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death-ligand 1: A bidirectional
Mendelian randomization study
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Huan Huang2, Qi-Yan Mo2, Dan-Li Shi2, Lu Han2,
Yu-Yuan Han2, Si-Kai Nong2 and Guo-Xiang Lin2*

1The First Clinical College, Shanxi Medical University, Jinzhong, China, 2Department of Oncology,
Wuming Hospital of Guangxi Medical University, Nanning, China
Background: Multiple clinical studies have indicated that the gut microbiota

influences the effects of immune checkpoint blockade (ICB) therapy comprising

PD-1/PD-L1 inhibitors, but the causal relationship is unclear. Because of

numerous confounders, many microbes related to PD-1/PD-L1 have not been

identified. This study aimed to determine the causal relationship between the

microbiota and PD-1/PD-L1 and identify possible biomarkers for ICB therapy.

Method: We used bidirectional two-sample Mendelian randomization with two

different thresholds to explore the potential causal relationship between the

microbiota and PD-1/PD-L1 and species-levelmicrobiota GWAS to verify the result.

Result: In the primary forward analysis, genus_Holdemanella showed a negative

correlation with PD-1 [bIVW = -0.25; 95% CI (-0.43 to -0.07); PFDR = 0.028] and

genus_Prevotella9 showed a positive correlation with PD-1 [bIVW = 0.2; 95% CI

(0.1 to 0.4); PFDR = 0.027]; order_Rhodospirillales [bIVW = 0.2; 95% CI (0.1 to 0.4);

PFDR = 0.044], family_Rhodospirillaceae [bIVW = 0.2; 95% CI (0 to 0.4); PFDR =

0.032], genus_Ruminococcaceae_UCG005 [bIVW = 0.29; 95% CI (0.08 to 0.5);

PFDR = 0.028], genus_Ruminococcus_gnavus_group [bIVW = 0.22; 95% CI (0.05

to 0.4); PFDR = 0.029], and genus_Coprococcus_2 [bIVW = 0.4; 95% CI (0.1 to

0.6); PFDR = 0.018] were posit ively correlated with PD-L1; and

phylum_Firmicutes [bIVW = -0.3; 95% CI (-0.4 to -0.1); PFDR = 0.031],

family_ClostridialesvadinBB60group [bIVW = -0.31; 95% CI (-0.5 to -0.11),

PFDR = 0.008], family_Ruminococcaceae [bIVW = -0.33; 95% CI (-0.58 to -0.07);

PFDR = 0.049], and genus_Ruminococcaceae_UCG014 [bIVW = -0.35; 95% CI

(-0.57 to -0.13); PFDR = 0.006] were negatively correlated with PD-L1. The one

significant species in further analysis was species_Parabacteroides_unclassified

[bIVW = 0.2; 95% CI (0-0.4); PFDR = 0.029]. Heterogeneity (P > 0.05) and pleiotropy

(P > 0.05) analyses confirmed the robustness of the MR results.
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Introduction

Immune checkpoint blockade (ICB) therapy has been a

significant breakthrough in cancer research discovery in recent

years; it offers a highly effective method for enhancing anticancer

effects against aggressive cancers (1). Programmed cell death

protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) is one

of the most high-profile target protein pairs in ICB. PD-1/PD-L1

can inhibit the proliferation and differentiation of effector T

lymphocytes and prevent the presentation of neoantigens. PD-1 is

mainly expressed by activated T cells, dendritic cells (DCs), B cells,

and natural killer cells (NKs). However, many tumors have been

shown to elevate PD-1 expression, which further helps the tumor

escape from the immune system (2). Numerous cell types express

PD-L1, but its expression is significantly elevated in most

malignancies, which are the primary source of PD-L1 in the

blood (3). PD-1/PD-L1 inhibitors can relieve the limitation of

PD-1/PD-L1 and restore exhausted T cells to resume the

antitumor immune reaction (4). In clinical practice, however, ICB

has limited efficacy in many patients; thus, there is an urgent need to

find an auxiliary treatment to promote the effect of ICB.

In recent years, numerous investigations have shown that the

gut microbiota influences the efficacy of ICB (5, 6). The gut

microbiota consists of approximately 4 × 1013 symbiotic bacteria,

protozoa, fungi, archaea, and viruses. It can affect numerous

physiological systems, such as metabolism, inflammatory

processes, and immune responses (7, 8). Previous research links

the microbiota to the toxicity and efficacy of cancer treatments and

the processes of carcinogenesis with specific taxa of bacteria (9).

Identifying microbial taxa that directly or indirectly produce

anticancer activities is essential for developing a microbiome-

based combinatory therapy that can enhance the overall rate of

response to anti–PD-1/PD-L1 therapy. A few bacterial genera/

species are enriched in patients with favorable clinical outcomes

(6, 10). However, due to the influence of reverse causality and

confounders, the causal association between PD-1/PD-L1 and the

microbiota has not been verified and many potentially related

microbes associated with PD-1/PD-L1 therapy have not been

explored (8). Therefore, it is essential to initiate a relevant

genetic-level study.

Mendelian randomization (MR) is a genetic epidemiology

method that utilizes human genetic variation known to influence

modifiable exposures as instrumental variables (IVs) to infer the

causal effect of an exposure on an outcome; it can eliminate

confounding bias and is advantageous for separating the causal

pathways of phenotypically grouped risk variables that are hard to

randomize or susceptible to measurement error (11).
Abbreviations: ICB, immune checkpoint blockade; cis-pQTLs, cis protein

quantitative trait loci; CI, confidence interval; eQTLs, expression quantitative

trait loci; GWAS, genome-wide association study; MR, Mendelian

randomization; PD-1, programmed death protein-1; PD-L1, programmed

death-ligand 1; RFU, relative fluorescent unit; HCC, hepatocellular carcinoma;

SCFA, short-chain fatty acids; CRC, colorectal cancer; DMP, Dutch

Microbiome Project
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Here, we conducted a two-sample bidirectional Mendelian

randomization at two distinct thresholds to determine the causal

relationship between PD-1/PD-L1 and the gut microbiota and

explore potential biomarker microbes (Figure 1).
Results

Univariable forward MR

We used the loose threshold as the primary reference to

investigate further potential linkages.

The F statistic of any single genetic instrument that was used in

the analysis was >10 to avoid weak instrument bias. In the forward

MR with a relaxed threshold (P = 1 × 10-5, R2 = 0.01, LD = 10000), we

discovered important microbes. For instance, genus_Holdemanella

showed a negative correlation with PD-1 [bIVW = -0.25; 95% CI

(-0.43 to -0.07); PFDR = 0.028] and genus_Prevotella9 showed a

positive correlation with PD-1 [bIVW = 0.2; 95% CI (0.1 to 0.4); PFDR
= 0.027]; order_Rhodospirillales [bIVW = 0.2; 95% CI (0.1 to 0.4);

PFDR = 0.044], family_Rhodospirillaceae [bIVW = 0.2; 95% CI (0 to

0.4); PFDR = 0.032], genus_Ruminococcaceae_UCG005 [bIVW =

0 . 2 9 ; 9 5 % C I ( 0 . 0 8 t o 0 . 5 ) ; P F D R = 0 . 0 2 8 ] ,

genus_Ruminococcus_gnavus_group [bIVW = 0.22; 95% CI (0.05

to 0.4); PFDR = 0.029], and genus_Coprococcus_2 [bIVW = 0.4; 95%

CI (0.1 to 0.6); PFDR = 0.018] were positively correlated with PD-L1;

and phylum_Firmicutes [bIVW = -0.3; 95% CI (-0.4 to -0.1); PFDR =

0.031], family_Clostridiales_vadin_BB60_group [bIVW = -0.31; 95%

CI (-0.5 to -0.11), PFDR = 0.008], family_Ruminococcaceae [bIVW =

-0.33; 95% CI (-0.58 to -0 .07) ; PFDR = 0.049] , and

genus_Ruminococcaceae UCG014 [bIVW = -0.35; 95% CI (-0.57

to -0.13); PFDR = 0.006] were negatively correlated with PD-L1. MR-

PRESSO detected no horizontal pleiotropy (P Presso Gable>0.05). The

weighted median and the weighted mode yielded similar patterns of

effects or directions except for MR-Egger in some exposures, and the

difference possibly due to the power of the MR-Egger method was

smaller (11). According to Cochran’s Q statistic, there was no

evidence of pleiotropy across instrument effects (Cochran’s QIVW

>0.05). Analysis of MR-Egger intercepts revealed no indication of

directional pleiotropy (P Intercept >0.05). The leave-one-out analysis

identified all taxonomic groups exhibiting robustness under the loose

threshold, except for genus_Prevotella_9 (Figure 2). More

information is available in Supplemental Table 1 (Table S1).
Univariable reverse MR

In the reverse two-sample MR with the loose threshold (P = 1 ×

10-5, R² = 0.01, window = 10,000), PD-1 was negatively related to

genus_Terrisporobacter [bIVW = 0.2; 95% CI (0 to 0.3); PFDR =

0.029], PD-L1 was positively related to family_Peptococcaceae

[bIVW = 0.15; 95% CI (0.05 to 0.25); PFDR = 0.019], and PD-L1

was negatively correlated with family_Porphyromonadaceae

[b IVW = -0.1 ; 95% CI (-0 .2 to 0) ; PFDR = 0.017] ,

genus_Odoribacter [bIVW = -0.1; 95% CI (-0.2 to 0); PFDR =

0.022], and genus_Parabacteroides [bIVW = -0.1; 95% CI (-0.18
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to -0.02); PFDR = 0.042]. The sensitivity analysis showed no evidence

of pleiotropy or heterogeneity. Other taxa in addition to the genera

Parabacteroides and Odoribacter had robust results in the leave-

one-out analysis (Table 1).
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The stability of validation MR

To confirm the resulting stability, we conducted strict threshold

analyses using the threshold (P = 5 × 10−6, R² = 0.001, window =
FIGURE 2

Forest plot of causal relationships estimated and sensitivity analysis for genus-level microbes and PD-1/PD-L1, the significant result (PFDR <0.05) by
the IVW method in forward two-sample MR analysis (includes two thresholds). The words in bold type indicate significant results. CI, confidence
interval; F, F-statistics; R2, the genetic variants for instrument; IVW, inverse variance weighted.
FIGURE 1

Workflow of this MR analysis. SNPs, single-nucleotide polymorphisms; MR, Mendelian randomization; LD, linkage disequilibrium; eQTL, expression
quantitative trait loci; pQTL, protein quantitative trait loci.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1136169
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 1 Significant microbiota (IVWFDR<0.05) in reverse MR analysis.

IVW Weighted
Median

Weighted
Mode MR Egger

Cochran’s
QIVW

Presso
Gable
PP PFDR Beta P Beta P Beta P Beta P Intercept

0.005 0.022 -0.127 0.036 -0.132 0.183 -0.131 0.717 0.067 0.316 0.492 0.566

0.010
0.042

-0.104
0.245 -0.062 0.597 -0.041 0.090 -0.317 0.196 0.335 0.391

0.005 0.019 0.151 0.019 0.163 0.171 0.167 0.947 0.016 0.565 0.689 0.720

0.007 0.017 -0.102 0.009 -0.124 0.099 -0.141
0.239

-0.192 0.535 0.823 0.837

0.430 0.440 0.037 0.376 0.051 0.364 0.092 0.440 0.268 0.497 0.200 0.228

0.014 0.028 0.127 0.059 0.119 0.317 0.099 0.412 0.425 0.543 0.804 0.824

0.359
0.927

-0.052 0.793 -0.018 0.890 -0.016 0.927 0.039 0.830 0.162 0.188

0.030 0.047 -0.157 0.035 -0.194 0.206 -0.231 0.470 0.537 0.387 0.351 –

0.015 0.029 0.151 0.013 0.177 0.162 0.205 0.962 0.523 0.377 0.918 0.929

0.049 0.090 0.175 0.068 0.202 0.235 0.215 0.609 0.433 0.744 0.807 –

0.128 0.406 -0.077 0.203 -0.085 0.413 -0.094 0.956 -0.021 0.883 0.353 0.373

0.009 0.019 -0.167 0.054 -0.148 0.380 -0.110 0.419 -0.523 0.561 0.737 0.770
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Exposure Outcome F

Variants

nSNP Outlier bIVW 95%CI

PD-L1

Genus_Odoribacter 19.6-37 5 1 -0.1 (-0.2 - 0)

Genus_Parabacteroides 19.6-37 6 0 -0.1 (-0.18 - -0.02)

Family_Peptococcaceae 19.6-37 5 1 0.15 (0.05 - 0.25)

Family_Porphyromonadaceae 19.6-37 6 0 -0.1 (-0.2 - 0)

PD-1

Genus_Barnesiella 19.9-88 7 0 0 (-0.1 - 0.1)

20.9-88 4 0 0.13 (0.03 - 0.23

Genus_LachnospiraceaeUCG001 19.9-88 7 0 -0.1 (-0.2 - 0.1)

20.9-88 3 1 -0.2 (-0.3 - 0)

Genus_Terrisporobacter 19.9-88 6 1 0.2 (0 - 0.3)

20.9-88 3 1 0.2 (0 - 0.3)

Genus_Veillonella 19.9-88 7 0 -0.1 (-0.2 - 0)

20.9-88 4 0 -0.17 (-0.29 - -0.04)
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10,000) in bidirectional MR analyses. In forward MR, the

family_ClostridialesvadinBB60 group [bIVW = -0.34 95% CI (-0.56

to -0.12); PFDR = 0.012] and genus_RuminococcaceaeUCG014

[bIVW = -0.46; 95% CI (-0.8 to -0.12); PFDR = 0.034] were

negatively correlated with PD-L1, through both sensitivity analysis

and leave-one-out analysis (Figure 3).
Species-level MR

Species_Parabacteroides_unclassified was positively related to

PD-L1 [bIVW = 0.2; 95% CI (0-0.4); PFDR = 0.029], and no causal

relationship was found between other genetically determined gut

microbes. Species_Parabacteroides_unclassified was identified

through sensitivity analysis but did not pass leave-one-out

analysis (Figure 4).
Discussion

In this work, we revealed associations between the relative

abundance of the gut microbiota and the concentration of PD-1/

PD-L1 by employing genetic variations as unconfounded proxies.

To examine more potential associations and verify the outcome’s

dependability, we utilized two alternative thresholds in two-sample

bidirectional Mendelian randomization. Moreover, we conducted

an expanding MR analysis based on the species-level dataset from

another GWAS to explore potential relationships.

Phylum_Firmicutes is the largest of the four bacterial phyla

(12), making up approximately 90% of the human genome. We

discovered that phylum_Firmicutes reduced the blood’s PD-L1 level

at the loose threshold. In the context of ICB therapy,
Frontiers in Immunology 05
phylum_Firmicutes was identified in a prior study as response-

associated (13). Our investigation supports this causal connection.

In our work, the family_Ruminococcaceae and family_

Clostridiales_Vadin_BB60 group, members of phylum_

Firmicutes, both led to decreased PD-L1 levels. A prior study

found that family_Ruminococcaceae increased SCFA production

(14), CD8 T-cell infiltration into the tumor microenvironment, and

effectiveness of anti-PD-L1 therapy against colon cancer in mice

(15). It exhibits beneficial effects in various races, malignancies, and

geographic areas and has received substantial clinical validation

[China; HCC (16);/America; melanoma (12);/America; melanoma

(10);]. SCFA production seems to activate T cells against malignant

cells and further decrease PD-L1. Famliy_Ruminococcaceae

inc lude s genus_Ruminococc aceae_UCG005 , g enus_

Ruminococcaceae_UCG014, and genus_Ruminococcus_

gnavus_group. Interestingly, they have varying effects on the PD-

L1 level. Although not depicted in the prior investigation,

genus_Ruminococcaceae_UCG014 has a detrimental effect on

PD-L1 and is confirmed at two dis t inct thresholds .

G e nu s _Rum i n o c o c c u s _ g n a v u s _ g r o u p a nd g e nu s _

Ruminococcaceae_UCG005 exhibited a trend of a positive

influence on PD-L1. The genus_Ruminococcus_gnavus group

includes iso-bile acid-producing organisms. The iso-bile acid

route detoxifies deoxycholic acid, causes DNA damage by the

formation of free radicals, and has been linked to multiple cancers

(17). It also favors the growth of the important genus_Bacteroides

(18). Bacteroides fragilis has a positive association with PD-L1

express ion and the PD-1 checkpoint pathway (19) .

Genus_Ruminococcaceae_UCG005 is abundant and deemed a

biomarker taxon in HCC patients with hepatitis B or C virus

infection (20) and lung adenocarcinoma patients (21).

Genus_Coprococcus_2 is a subspecies of phylum_Firmicutes, and
A B D E

F G IH J

C

FIGURE 3

The significant (PFDR <0.05) and robust results (Family_ClostridialesvadinBB60group and Genus_RuminococcaceaeUCG014) in forward MR analysis
with two different thresholds. Scatter plot of microbe-related SNP effects on PD-L1, with the slope of each line corresponding to the estimated MR
effect per method. Vertical and horizontal black lines around each point show the 95% confidence interval for each polymorphism exposure
association and polymorphism outcome association. Forest plot lists single and combined (IVW and MR egger) SNP MR-estimated effect sizes; the
effect estimates represent the b for PD-L1 per one-s.d. increase in mean microbes. The one-sided leave-one-out and symmetric funnel plots meant
that the results were stable without outliers. Family_Clostridiales_vadin_BB60_group: (A) Forest plot at the loose threshold. (B) MR scatter at the
loose threshold. (C) Leave one out at the loose threshold. (D) Funnel plot at the loose threshold. (E) MR scatter at the strict threshold.
Genus_Ruminococcaceae_UCG014: (F) Forest plot at the loose threshold. (G) MR scatter at the loose threshold. (H) Leave one out at the loose
threshold. (I) Funnel plot at the loose threshold. (J) MR scatter at the strict threshold.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1136169
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2023.1136169
a prior study found that it was enriched in a high-fat-induced liver

cancer model in male rats; it produces butyrate (14). SCFAs, such as

butyrate or propionate, impact intestinal immunological

homeostasis, affecting Tregs, gd T cells, and effector T cells and

participating in immunomodulatory and anti-inflammatory

properties (5). However, its use in cancer immunotherapy

remains contentious. Both positive and negative impacts are

possible (5). Intriguingly, our study also shows that the SCFA

producer may have a different effect on cancer, and these effects

require further research. Despite the lack of pertinent analysis of

family_Clostridiales_Vadin_BB60_group, two different thresholds

support it as a protective factor against PD-L1, making it a possible

target gut microbe for subsequent investigation. Genus_

Holdemanella is a member of the family Erysipelotrichaceae; it

produces SCFAs that, in humans, modulate intestinal immune

homeostasis (5). Considering that it also lowered the expression

of PD-1 in our study, it is possible that it affects PD-1 expression

and further prevents immune escape in cancer cells and against

cancer. Genus_Prevotella_9 is enriched in patients with advanced,

unresectable hepatocellular carcinoma, according to a study (22).

Curiously, another study revealed that genus_Prevotella_9 is

deficient in bladder cancer tissue (23). Since genus_Prevotella_9

promoted PD-1 in our study, it may have various effects on different

tumors, and its function requires further study. Studies on the

relevance of order_ Rhodospirillales and family_Rhodospirillaceae

to the human body are lacking, and additional investigation is

required to investigate their potential relationship with the human

immune system.
Frontiers in Immunology 06
Early research shows that genus_Parabacteroides in colorectal

cancer (CRC) (24) and early HCC versus cirrhosis (25) has the

potential to become a biomarker, and we found that PD-L1 has a

negative correlation with it. Genus_Odoribacter, a butyrate producer,

has been found at lower levels in patients with breast cancer and rectal

carcinoma (26), and it is essential in several related taxonomic models

of CRC (27). Bacteroidetes (phylum) includes genus_Odoribacter and

genus_Parabacteroides. Genus_Odoribacter is positively involved in

non-ribosomal peptide structures and negatively involved in the

metabol ism of phenyla lanine and cyanoamino acids.

Family_Porphyromonadaceae has been identified as a potential

biomarker for CRC recurrence and patient prognosis (28); case-

control study results showed that healthy controls had a higher

relative abundance of family_Porphyromonadaceae than primary

liver cancer patients (29), and combined analysis with our study

confirmed its potential as a biomarker in cancer. Family_

Peptococcaceae and genus_Terrisporobacter have been lacking in

studies of the human immune system, so it is possible that we found

microbes that can be applied as new biomarkers for PD-1/PD-L1

therapy or precancerous diagnosis.

In the species-level study, only species_Parabacteroides_

unclassified demonstrated significant species-level verification

results; it is possible that this is due to the lack of complete

related species-level GWAS data and the variability of different

region samples.

Overall, we demonstrated the potential causal relationships

between microbiomes and PD-1/PD-L1. We have not found any

similar research that has been published previously. This study
FIGURE 4

In the species-level bidirectional two-sample MR analysis, microbial features were prefixed with species(s). The selection of species-level microbes is
based on the significant result of genus-level microbes. The MR estimates and 95% CI values are shown in the plot. The point of the plot indicates
the P value of IVW, and red indicates significance (PFDR <0.05). The “+” and “-” in the legend indicate the direction of the estimate effect (beta).
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expands the possibility of antineoplastic therapy and immunotherapy.

We expanded the study to the species level, which enhanced the

comprehensiveness of this study. We used two different thresholds in

the MR analysis. First, the loose threshold widely used in the previous

study allowed more potential microbes to be analyzed. Its significant

result included many microbes considered as impact factors in a

relevant ICB therapy study, which improves the credibility of this

analysis. The strict threshold is approximated with the traditional MR

threshold setting. Combining its result with the result of loose

thresholds, we found two microbes that were never identified as

impact factors for ICB therapy in a prior study. The newly identified

microbiota will require further study. In reverse MR analysis, we

investigated several microbes that can potentially be biomarkers in

cancer therapy. Our study has a few limitations. First, while utilizing

the largest single-cohort multiethnic GWAS to date, the sample size

was quite limited and requires expansion, similar to prior research on

the heritability of the microbiome (7, 30). Traditional GWAS and MR

research frequently employ cohorts with hundreds of thousands of

people, thereby enhancing power and lowering false associations;

because of the low power and small sample sizes, many legitimate

signals were unlikely to reach statistical significance at the study-wide

level. Second, the GWAS we used to conduct MR combines many

races, although the majority of individuals were of European descent

(>72.3%). However, mixed races inevitably introduce bias into the

results. Third, the heterogeneity of the makeup of the gut microbiota

also results in a loss of strength. Similar to all research on the human

gut microbiota, the sample variation is substantial, so its effect on the

predicted heritability should not be overestimated.
Method

In our study, two-sample bidirectional MR analysis was

undertaken at two distinct thresholds to determine the causal

relationship between PD-1/PD-L1 and the gut microbiota. We
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utilized two distinct thresholds: one to explore the possibility of a

relation and the other to validate the precision of the test (Figure 5).
Data sources and methods

This study relied on publicly accessible summary-level data;

ethical approval was acquired for all original investigations.
Gut microbiota

Genetic variants of the gut microbiota were found in a large-scale

association study involving 24 cohorts (18,340 participants) (7).

Populations from Canada, the USA, Israel, South Korea, Denmark,

Germany, the Netherlands, Belgium, Sweden, the UK, Finland, and

Denmark were included in the cohorts. Twenty cohorts had samples of

single ancestry, and most subjects (16 cohorts, N = 13,266) were of

European ancestry. In 17 (n = 13,804) of the 24 cohorts, the

participants’ mean ages ranged between 50 and 62. The microbiome

quantitative trait locus (mbQTL) mapping study for each cohort only

included taxa present in >10% of the samples, totaling 211 taxa (131

genera, 35 families, 20 orders, 16 classes, and 9 phyla). The study of

binary trait locus mapping (mbQTL) covered the taxa that comprised

10%–90% of the included samples. There were 196 taxa included in our

analysis (excluding 15 taxa that cannot be definitively classified and

named) Strain Categorization, the microbiota that we take into analysis

(phylum-level to genus-level) listed in Supplemental Figure 5.

For species-level analysis, we used another GWAS dataset that

included 7,738 Dutch Microbiome Project (DMP) participants

whose microbiota data were quality-controlled with LifeLines

(30). A total of 58.1% of its members were women, and their ages

ranged from 8 to 84 years (mean, 48.5 years). Data from 15

subordinate species taxa, whose genera were confirmed as

significant (IVWFDR <0.05) in the MiBioGen GWAS, were

included in our study.
FIGURE 5

When sample 1(exposure) and sample 2(outcome) are used for causal estimates in MR inference, three assumptions must be satisfied (11). ①
Relevance assumption: the genetic variations are highly related to the exposure, ② independence assumption: the genetic variants are not associated
with any putative confounder of the association between exposure and result, and ③ exclusion restriction: the variants do not alter the outcome
independently of exposure.
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PD-1 and PD-L1

We identified genetic predictors of cis-protein quantitative

trait loci [cis-pQTLs] of PD-L1 based on summary statistics

from the INTERVAL study, which recruited 3,301 healthy

participants of European descent with an average age of 44

years and 48.9% women (31). Concerning trans-pQTLs, the

functional genetic variations influence protein abundance with

little or no attenuated effect on messenger RNA or ribosome

levels (31, 32).
Selection of the instrumental
genetic factors

In the MR investigation of the link between the microbiota and

PD1/PD-1, two thresholds were used to choose the IVs. For MR, the

genetic variations that were representative of the microbiota trait

were required to be sufficient; therefore, we decided on a locus-wide

significance threshold P = 1 × 10-5 (7, 30), which was commonly

utilized in prior microbe MR analyses, clustered for independence

using PLINK in the two-sample MR tool (33) and the 1000

Genomes European data as the reference panel, using a looser

cutoff of R2 < 0.01 and a window of 10,000-kb clumping. Another

set of SNPs was fewer than the generally used threshold of 5 × 10-6

for emphasizing “suggestive” genetic variants (34) and clustering

under the tighter cutoff of R2 < 0.001 and a 10,000-kb window. We

supplemented the effect of allele frequency prior to clumping using

data from the 3DSNP database (35). To avoid any confounding, we

queried each SNP in the PhenoScanner database (36) for any past

associations (P = 5 × 10-8) with probable confounders (that is,

cancer and tumors).

In the MR investigation of the association between PD1/PD-1

and the microbiota, we selected pQTLs associated with genetically

predicted PD-L1 or PD-1 from the INTERVAL study of the log-

transformed relative fluorescence unit [log(RFU)] using the same

threshold as described before. To limit random variability, only

annotated pQTLs [i.e., those with proper identification and

description (37)] from the RegulomeDB database were included.

We selected cis-pQTLs by eliminating pQTLs that express

quantitative trait loci (eQTLs) (32) from the RegulomeDB and

VannoPortal databases (38, 39).

The effects of SNPs on exposure and outcome were then

harmonized to ensure that the b values were signed for the

identical alleles. After harmonizing the data, we eliminated SNPs

with intermediate allele frequencies (>0.42). Radial-MR (40)and

MR-PRSSO (41)were also performed to identify IVs with the best

contribution to heterogeneity (alpha = 0.05/nSNP) and hence

identify probable outliers. These outliers were removed from the

IVs. Radial-MR was also utilized to determine whether the

independence and exclusion restriction assumptions were

violated. We eliminated the trait combination from the analysis
Frontiers in Immunology 08
for IVs < 3, and the MR analysis was conducted using the

remaining SNPs.
Testing instrument robustness and
statistical validity

In the initial proteomic GWAS, it was found that the sentinel

cis-pQTL explained 2% of the variation in circulating programmed

death-1-ligand 2 levels (31). Using the web MR power calculation

tool (42)(https://sb452.shinyapps.io/power/), when the causal effect

achieves 0.345, there is 80% power if all detected cis-pQTLs explain

2% of the variation in PD-L1. The individual SNP effect size was

estimated as the explainable variance with the formula [2 f(1 − f)b2],
where f is the allele frequency and b is the regression coefficient

(43). The formula [F statistic = beta2/se2] was used to calculate the

F statistic (44). If the F statistic was ≥ 10, it implied a low probability

of instrument bias in MR analysis (45).
Statistical analysis

Cochran’s Q statistic was employed to assess the heterogeneity

of the IVW meta-analysis; P < 0.10 indicates significant

heterogeneity in the SNP effect estimates. When all IVs are valid

instruments, the IVW method provides the most accurate estimate

of the causal effect. However, because there are so few variants, the

heterogeneity between the variant-specific estimates cannot be

reliably estimated (11). Therefore, we conducted both random-

effects IVW and fixed-effects IVW. When SNP >4 or without

heterogeneity, we used random-effects IVW as the primary

method; otherwise, we used fixed-effects IVW. The IVW method

aggregated the Wald ratio estimates of each SNP into a single causal

estimate for each risk factor, with each estimate derived by dividing

the SNP–outcome association by the SNP–exposure association

(46). The results of the IVW test with a P threshold corrected by

FDR (PFDR) <0.05 are classified as significant. Considering that the

FDR corrected by the number of microbes would be too stringent,

we corrected the P threshold by the number of MR analysis

methods. Since the IVW estimates can be biased if pleiotropic IVs

are introduced, a series of sensitivity analyses were conducted to

account for pleiotropy in the causal estimates. We examined the

probable presence of horizontal pleiotropy using MR-Egger

regression based on its intercept term, where the divergence from

zero (P < 0.05) was interpreted as evidence of the presence of

directional pleiotropic bias (47). In the presence of horizontal

pleiotropy, the slope coefficient from MR-Egger regression

provides a reliable estimate of the causal influence. As sensitivity

analyses, we also conducted MR-Egger, weighted median, and

weighted mode analyses based on varying hypotheses. Briefly,

MR-Egger generally adheres to the Instrument Strength

Independent of Direct Effect (InSIDE) and negligible

measurement error (NOME) assumptions (47, 48). The weighted
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median method assumes that at least half of the instruments are

valid (the weighted median method assumes the causal effect from

the median of the weighted empirical density function of individual

SNP effect estimates and permits up to 50% of information from

variants to violate MR assumptions in the presence of horizontal

pleiotropy) (49). The mode method is assumed to apply to the vast

majority of genetic instruments (clusters the SNPs based on the

similarity of causal effects and estimates the causal effect on the basis

of the cluster with the most significant number of SNPs, thus

providing an unbiased estimate if the SNPs contributing to the

largest cluster are valid) (50). Leave-one-out analysis was performed

to determine the impact of individual variations on the

observed connections.
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