, myddosome

formation triggers IRAK2 auto-phosphorylation at residues S134 and

T140 (24, 79), which are required for IRAK2 translocation and

interaction with PHB-OPA1. Interestingly, in adipocytes IRAK1

deficiency did not disrupt oxidative phosphorylation, and IRAK2

deficiency did not affect pro-inflammatory gene expression, further

evidence that IRAK1 and IRAK2 play different role in different cell

types (26).
6 IRAK mutations in human diseases

IRAK proteins are the main actors coordinating myddosome

activity and play essential roles in the innate immune response in

mammals. However, important details of their biology differ between

humans and other animals. For instance, the kinase activity of IRAK4

does not impair the responses in human macrophages (136),

suggestive that in humans this kinase might be involved in other

pathways. Similarly, IRAK1 has a more prominent role in humans,

while IRAK2 appears to be redundant (136). As such, mutations

affecting IRAK1 and IRAK4 can have dramatic clinical impact

in humans.

IRAK4 mutations are clinically relevant and life-threatening in

childhood, with a mortality rate estimated at 38% (169). Most of the

studied IRAK4 disorders are autosomal recessive, often caused by

point mutations introducing an early stop codon, leading to virtually

absent IRAK4 expression or production of a non-functional protein

(49, 50, 169, 170). This results in high susceptibility to pyogenic

bacterial infections, specially Staphylococcus aureus, Streptococcus

pneumoniae, and Pseudomonas aeruginosa (169). However, cases

have been reported linking IRAK4 mutations to susceptibility to

other bacterial agents such as Salmonella serogroup C1, Listeria
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monocytogenes, Shigella sonnei and non-bacterial agents such as

herpesvirus (51, 171–173).

Little is known about IRAK1 loss-of-function mutations in

humans, but evidence suggests that such mutations potentially lead

to increased susceptibility to infections. For instance, investigation of

a patient who died as result of pulmonary infection at the age of 7

months revealed complete IRAK1 deletion. This deletion may cause a

X-linked recessive disorder with severely impaired TLR responses in

fibroblasts, but not in peripheral blood mononuclear cells (54). IRAK-

M has several anti-inflammatory activities, and single nucleotide

polymorphisms in the IRAK3 gene were associated with higher

susceptibility to asthma, likely due deficient anti-inflammatory

responses in airway epithelial cells (52).

IRAK1 gain-of-function mutations are more common and may

lead to enhanced sepsis-induced injury due increased pro-

inflammatory responses (174). Interestingly, various reports suggest

that IRAK1 mutations causing enhanced protein expression or

spontaneous activation act as an oncogene and are involved in

development of various cancers (53, 175–178). Similarly, IRAK4

gain-of-function mutations are associated with cancers and linked

to poor prognosis and resistance to chemotherapy (179–181).
7 Conclusion and perspectives

Since the discovery that IL-1R signaling requires a protein kinase

(41, 42), many aspects of the IRAK family were studied. After decades

of efforts, we understand in broad strokes their biology, but many of

the finer details remain elusive. For instance, the myddosome is

assembled and signal downstream IL-1Rs and most TLRs, which is

both a blessing and a curse: lessons learned from a specific TLR or IL-

1R are applied to all other receptors, but important details of specific

receptors might be missed.

The myddosome can recruit either IRAK1 or IRAK2 to transduce

signals (15), and different cell types appear to employ one IRAK

preferentially. What causes the preferential use of one over the other

is largely unknown. Study of cell-specific responses may lead to better

understanding on how these kinases affect and are affected by

different microenvironments. Similarly, human and mouse cells

often diverge regarding the use of IRAKs 1 and 2, but the reasons

for these species-specific phenotypes are unknown.

The links between pattern recognition receptors and metabolism

are only beginning to be understood, but it is clear that they deeply

influence each other (161). For example, myddosome assembly upon

TLR activation triggers glycolysis via TBK1 (25). It is unclear whether

any IRAKs are important in this pathway, but since TBK1 interacts

with the myddosome it is tempting to speculate that IRAKs are

upstream TBK1. Another report suggests that IRAK2 directly inhibits

oxidative phosphorylation in IL-1R-stimulated adipocytes (26). The

study of how the myddosome and IRAKs are involved
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immunometabolism is still in its early days and remain an

exciting prospect.

The observation that inhibition of IRAK4 kinase activity has less

impact in human than in murine macrophages is particularly

interesting (136), as it suggests that in humans this kinase might be

involved in other pathways, and only the IRAK4 scaffold is required

for TLR signaling. This scaffold, and potentially other IRAKs, might

also be involved in TRAF6 activation mediated by the putative

triffosome by yet unknown mechanisms (77). A deeper

understanding of the differences between IRAK4 kinase and scaffold

activities is likely to be clinically relevant, as both IRAK4 inhibitors

and degraders are currently in clinical trials (137) and can potentially

impact the treatment of a wide range of inflammatory and

autoimmune diseases.
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