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Inflammation balance in skeletal
muscle damage and repair

Huiyin Tu and Yu-Long Li*

Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
Responding to tissue injury, skeletal muscles undergo the tissue destruction and

reconstruction accompanied with inflammation. The immune system recognizes the

molecules released from or exposed on the damaged tissue. In the local minor tissue

damage, tissue-resident macrophages sequester pro-inflammatory debris to prevent

initiation of inflammation. In most cases of the skeletal muscle injury, however, a

cascade of inflammation will be initiated through activation of local macrophages and

mast cells and recruitment of immune cells from blood circulation to the injured site

by recongnization of damage-associated molecular patterns (DAMPs) and activated

complement system. During the inflammation, macrophages and neutrophils

scavenge the tissue debris to release inflammatory cytokines and the latter

stimulates myoblast fusion and vascularization to promote injured muscle repair. On

the other hand, an abundance of released inflammatory cytokines and chemokines

causes the profound hyper-inflammation and mobilization of immune cells to trigger

a vicious cycle and lead to the cytokine storm. The cytokine storm results in the

elevation of cytolytic and cytotoxic molecules and reactive oxygen species (ROS) in

the damaged muscle to aggravates the tissue injury, including the healthy bystander

tissue. Severe inflammation in the skeletal muscle can lead to rhabdomyolysis and

cause sepsis-like systemic inflammation response syndrome (SIRS) and remote organ

damage. Therefore, understanding more details on the involvement of inflammatory

factors and immune cells in the skeletal muscle damage and repair can provide the

new precise therapeutic strategies, including attenuation of the muscle damage and

promotion of the muscle repair.

KEYWORDS

complements, damage-associated molecular patterns (DAMP), immune cell, inflammation,
sepsis, skeletal muscle
1 Introduction

Infection or tissue injury elicits a series of rapid innate immune responses required to eliminate

infectious agents or damaged tissues, named as septic or sterile inflammation respectively. It is host

defensive reaction to remove the invaders or clean damaged tissues for wound healing. However,

uncontrolled inflammation possibly results in the tissue damage, even to a danger situation.

Responding to tissue injury, skeletal muscles undergo tissue destruction and

reconstruction. According to the cellular and molecular events, there are five interrelated
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and time-dependent phases, including degeneration-necrosis,

inflammation, regeneration, maturation/remodeling, and functional

recovery (1). The sterile inflammation, as a result of trauma, typically

occurs in the absence of any microorganism (2, 3). Similar to

microbially induced inflammation, the sterile inflammation is

marked by the recruitment of neutrophils and macrophages and the

production of pro-inflammatory cytokines and chemokines, notably

tumor necrosis factor (TNF) and interleukin-1 (IL-1). The

inflammatory response could play central roles in bridging initial

responses to muscle injury and timely muscle injury reparation (4) or

triggering a vicious cycle to exaggerate the tissue damage (5, 6).

Therefore, understanding the pathophysiological process of the sterile

inflammation and controlling the sterile inflammation attack are very

important for local tissue repair when the tissue is less regenerative

capacity and prevention of remote organ damage.
2 Triggers of inflammation in the
damaged skeletal muscle

2.1 Damage-associated molecular patterns
promote inflammation

In addition to the exogenous signal that can be introduced into

the body, the immune system can also sense danger molecules

released from damaged or stressed tissues. Thus, the immune

system can discriminate not only ‘self from non-self’ but also

‘healthy from damaged self’ (7). These danger molecules are

intracellularly sequestered and are therefore hidden from

recognition by the immune system under normal physiological

conditions. They can be released in response to a variety of tissue

trauma resulted from burns, cold, chemical insults, radiation, oxygen

deprivation, nutrient depletion, auto-immune tissue destruction,

tumors, and xenobiotics (7). An initial traumatic insult disrupts

macrobarries such as the skin, and microbarriers such as cell

membranes, which causes the release of multiple danger molecules.

These endogenous danger molecules released from damaged or dying

cells are termed as damage-associated molecular patterns (DAMPs),

including high-mobility group box 1 (HMGB1), S100 proteins, heat

shock proteins (HSPs), histones, mitochondrial DNA (mtDNA), and

ATP (Figure 1) (6). They can be recognized by the innate immune

system and are considered as key inducers of sterile inflammation

following the tissue damage (8, 9).

During the cellular stress or injury, DAMPs can be released into

the extracellular environment and blood circulation from damaged

cells and are recognized by pattern recognition receptors (PRRs), such

as Toll-like receptors (TLRs) and scavenger receptors (SRs), or non-

PRRs, such as the receptor for advanced glycation end-products

(RAGE) and purinergic receptors expressed on immune cells (8, 9)

(Figure 1). After migrating through the vessel wall from the blood

stream mediated by endothelial selectins and leukocyte integrins,

leukocytes exit to interstitial space following a chemokine gradient

where these chemokines are main ligands for C-X-C motif chemokine

receptor 2 (CXCR2, a major chemokine receptor expressed in

neutrophils and other immune cells) (8, 9). As the first recruited

leukocytes, neutrophils are activated after their migration to the

injury site along a gradient of DAMPs (8, 9). The proinflammatory
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monocytes, including monocytes with high expression of C-C

chemokine receptor type 2 (CCR2high) and with low levels of C-X3-

C motif chemokine receptor (CX3CR1low), successively transmigrate

from blood stream in a CCR2-dependent manner, undergo in situ

reprogramming into CCR2low and CX3CR1high alternative

monocytes, and enter the injury site following the DAMP gradient.

The in-situ reprogramming of monocytes depends on interleukin-4

(IL-4) and interleukin-10 (IL-10) produced by invariant natural killer

T (iNKT) cells (9). The leukocyte recognition of DAMPs through

PPRs or non-PPRs activates the downstream signaling through the

adaptor proteins. For example, TLR2 and TLR4 on the leukocytes can

be recognized by intracellular proteins HMGB1, HSPs, and histone

released from the damaged tissue. They activate mitogen-activated

protein kinases (MAPKs) and inhibitor of nuclear factor kappa B

(IkB) kinase (IKK) to increase the production of the inflammatory

cytokines from subsequently activated leukocytes through the

activation of the transcription factors activator protein 1 (AP-1)

and nuclear factor kB (NFkB), respectively (6, 8–11).

When the skeletal muscle damage occurs, the integrity of

myofibers and other cells is severely compromised, and the

plasmalemma permeability is alternated with uncontrolled ionic

flux and the loss of a proper architecture (1). DAMPs released into

the interstitial space and systemic circulation (12, 13) interact with

PRRs or no-PRRs to promote inflammation (14). As pro-

inflammatory mediators, specific DAMPs released from the skeletal

muscle, including HMGB1 (15–17), ATP (18, 19), and mitochondrial

DNA (20, 21), induce the secretion of pro-inflammatory cytokines

and chemokines to trigger inflammation through TLR4/RAGE,

P2X7R, and TLR9 on infiltrating/tissue-resident macrophages

and neutrophils.
2.2 Complements promote inflammation

The complement is a system of more than 40 proteins in the

plasma (soluble) and on cell surfaces (membrane-bound proteins).

A number of complement proteins are proteases and widely

distributed throughout body fluids and tissues without adverse

effects. Activation of complements produces proinflammatory

molecules, such as C3a and C5a to stimulate the inflammatory

response (Figure 1) (22).

Complements are activated by three different recognition

pathways (classical, alternative, and lectin), all of which lead to

sequential enzyme activation, protein cleavage, and function-

enabling protein conformational changes. Among these cascades,

complement component 3 (C3) is the central molecule to the

complement activation. These three pathways of the complement

activation converge at the point of cleavage of C3 with generation of

biologically active products, C3a and C3b.

The classical pathway is often referred to as antibody-dependent

pathway because it is strongly initiated by binding complement

component 1q (C1q) to the fragment crystallizable domain (Fc) of

immunoglobulin M (IgM) or immunoglobulin G (IgG) clusters via

the pattern recognition molecule (PRM) C1q subcomponent.

However, C1q can activate complements by recognizing distinct

structures on damaged cells directly or through endogenous

substances, such as hyperphosphorylated tau (23, 24). C1q binding
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to damaged cells induces autoactivation of C1 complex to cleave

complement component 4 (C4) and complement component 2 (C2)

to form the C3 convertase (C4b2b).

Mannan-binding lectin (MBL) is a central recognition molecule

in the lectin pathway. As the pattern recognition molecules binding to

oligosaccharide structures on the surface of microorganisms, MBL,

ficolins, and collectins assemble together and activate the MBL-

associated serine proteases (MASP1/2). Once activated, MASP1/2

cleaves C4 and C2 to form the C3 cleaving enzyme-C4b2b. The lectin

pathway is also triggered by released DAMPs, such as ATP (25) and

cytoskeletal proteins (26), or unmasked sugars and neo-antigens (27)

from damaged cells that can be recognized by and bind to MBL to

initiates phagocytosis. The studies in MBL-deficient mice have

demonstrated the impaired removal of damaged cells (26).

In the classical and lectin pathways, C3 convertase (C4b2b)

sequentially cleaves multiple C3 proteins into C3a and C3b. Some

of the C3b are associated with the C4b2b to form complement

component 5 (C5) convertase (C4b2b3b) to cleave C5 into C5a and

C5b (28).

The complement activation in the alternative pathway is initiated

when spontaneously cleaved C3b directly attaches to a permissive/
Frontiers in Immunology 03
acceptor surface on the pathogen or damaged tissue (29, 30). Cleavage

of inactive C3 protein can be spontaneously hydrolyzed into the

functional fragments C3a and C3b at low level. Upon hydrolysis, the

C3 protein undergoes a dramatic structural change that exposes a

binding site for complement factor B to form C3bBb (a C3 cleaving

enzyme complex) and C3bBb3b (an alternative C5 cleaving

enzyme) (28).

Enzymatic cleavage of C5 to C5a initiates the terminal

complement cascade, leading to polymerization of complement

component 9 (C9) and insertion of membrane attack complex into

cell membranes to lysis their targets. C3a and C5a, as potent

proinflammatory mediators, recruit neutrophils, macrophages, mast

cells, basophils, and lymphocytes to the injury site and promote

inflammatory factor expression through C3a and C5a receptors in

these immune cells (22, 31–33). C3b and C5b covalently attaches to

pattern recognition molecules on the cell membrane to provide the

opsonic signal to phagocytes for ingestion (24, 34, 35). During the

physiological condition, complement activation with the low level of

C3b deposition facilitates elimination of foreign and altered host cells

(such as clearance of apoptotic cells) without the release of dangerous

signals (32, 33, 36).
B

CA

FIGURE 1

Inflammatory activation and its triggers in the skeletal muscle. (A-C), three pathways that activate inflammatory cells. (A), proteolytic cascades of
complements are triggered by the damaged tissue and released C3a and C5a recruit and activate circulating leukocytes. (B), DAMPs released into
circulation are recongnized by circulating leukocytes, which are recruted to and activated in the injured site. (C), damaged tissue-activated local immune
sentinel cells release cytokines and chemokines to recruit and activate circulating leukocytes. ATP, Adenosine triphospate; CCL2, C-C motif chemokine
ligand 2/Monocyte chemoattractant protein-1 (MCP-1); CCR2, C-C motif chemokine receptor; CIRBP, Cold-inducible RNA-binding protein; CXCL2, C-
X-C motif chemokine ligand 2/macrophage inflammatory protein 2-alpha (MIP2-a); CXCR2, C-X-C motif chemokine receptor 2; DAMPs, Damage-
associated molecular patterns; HMGB1, High mobility group box-1; IL-1b, interleukin-1b; iNKT cells, Invariant natural killer T cells. LTs, Leukotrienes; MBL,
Mannose-binding lectin; MASP1/2, MBL-associated serine protease-1/2; mtDNA, mitochodrial DNA; NO, Nitric oxide; PGs, Prostaglandins; P2, Purinergic
preceptors (P2Rs); S100, S100 protein; RAGE, Receptor for advanced glycation endproducts; ROS, Reactive oxygen species; SRs, Scavenger receptors; 5-
TH, Serotonin; TLRs, Toll-like receptors; TNFa, Tumor necrosis factor a; C1 (2, 3, 4, 5), complement component 1 (2, 3, 4, 5); C1q, C1 complex
componet– recognicition molecular C1q; C1r and C1s, C1 complex componet—tetrameric protease complex C1R2S2; C3bBb and C4b2b, C3 convertase;
C2b, smaller fragment of C2 cleaved by C1s; C3a and C3b, two fragments of cleaved C3; C4b, Complement component C4b; C4bC2b, C3 convertase;
C3bBb3b and C4b2b3b, C5 convertase; C5a and C5b, two fragments of cleaved C5; C3aR, C3a receptor; C5aR, C5a receptor; Factor B, Complement
factor B; Bb, Fragment of complement factor B.
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Skeletal muscles can produce complement components, include

C1q, C1r, C1s, C2 and C4 (37). Complement activation is detected in

damaged skeletal muscles from animals and human patients (38, 39).

At the very early stage of skeletal muscle injury, the complement

system is activated by its contacts with tissue intracellular

components (40). The activated complements then recruit immune

cells to cause inflammation. When complement activation is

inhibited, the invasion of neutrophils and macrophages to the

skeletal muscle is attenuated (41, 42) and muscle pathology is

ameliorated (38).
2.3 Muscle-resident macrophages and mast
cells promote inflammation

In the injury site, sentinel cells of the immune system (such as

mast cells, macrophages, dendritic cells, innate lymphoid cells, and

basophils) and non-immune system (such as endothelial cells) sense

and react to DAMPs to produce proinflammatory cytokines (e.g.,

TNF-a and IL-1b), vasoactive amines (e.g., histamine and serotonin),

nitric oxide (NO), ROS, neuropeptides, and arachidonic acid

metabolites (e.g., prostaglandins and leukotrienes), which promote

inflammatory responses through the recruitment of more

neutrophiles and monocytes (Figure 1) (43–48).

Unlike monocyte-derived macrophages released from bone

marrow and recruited to tissues during the injury with CCR2

activation (49), tissue-resident macrophages originate from the yolk

sac and fetal liver during development and persist in many tissues via

self-renewal. Tissue-resident macrophages express a wide array of

receptors for the recogniztion of DAMPs, such as Toll-like receptors,

nucleotide oligomerization domain (NOD)-like receptors, retinoic-

acid inducible gene I (RIG-I) family, lectins, and scavenger receptors

(50). Cells with these receptors act as local responders to the tissue

damage and rapidly sense the death of individual cells. After initial

recognition of the tissue damage, tissue-resident macrophages release

inflammatory cytokines (TNF, IL-1, IL-6, IL-8, and IL-12) and

chemokines (CXCL1, CXCL2, and CXCL5) (51) to drive the influx

of inflammatory leukocytes, classically neutrophils and monocytes,

from blood to the injured muscle (52).

Mast cells are located in the connective tissue that contacts close

with the external environment. They are thought to play a pivotal role

in allergy. IgE is thought to have a central role in the activation of

mast cells through cross-linking of its high-affinity receptors (FceIRs),
whereas non-IgE-mediated activation of mast cells has been regarded

as potentially important factor in the initation and amplification of

acute inflammatory responses induced by tissue injury (53–55).

DAMPs released from injured tissues, such as ATP (56) and IL-33

(45, 57), are recognized by mast cells via their receptors (P2X and P2Y

receptors for ATP, ST2 receptor for IL-33), and then recognized

DAMPs increase intracellular Ca2+ and activate mast cell

degranulation. C3a and C5a, two complement components, can

stimulate mast cell migration and degranulation via C3aRs and

C5aRs (58, 59). The main contents in mast cell granules include

histamine, heparin, serotonin, proteases, proteoglycans, cathepsin G,

and cytokines (60, 61). Many of these mediators can induce

inflammation and vasodilatation (55). The early disruption of the

myofiber membrane elicits the accumulation and activation of
Frontiers in Immunology 04
muscle-resident mast cells. Activated mast cells subsequently

degranulate and release inflammatory mediators (i.e. TNFa, IL-1,
and histamine) to promote further immune cell recruitments (62, 63).
3 Inflammation promotes injured
muscle regeneration

The damaged skeletal muscle has the intrinsic capacity to

regenerate and repair itself through myogenesis with the satellite

stem cell activation triggered by damaged myofiber-derived factors

(64). Activated satellite stem cells undergo proliferation and

differentiation, which eventually fuse together or combine with

damaged fibers to reconstitute the fiber integrity and function (65).

Upon the tissue injury, infiltrating macrophages engulf and digest dead

cells and cellular debris via phagocytosis, which causes a phenotypic

change of macrophages to become healing macrophages for the

regulation of inflammation, myoblast fusion and growth, fibrosis,

vascularization, and final return to homeostasis (Figure 2) (66, 67).
3.1 Skeletal muscle damage triggers the
inflammation to scavenge muscle debris

Necrotic myofibers may act as either atrophic factors to repress

myoblast growth or physical barriers to prevent myoblast fusion.

Engulfment of dead cells by phagocytes is a key event that ensures an

efficient skeletal muscle regeneration to start the repair process and

end the pro-inflammatory response (68). Most clearence of tissue

debris is performed by macrophages and neutrophils through

phagocytosis when damaged cells expose “find-me” and “eat-me”

signals released from intracellular contents or appeared on their

membranes (69, 70). These professional phagocytes are attracted by

these specific “find-me” signals released by damaged cells. Then the

multiple receptors on the cell membrane of phagocytes recognize

phosphatidylserine (a key “eat-me” signal) exposed on the surface of

damaged cells to capture damaged cells and the lysosomes in the

phagocytes efficiently digest and decompose the internalized materials

through phospholipases and hydrolases (71, 72).

As the professional phagocytes, macrophages perform their

critical functions to scavenge debris for skeletal muscle repair.

Several types of scavenger receptors are found in macrophages to

bind with and internalize a variety of ligands, including endogenous

proteins and pathogens, and modulate macrophage activation (73,

74). Macrophage scavenger receptor class A (SRA) binds with

HMGB1 to eliminate HMGB1 from interstitial space by

internalization, and then activates TLR4 to stimulate cytokine

production (75). Additionally, elimination of exposed cellular

components is a process to resolve inflammation (49, 68). The

phagocytosis of muscle cell debris induces a switch from pro-

inflammatory macrophages (M1) to ant i- inflammatory

macrophages (M2) (49, 68, 76) to stimulate myogenesis and fiber

growth (77). Insufficient infiltration of macrophages or phagocytosis

of necrotic fibers partially impairs myogenesis (78). Deletion of

macrophage scavenger receptors decreases macrophage phagocytic

activity on myoblast debris, and blocks the transition of macrophage

phenotypes from M1 to M2, which delays muscle regeneration (79).
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3.2 Inflammation-related cytokines promote
muscle regeneration

Immune cells release a large number of cytokines, such as TNF-a,
IL-1b, IL-6 and TGFb, and growth factors. These cytokines can

stimulate expansion of the muscle stem cells to promote repair (80).

TNF-a and IL-1b are mainly produced by macrophages. Both

TNF-a and IL-1b directly activate the production of IL-6 in multiple

cell types, including macrophages, T cells, and myofibers (81, 82).

TNF-a and IL-1b induce the proliferation of cultured myoblast cells

by similar mechanisms, whereas they regulate the transitory phase of

myoblast differentiation through other mechanisms. Hight levels of

TNF-a and IL-6 stimulate myoblast proliferation via STAT3

signaling, while they inhibit subsequent myoblast differentiation

through NF-kB (p50/p65)-mediated degradation and destabilization

of myogenic regulatory factors, including myoblast determination

protein 1 (MyoD, a transcription factor that induces cell cycle arrest

for the regulation of muscle cell differentiation) and myogenin

(MyoG, a transcription factor that regulates myocyte fusion to

induce myogenesis) (83). IL-1b decreases the level of myostatin, a

negative regulator of muscle growth and regeneration to trigger

myoblast proliferation (81). On the other hand, low level of TNF-a
and IL-6 is necessary to facilitate later stages of myogenesis, because

TNF-a and IL-6 at a low level stimulate myoblast differentiation and

fusion through p38MAPK and the alternative NF-kB (p52/ReIB)

pathway (81, 83). Ablation of TNF-a or IL-6 displays poor muscle

regeneration (4).

Infiltrating macrophages recruited via CCR2 produce insulin-like

growth factor-1 (IGF-I) in the injured muscle to stimulate muscle

regeneration (84, 85). Meteorin-like protein (Metrnl/IL-41),

identified as a myokine/cytokine, is secreted by the skeletal muscle

(86) or activated macrophages (87). Metrnl/IL-41 promotes
Frontiers in Immunology 05
macrophage differentiation to an anti-inflammatory phenotype

(M2) and induces IGF-1 production in M2 macrophages through

activation of signal transducer and activator of transcription (STAT)

proteins, which has a direct effect on the proliferation of primary

muscle satellite cells (88). Macrophage-specific Metrnl/IL-41

knockout impairs muscle repair (88). M2 macrophages secret TGFb
to promote myogenesis through stimulating myogenic precursor cell

commitment into differentiated myocytes and the formation of

mature myotubes (89).

HMGB1 is also displays the regenerative character. These

contrasting effects of HMGB1 depend on the redox state of cysteine

residues (90). HMGB1 contains three cysteines (C23, C45, C106),

which can be reduced or oxidized. If all cysteines are oxidized,

HMGB1 has no known proinflammatory activity. The oxidation of

the C23 and C45 residues leads to the formation of an intramolecular

disulfide bond (dsHMGB1). Both dsHMGB1 and full reduced

HMGB1 (frHMGB1) have the migrating function of macrophages.

The dsHMGB1 is a proinflammatory cytokine to polarize

macrophages toward pro-inflammatory phenotype (M1) through

binding to RAGE/TLR4. The frHMGB1 induces distinct

macrophages polarization phenotypes (90, 91). The frHMGB1

forms a heterocomplex with CXCL12 and activates CXCR4

expressed on stem cells to promote muscle regeneration and repair

after acute muscle injury (92, 93). Compared to an HMGB1-RAGE/

TLR4-axis in immune cells as a proinflammatory signaling pathway

for the impairment of skeletal muscle function, the HMGB1-

CXCL12-CXCR4 signaling pathway in stem cells promotes tissue

regeneration in chronic inflammation diseases (16, 19, 93). The

oxidation of HMGB1 cysteines can switch its extracellular activities

from the orchestration of tissue regeneration to the exacerbation of

inflammation. Pharmacological treatment with an engineered

nonoxidizable variant of HMGB1 reduces inflammation and
B
C

A
A

FIGURE 2

The effects of inflammatory activation on the skeletal muscle. (A), inflammation distorys tissues; (B), inflammation promtes muscle repair; (C), a vicious
cyle of the tissue damage and inflammation. C5b (6, 7, 8, 9), complement component 5b (6, 7, 8, 9); FGF2, Fibroblast growth factor 2; IGF-1, Insulin-like
growth factor 1; IL-1b (6, 8, 10, 41), interleukin-1b (6, 8, 10, 41); ROS, Reactive oxygen species; TGFb, Tranformaing growth factor-b; 5-TH, Serotonin;
TNFa, Tumor necrosis factor a; TWEAK, TNF-like weak inducer of apoptosis; VEGF, Vascular endothelial growth factor.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1133355
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tu and Li 10.3389/fimmu.2023.1133355
fibrosis, and improves muscle regeneration and functional

performance (94). Additionally, studies with RAGE knockout or

defective TLR4 demonstrate that HMGB1 binding to RAGE/TRL4

in the stem cells is also important to stimulate quiescent stem cell

proliferation and differentiation, and further promotes muscle

regeneration and neovascularization after the muscle is destroyed

(15, 95–97). These systemically genetic modifications possibly impair

the response of immunocytes to the tissue injury or other unknown

signaling to reduce the cell proliferation and differentiation. TLR4

deficient mice developed into severe muscle injury (96), mild

inflammation with low TNF-a and scarce macrophage infiltration,

and poor muscle regeneration (98). RAGE is not expressed in the

adult skeletal muscle, while it is transiently expressed in activated,

proliferated, and differentiated satellite cells in injured muscles. The

RAGE signaling represses Pax7 transcription in satellite cells through

upregulation of MyoG, thereby accelerating muscle regeneration

(myocyte fusion) and limiting satellite cell self-renewal (97).

Satellite cells from RAGE knockout mice not only lack a high level

of some cytokines (TNFa, MCP-1, IL- 6) in response to in vivo

ischemia and in vitro stimuli with HMGB1 (99), but also exhibit the

increase in basal satellite cells and delayed regeneration (myocyte

fusion) of injured muscles (97).
3.3 Inflammation related cytokines promote
neovascularization in skeletal muscle

Neo-angiogenesis is also necessary to establish a new vascular

network for muscle repair. Both macrophages and mast cells

contribute vascular regeneration (100, 101). In damaged skeletal

muscles, endothelial-derived progenitors can contribute to neo-

angiogenesis or fibrosis through the generation of mesenchymal/

fibrogenic cells. The polarized macrophages affect the fate of

endothelial progenitors during muscle regeneration after an

acute injury. Experiments performed by Zordan et al. have

demonstrated that the vast majority of endothelial-derived cells

contributes to the formation of a new capillary network with

macrophage infiltration (102). When circulating monocytes and

infi ltrating macrophages are depleted, angiogenesis and

myogenesis are delayed with leading to a persistent fibrosis

(102). Vascular endothelial growth factor (VEGF) signaling has a

crucial role in this transformation. When the muscle trauma

results in the disruption of blood flow and reduction of oxygen,

hypoxia inducible factor (HIF) is elevated in the injured muscle,

which induces the production and release of VEGF from

macrophages to bind to VEGF receptors (VEGFR) expressed in

endothelial cells for the proliferation, migration, and survival of

endothelial cells (103, 104). Depletion of the macrophage

recruitment reduces the VEGF production and impairs

angiogenesis and skeletal muscle regeneration (102, 105).

Macrophage-derived VEGF is also crucial to re-establishment of

the neuromuscular junction (106). Other pro-angiogenic factors

produced by macrophages, including fibroblast growth factor 2

(FGF2), IL-8, IGF-1, and IL-10 (101), also improve tissue repair.

Additionally, macrophages stimulate myogenesis/angiogenesis

coupling to orchestrate muscle regeneration through secreted

osteopontin (107) and oncostatin M production (108).
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Local mast cells are also associated with arteriogenesis and

formation of collateral circulation in the skeletal muscle after

ischemic injury (100, 109). In patients with peripheral arterial

disease, or animal models with femoral artery ligation, mast cells

are activated (62, 100, 109, 110). Activation of mast cells increases the

proliferation of vascular endothelin cells and smooth muscle cells to

promote neovascularization (100, 109). Treatment with cromolyn, a

mast cell stabilizer, prevents the mast cell-induced arteriogenesis.

Mast cells could directly contribute to vascular remodeling and

vascular cell proliferation through the increase in matrix

metalloproteinases’ (MMPs) activities and monocyte responses as

well as supplement of growth-promoting factors, including VEGF

FGF2, and platelet-derived growth factor BB (PDGF-BB) (109).
4 Inflammation aggravates
muscle injury

As discussed above, inflammation is involved in skeletal muscle

regeneration and has beneficial onmuscle healing. However, a number of

pro-inflammatory cytokines/chemokines also contribute to the

pathogenesis of skeletal muscle injuries (Figure 2) (111). Therefore,

anti-inflammatory modalities are commonly used for the treatment of

various musculoskeletal injuries (112). Treatment with dexamethasone, a

potent anti-inflammatory drug, protects the skeletal muscle from

ischemia/reperfusion injuries through the inhibition of inflammation

(113–117). Dexamethasone attenuates the alterations in microvascular

function, edema, and necrosis of muscle fibers, and improves the muscle

contractile function (113–117).

4.1 Inflammatory response aggravates
muscle injury

After trauma, local and recruited immune cells are activated in the

injured site. Activated lymphocytes, macrophages, and neutrophils

contain radical forming enzymes in their intracellular granules to

generate ROS. ROS can further increase tissue injuries and in turn

enhance the immune responses to the tissue damage (118–120).

Macrophages are rich in diverse growth factors and cytokines as

well as ROS (121, 122). Therefore, macrophages play the opposite

roles in the skeletal muscle to injure muscle cells or stimulate muscle

regeneration. Pro-inflammatory cytokines released from activated

phagocytes have been found to accelerate muscle protein

degradation in patients with trauma (123, 124). Recently, Shang

et al. reported that macrophages appear to compete with satellite

cells for binding with glutamine to impede muscle regeneration (125).

A macrophage-specific knockout of glutamate dehydrogenase inhibits

the glutamine utilization in macrophages and improves earlier

restoration of muscle functional capacity (80, 125).

Unlike macrophages, neutrophiles mainly release proteases to

degrade cellular debris produced by the damaged tissue (126). As a

part of neutrophil activation, neutrophils lead to proteolysis and

removal of debris, high concentration of proteases, or other cytolytic

and cytotoxic molecules released from neutrophils. These neutrophil-

caused events can damage skeletal muscles and other healthy

bystander tissues (48). Over-activation of neutrophils lyses the cell

membrane (127) and results in the muscle damage (128). As one type
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of mediators, neutrophil-derived ROS are capable of direct lysis of the

muscle membrane (129–131). Additionally, oxidative stress

exacerbates the inflammatory responses and enhances the

formation of fibrotic scar tissues after the skeletal muscle injury

(132). Inhibition of the neutrophil infiltration attenuates the muscle

damage (133, 134).

Mast Cells also play a prominent role in the ischemia/reperfusion-

mediated cytotoxic injury in the skeletal muscle. Mast cell granules

contain a number of mast cell-specific proteases, including tryptases,

chymases, and mast cell carboxypeptidase A (MC-CPA) (135). These

mast cell proteases are expressed at exceptionally high levels and kept

in a fully active form. At the blood reperfusion, complement

molecules, C3a and C5a, cause mast cell degranulation through

activation of G-protein-coupled receptors (GPCR) on the mast cell

surface. Additionally, increased ROS production also activates the

intracellular signaling pathways to stimulate mast cell degranulation

(60). When mast cells undergo degranulation, large amounts of

enzymatically active proteases are thus released into the

extracellular space to result in the tissue damage (136, 137). Drugs

that target mast cells and their mediators (138), genetical deficiency in

mast cells (138–140), or direct knockout of mast cell proteases (141)

reduce the skeletal muscle ischemia-reperfusion injury accompanied

with the attenuation of remote lung injury.

Since pro-inflammatory cytokines are found to accelerate the

muscle protein degradation (142), lots of inflammatory mediators

involved in the skeletal muscle injury have been reported (83, 141,

143–145). Although these cytokines modulate myofiber function and

execute pleiotropic roles in the functional recovery of the skeletal

muscle, they disrupt healing and exacerbate the muscle dysfunction

when they form an aberrant downstream signaling pathway (21).

Accompanied with the initiation of inflammation, HMGB1, amplifies

the tissue damage and lethality through the HMGB1/RAGE axis

(146). As a co-receptor of HMGB1 for the TLR activation,

macrophage scavenger receptor A (SRA) mediates HMGB1

internalization (75) and interaction with TLR4 (147, 148) to

exaggerate inflammatory responses. SRA-mediated influx of lipids

through macrophage-modified lipoprotein uptake is thought to be

involved in the formation of foam cells (149). In Duchenne muscular

dystrophy (DMD), the inflammatory HMGB1-TLR4 axis promotes

the dystrophic muscle pathological process and destroys dystrophic

muscle fibers (16, 94). Ablation of TLR4 or inhibition of HMGB1

binding to TLR4 attenuates inflammation and improves the muscle

histopathology and muscle force generation (16, 94).

TNF-a and IL-1b limit cell differentiation events and lead to

muscle wasting (81, 150–152). Although high levels of TNF-a and IL-

1b stimulate myoblast proliferation, they decrease the production of

irisin, an important myokine that can stimulate myogenesis and

muscle growth (81). Additionally, TNF-a inhibits myoblast

differentiation through the degradation of myogenic regulatory

factors (MyoD and MyoG) and downregulation of osteonectin, a

secreted protein involved in the differentiation of pulp cells during the

development and repair (81). TNF‐a blockade reduces TNF-a-
associated tissue degradation and positively regulates the

restauration of skeletal muscles upon injuries (153).

Complements not only activate inflammation but also aggravate

the tissue injury (154). Complement activation converges at the point

of cleavage of complement component 3 (C3) with the generation of
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biologically active products (C3a and C3b). C3a recruits neutrophils

and macrophages to the injury site, while C3b activates the remainder

of the complement cascade (C5-C9) to lead to the formation of

membrane attack complex (MAC). MAC leads to the pore formation

in the skeletal muscle membrane (38). Loss of the membrane integrity

results in the release of intracellular contents, such as DAMPs. Then a

severe and sudden reaction of the complement cascade against

DAMPs could lead to the hyper-inflammation and tissue damage

(155). Inactivation of complements or complement knockout reduces

the invasion and activation of neutrophils and macrophages, and

attenuates vascular damage (156, 157), muscle injury (38, 145, 158,

159) and edma (41, 159) in the damaged skeltal muscle. Additionally,

inhibition of complements reduces remote pulmonary injuries

secondary to tourniquet-induced skeletal muscle damage (157, 159).
4.2 The vicious cycle of tissue damage and
inflammation-exaggerated muscle injury

After the muscle damage, intracellular DAMPs are released into

interstitial space and the complement system and local macrophages/

mast cells are activated. All of these local inflammatory events

promote immune cell recruitment and activation with the high level

production and release of inflammatory factors to trigger a vicious

cycle of the tissue damage and inflammation (Figure 2) (5, 6).

Upon the tissue injury, released DAMPs activate the immune

system to produce proinflammatory cytokines. As a specific DAMP

and a necrotic marker for the immune system, HMGB1 initiates the

proinflammatory signaling pathways and stimulates the immune cell

activation (160). Activated immune cells also release HMGB1 (13,

161). Once the tissue damage becomes a prolonged event and the

tissue repair fails, HMGB1 released by necrotic tissues and immune

cells induces the second wave of inflammatory responses (162) or

chronic inflammation (163, 164). Continuous inflammation can

contribute to the development of various inflammatory diseases.

Inflammatory diseases, in turn stimulate the secretion of DAMPs,

thus establishing a vicious cycle of DAMPs production and

inflammation (6, 162, 165). Continuously chronic inflammation

results in muscle loss and atrophy (166).

In the alternative pathway of complement activation, C3

convertase initially cleaves C3 to C3a and C3b fragments. Then

C3b binds with factor B to form C3bBb, a C3 convertase, to further

cleave C3, which results in a positive feedback amplification loop

(167) to produce a large amount of C3a and C5a fragments and

promote the inflammatory responses, such as neutrophil recruitment

and activation. When neutrophils are activated, they in turn activate

the alternative complement pathway for the release of C5a fragments

and the latter further amplifies neutrophil proinflammatory responses

with another positive feedback loop (168). A severe reaction of the

complement cascade can lead to the hyper-inflammation (30, 169)

and tissue damage (29), or chronic inflammation (24).

Mast cell degranulation and macrophage activation can release

proinflammatory cytokines (such as TNF-a, IL-1, histamine) (170,

171) to recruit more mast cells, neutrophiles and other immune cells.

Then these recruited immune cells further release more

proinflammatory cetokines (172). As the results, more immune cells

infiltrate to the injured site following chemokine gradient to further
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1133355
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tu and Li 10.3389/fimmu.2023.1133355
promote inflammation, especially for neutrophil congregation in

which a large number of neutrophils are recruited and collectively

move toward the injured site in a very directed manner, i.e., prior

activation of one or more ‘‘leading’’ neutrophils secretes leukotriene

B4 (LTB4) and ATP. These molecules are recognized by A3 receptors

(A3Rs) and LTB receptors (LTB4Rs) expressed on following

neutrophils for the further neutrophil recruitment. This neutrophil–

neutrophil signaling results in an autocorrelated behavior described as

neutrophil swarming (9, 48, 173).

The muscle necrosis together with inflammation results in the

accumulation of substantial amounts of fluid to raise the

intracompartmental pressure in the affected limbs. The high level of

the intracompartmental pressure provokes the additional damage and

leads to more muscle necrosis, even limb amputation (174–177).

Not all responses to the muscle injury form a vicious cycle.

Marcophages also suppress inflammation and autoimmunity in

response to self-antigens caused during homeostasis (46). In the

local minor injury, tissue-resident macrophages rapidly sense the

death of individual cells and extend membrane processes that

physiologically sequester pro-inflammatory debris to prevent

initiation of the feedforward chemoattractant signaling cascade for

the formation of neutrophil swarms (48). In the acute inflammation,

tissue-resident macrophages release IL-10 to inhibit neutrophil

scrolling and migration into the tissue and subsquently attenaute

the inflammation (178).
5 Exaggerated inflammation causes
remote organ damage

A local inflammation in the injured skeletal muscle can become

more systemic and lead to the tissue damage and edema at distant

sites (such as lungs). The decreased microperfusion of blood and

tissue hypoxia due to the lung damage could cause more tissue

damage (5).
5.1 Rhabdomyolysis

In the skeletal muscle, the damage initially occurs as “tears” in the

membrane, which destroys the integrity of the sarcolemma and

reduces the connection of the muscle membrane to cytoskeleton

(179). Lack of the connection with cytoskeleton causes myofibers to

be fragile and more sensitive to damage (180). This type of the

damage can be exacerbated by the inflammatory response, leading to

myofiber necrosis rather than repair (170).

Disintegration and necrosis of the skeletal muscle result in rapid

breakdown of skeletal muscle fibers and release of muscular cell

constituents into the extracellular fluid and circulation (12, 174),

which is referred to as rhabdomyolysis. Rhabdomyolysis is usually

caused by the direct muscle injury, such as trauma, and inflammation

results in an additional injury and promotes rhabdomyolysis (181–

183). Acute kidney injury (AKI) is one of the most severe

complications after the occurrence of rhabdomyolysis and happens

in 33-50% of patients with rhabdomyolysis (184) because of the

toxicity of myoglobin to kidney tubular cells (182, 185). Previous

studies also reported that severe acute inflammatory myosis without
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trauma triggers rhabdomyolysis with acute kidney injury (181, 186–

188). These studies confirm that severe muscle inflammation

contributes to the tissue damage and organ dysfunction (182).

Another serious complication of rhabdomyolysis is severe

hyperkalemia and the latter causes cardiac arrhythmia and arrest

(189–191).
5.2 Severe inflammation in skeletal muscle
results sepsis like syndrome

Thirty years ago, microbial pathogens were thought to cause the

clinical sepsis syndrome and the relationship between the circulating

mediators of inflammation and post-injury sepsis could not be

imaged (192, 193). Now we understand that sepsis is fundamentally

an inflammatory disease, and even infectious pathogens are not

detectable in about one third of patients displayed clinical signs of

sepsis (194), although sepsis is traditionally defined as life-threatening

organ dysfunction caused by dysregulated host responses to infection

(193). Sepsis is the consequence of exaggerated immune responses

and widespread inflammation in the body to generate cytokine storm

and results in life-threatening organ dysfunction (193, 195, 196).

Inflammatory cytokines are synthesized at the site of tissue injury

where the sterile DAMPs released from wound sites activate innate

immune cells (192). After severe tissue damage initiates massive

activation of inflammatory mediators, the activated inflammatory

mediators release into the bloodstream. Massive inflammatory

mediators in the bloodstream result in systemic inflammation and

multiple organ failure and death (12, 197), named sepsis-like systemic

inflammation response syndrome (SIRS) (198).

In damaged skeletal muscles, proinflammatory cytokines,

including IL-1b and TNFa, are significantly elevated (115, 116). As

the early mediators of endotoxemia, IL-1b and TNFamainly released

by macrophages from the injured site into circulation cause septic

shock and multiple organ injuries. Their antibodies have been used to

prevent the organs against the lethal damage in mice suffered systemic

inflammation (199–204). Additionally, IL-1b and TNFa stimulate the

release of HMGB1, a late mediator of endotoxemia, and exaggerate

the inflammatory damage (13). In a tourniquet-induced mouse

hindlimb ischemia-reperfusion model, complement inhibition or

neutrophil depletion attenuates remote organ injuries in the lung

and liver (205), which confirms that local muscle injury results in the

systemic inflammation and remote organ damage.

DAMPs are key inducers of systemic sterile inflammation. As a

late mediator of endotoxin lethality, HMGB1 is secreted by activated

monocytes and macrophages, or passively released from the damaged

skeletal muscle into circulation (12, 13). In the human sepsis, the

serum HMGB1 is increased, especially in non-survivors (13).

Furubeppu, et al. have demonstrated that bilateral hindlimb

ischemia not only induces severe muscle damage, but also

significantly causes the elevation of serum HMGB1 levels and

animal death (12). Treatment with anti-HMGB1 antibodies

markedly improves animal survival (12, 13). Macrophage scavenger

receptor A (SRA) mediates HMGB1 internalization (75) and

interaction with TLR4 (147, 148) to enhance the development of

the pro-inflammatory phenotype and mediate the morbidity and

mortality of sepsis/septic shock, whereas the deletion of SRA or
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inhibition of SRA interaction with HMGB1 ameliorates sepsis/septic

shock (147, 148).

Mitochondria and its components are another source for

circulating DAMPs to activate systemic inflammation (192). The

mitochondrial genome (mtDNA) contains CpG DNA repeats and

also codes for formylated peptides. Unmethylated ‘CpG’ repeats

existed in the mitochondrial DNA confer the affinity for innate

immune cells with TLR9, and formylated peptides bind to formyl

peptide receptor-1 to activate human polymorphonuclear neutrophils

(PMN) through promoting Ca2+ influx and phosphorylation of

mitogen-activated protein kinases (MAPKs), thus leading to PMN

migration and degranulation (198). Intravenous injection of crude

mitochondrial preparations causes neutrophil-mediated attack on the

lung (198).

In addition to the involvement of neutrophil-mediated organ

injury (198), the systemic inflammation also initiates clotting (206) to

reduce blood flow into limbs and vital organs. Poor circulation leads

to the organ failure and even animal death. Furthermore, clinical

investigations and animal studies found that the systemic

inflammation increases protein degradation and suppresses protein

synthesis in the skeletal muscle, leading to an amplified net catabolism

(143, 207).
6 Conclusion

Sterile inflammation is a host defensive reaction to scavenge

damaged tissues for wound healing. The outcome is influenced by

the magnitude of the inflammatory response whether the

inflammatory process has an overall beneficial or detrimental effect

on muscle function, and how to balance the beneficial and

detrimental effect should be highlighted in the clinical practice

(Figure 3). The inflammatory response consists of hormonal
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metabolic and immunological components and the extent correlates

with the magnitude of the tissue injury (208). For tissue microlesions,

tissue-resident macrophages sequester the damage through extending

membrane processes to prevent initiation of inflammation (48). The

macrophage activation can create a favorable microenvironment to

release inflammatory cytokines for damaged tissue repair. This

process is very useful for cells with the ability of regeneration. For

other tissues without the regenerative capacity, inflammatory

cytokines promote the fibrosis, such as in the heart. Given the

skeletal muscle intrinsic capacity for regeneration and the benefit of

inflammation on muscle repair, inflammation has less side effects on

muscle recovery. However, inflammation also impairs muscle

homeostasis in the patients with poor muscle stem cell pool, such

as patient with peripheral arterial disease (209). Furthermore, severe

tissue damage can cause systemic inflammation response syndrome

and life-threatening organ dysfunction (12), especially, multiple

remote organ damage, such as in the lung, heart, and kidney. To

focus on this point, anti-inflammation could be a life-saving strategy.

Sometimes, amputation rather than attempts at revascularization is

the most prudent course to limit the toxic products from the damaged

limb into the systemic circulation (210).

We updated the information about the inflammation balance in the

skeletal muscle damage and repair in this review. It is a great challenge

to balance the beneficial and detrimental effect of inflammation during

the skeletal muscle damage and repair (Figure 3). Following the

development of innovative techniques, including epigenetics,

transcriptomics, single-cell RNA sequence (scRNA-seq) and

proteomics, etc., more details on the involvement of inflammatory

factors and immune cells in the skeletal muscle damage and repair can

be further explored. For example, scRNA-seq analysis provides a new

benchmark reference resource to examine the muscle tissue

heterogeneity and identify potential targets for accurate therapy.

Using scRNAseq analysis, Pang, et al. demonstrate that elevation of
FIGURE 3

Inflammation balance in skeletal muscle damage and repair. How to accurately balance the beneficial and detrimental effect of inflammation during the
skeletal muscle damage and repair is a challenge for precise therapeutic strategies.
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cell cycle genes in the specific monocyte/macrophages promotes

inflammation and impairs skin wound healing (211). The use of

scRNA-seq analysis resolves the cellular diversity of human muscles,

including four types of stromal cells, five types of vascular cells, and two

subpopulations of muscle stem cells (212). The proportion of different

cell-types and cell-subtypes relates to age, sex, and the pathophysiology

of muscle diseases (213). Krasniewski, et al. report eleven clusters of

distinct macrophages in the mouse skeletal muscle, measured by

scRNAseq analysis and also demonstrate that the enriched gene

expression programs link to reparative, proinflammatory, phagocytic,

proliferative, and senescence-associated functions (214). Therefore, the

development of these new techniques will advance the new precise

therapeutic strategies, including attenuation of the muscle damage and

promotion of the muscle repair.
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