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Introduction: Millions of deaths worldwide are a result of sepsis (viral and

bacterial) and septic shock syndromes which originate from microbial

infections and cause a dysregulated host immune response. These diseases

share both clinical and immunological patterns that involve a plethora of

biomarkers that can be quantified and used to explain the severity level of the

disease. Therefore, we hypothesize that the severity of sepsis and septic shock in

patients is a function of the concentration of biomarkers of patients.

Methods: In our work, we quantified data from 30 biomarkers with direct

immune function. We used distinct Feature Selection algorithms to isolate

biomarkers to be fed into machine learning algorithms, whose mapping of the

decision process would allow us to propose an early diagnostic tool.

Results: We isolated two biomarkers, i.e., Programmed Death Ligand-1 and

Myeloperoxidase, that were flagged by the interpretation of an Artificial Neural

Network. The upregulation of both biomarkers was indicated as contributing to

increase the severity level in sepsis (viral and bacterial induced) and septic shock patients.

Discussion: In conclusion, we built a function considering biomarker

concentrations to explain severity among sepsis, sepsis COVID, and septic shock

patients. The rules of this function include biomarkers with known medical,

biological, and immunological activity, favoring the development of an early

diagnosis system based in knowledge extracted from artificial intelligence.

KEYWORDS

biomarkers, data mining, pattern recocgnition, artificial intelligence, COVID - 19, sepsis,
septic shock
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1 Introduction

Sepsis and septic shock are life-threatening syndromes that are

associated with dysregulation in the host immune responses to

infection (1). They can lead to organ failure and consequently death

(2). As an example, in 2017, more than 11 million deaths associated

with sepsis were reported worldwide (3), which represented a

mortality rate of approximately 22%. Moreover, a considerable

share of viral sepsis patients (i.e., sepsis COVID) meet the

definition for sepsis-3 (bacteria-induced sepsis) (4). A more

severe manifestation of sepsis is septic shock, in which patients

meet all sepsis-3 criteria and require the use of vasopressor (1).

The fact that sepsis (of viral and bacterial sources) and its severe

subset (i.e., septic shock) meet the criteria for sepsis-3 definition allows

the employment of biomarkers as an early diagnostic tool (5). We

selected a consortium composed of the following 30 biomarkers that are

responsible for reflecting signals of specific moments during an immune

response towards a pathogen that causes sepsis and/or septic shock:

Angiopoietin 2 (ANG2), C-C Chemokine Ligand 2 (CCL2), C-X-C

Motif Chemokine Ligand 10 (CXCL10), D-dimer, E-selectin (E-SEL),

ferritin, Granulocyte Colony-Stimulating Factor (G-CSF), Granulocyte

Macrophage Colony-Stimulating Factor (GM-CSF), Granzyme B

(GRANB), Intercellular Adhesion Molecule 1 (ICAM-1), Interferon ɣ
(IFNɣ), Interleukin 1 b (IL1b), Interleukin 1 receptor antagonist (IL1ra),
Interleukin 2 (IL2), Interleukin 4 (IL4), Interleukin 6 (IL6), Interleukin 7

(IL7), Interleukin 10 (IL10), Interleukin 12 (IL12), Interleukin 15 (IL15),

Interleukin 17 (IL17a), Lipocalin-2 (LIPO), Myeloperoxidase (MPO),

Programmed Death-Ligand 1 (PDL1), Soluble glycoprotein 130

(sGP130), Soluble interleukin 6 receptor (sIL6R), Surfactant Protein

(SPD), Tumor Necrosis Factor-alpha (TNF-ɑ), Vascular Cell Adhesion
Molecule 1 (VCAM), and Vascular Endothelial Growth Factor C

(VEGFC). Further details on the impact of the dysregulation of these

biomarkers are shown in Supplementary Material S1.

The inflammatory pathway of the diseases explored here leaves

traces behind that might be employed in profiling the severity of

the diseases themselves (6, 7). Many of these traces are

depicted through the analysis of biomarkers (i.e., cytokines and

chemokines) associated with the host immune system. For example,

VCAM-1, ICAM-1, and VEGFC are recruited when there is damage

to vascular tissue (8). Moreover, CCL2 orchestrates the recruitment

of immune cells to sites of inflammation (9). In addition, PDL1

functions as a suppressor of the adaptive immune system as it binds

to the Programmed Cell Death Protein 1 (PD1) (10). Finally, MPO

is mainly expressed in neutrophil granulocytes, granting

antipathogenic activity to the immune cells expressing them (11).

Each biomarker has an individual and grouped function in

inflammatory pathways (12); therefore, a systematic analysis

using data mining to determine the key items involved in sepsis/

septic shock syndrome is appreciated (13, 14).

It has been stated (15) that a dataset comprised of too many

dimensions (i.e., biomarkers) might slow, mask, and reduce the

efficiency of machine learning approaches. Therefore, the selection

of the most important features of a dataset is an essential step

within data pre-processing frameworks. Moreover, Explainable

Artificial Intelligence (XAI) has arisen as a manner to promote
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comprehension for the decision pattern employed by machine

learning approaches, especially with the solid ethical standards

required by the medical sciences. Therefore, decision-making

processes benefit of a mathematically evidenced procedure (16).

In this paper, we hypothesize that the severity of sepsis

(bacterial and viral) and septic shock patients is a function of the

concentration of biomarkers. For that, we aim to use feature

selection algorithms that will isolate biomarkers as candidates for

distinguishing the severity of multi-organ failure in sepsis, sepsis

COVID, and septic shock patients. With subsets of the selected

biomarkers, we aim to evaluate these subsets through interpretable

Artificial Neural Networks, so the biomarker concentration that

defines the severity of patients with sepsis, sepsis COVID, and septic

shock can be used as an early diagnostic tool.
2 Materials and methods

2.1 Study design

All the samples used in this study were obtained from a critically ill

cohort of Intensive Care Unit (ICU) sepsis, sepsis COVID, and septic

shock patients at St James’s Hospital in Dublin, Ireland. Institutional

Research Board approval was granted by the SJH/TUH Joint Research

Ethics Committee and The Health Research Consent Declaration

Committee (HRCDC) under the register number REC: 2020-05 List

17 and project ID 0428. Biological samples, clinical findings, and

laboratory data were collected at days 0, 3, and 14 after presentation

of severe infection to monitor the progression and sepsis-induced

immune-paralysis state at different stages of the disease. Sample

collection took place from September 2020 to March 2021.

Sequential Organ Failure Assessment (SOFA) score was obtained on

admission to the ICU and at the matching collection timepoints for

samples. The clinical variables for white blood cell (WBC) count (worst

record of day 0), neutrophils (day 0), positive culture, and up to five

comorbidities were attributed to each patient.
2.2 Biomarker immunoassays

The concentration of biomarkers with potential altered

functions in sepsis, sepsis COVID, and septic shock (10) patients

was quantified in the Laboratory of Emerging Infectious Diseases at

Dalhousie University in Halifax, Nova Scotia, Canada. The

following biomarkers were quantified through the Ella SimplePlex

Immunoassay™ (San Jose, California): ICAM-1, LIPO, MPO,

VCAM-1, D-Dimer, E-SEL, Ferritin, SPD, PDL1, G-CSF, IL-1b,

VEGFC, ANG2, CXCL10, GM-CSF), Interleukin 10 (IL-10, IL-17A,

IL-1ra, IL-6, IL-7, CCL2, GRANB, IFNg, IL-12, IL-15, IL-2, IL-4,

and TNF-a. The biomarkers were selected due to their potential as

characterizing the patients’ inflammation (12).

The plasma concentration of both sIL6R and sGP130 was

evaluated and quantified with Enzyme-Linked Immunosorbent

Assay (ELISA) kits (BMS214TEN for sIL-6R and EHIL6STX10 for

sGP130; ThermoFisher Scientific). These biomarkers were selected due
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to their crucial role in the IL-6 inflammatory pathway (17). Finally,

each sample was assayed and quantified following the kit

manufacturer’s instructions. All samples were obtained from patients

already admitted to the intensive care unit (ICU). We included the

concentrations for all biomarkers at day zero of ICU in Supplementary

Material S2. We provide the dataset in Supplementary Material S2.
2.3 Binarization of SOFA score into
different degrees of multi-organ failure

Each patient in our cohort was assigned a Sequential Organ

Failure Assessment (SOFA) score. For classification purposes, we

binarized the SOFA score into two groups, i.e., High Degree Multi-

Organ Failure (HDMOF) and Low Degree Multi-Organ Failure

(LDMOF). We employed a cut-off value of 8, as reported by (18) to

binarize the groups; thus the HDMOF group is characterized by a

SOFA score equal to or higher than 8 while the LDMOF group has a

SOFA score less than 8. In their paper, upon binarizing patients

with a SOFA score cut of (>=8, and<8) Martin-Loeches et al. (2017)

(18) found different mortality rates and antibodies levels that well

explained the severity of sepsis patients.
2.4 Statistical analyses

All statistical procedures were performed using R. We used the

Shapiro-Wilk test to find data distribution. To compare averages

between groups, the Kruskal-Wallis test, t test, and ANOVA test

were used through the Rstatix package (version 0.7.0). The Kaplan-

Meier method under the survival R package (version 3.3-1) was used

for calculating survival probabilities for each group (i.e., sepsis, sepsis

COVID, and septic shock). The level of significance was set to 0.05.
2.5 Feature selection

To systematically choose biomarkers that are associated with

high and low MOF, a Feature Selection (FS) step was applied, and

the outcomes were benchmarked. The FS algorithms chosen for this

study are representatives of three distinct classes of these methods.

For a wrapper algorithm, we selected Boruta and applied the

parameters specified in (19); the filter algorithm we chose is

Information Gain (IG); and a combination of both FS classes,

which results in an embedded algorithm has as its representative

the Lasso Regression (LR) under the parameters specified in (20).

Both Boruta and LR were implemented in R through the packages

Boruta (version 7.0.0) and Glmnet (version 4.1-4), respectively. IG

was implemented in Python using the class mutual_info_classif

found in the sklearn.feature_selection library (version 1.1.0). Both

the R and Python scripts that performed the feature selection

process are available at https://github.com/gustavsganzerla/covid-

biomarker/blob/main/XAI/feature_selection.R and https://

github.com/gustavsganzerla/covid-biomarker/blob/main/XAI/

information_gain.py, respectively.
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2.6 Classification of severity with
artificial intelligence

We selected the algorithms Support Vector Machines (SVM),

Random Forest (RF), Classification and Regression Trees (CART), K-

Nearest Neighbors (KNN), and deep learning Artificial Neural

Networks (ANN) to classify patients’ severity with immune

biomarkers as input. For that, we performed a 10-fold cross-

validation process on the input data. The test dataset encompassed

20% of the whole data. The first five classification algorithms were

implemented in R through the Caret package (version 6.0-9) and

their code is available at https://github.com/gustavsganzerla/covid-

biomarker/blob/main/XAI/classific.R.

The ANN approach was developed in Python using the

Tensorflow library (version 2.8.0). A sigmoid function was used

in the output layer to return a probability of a given patient having

MOF or not. The outcome was binarized through a confusion

matrix built under the default 0.5 decision threshold applied in the

outcome of the output neuron. The classes obtained were

categorized as follows: True Positives (TPs), True Negatives

(TNs), False Positive (FPs), and False Negatives (FNs). The ANN

performance was evaluated in terms of accuracy, AUC, FPs, FNs,

TPs, TNs, all of which can be found in the module tf.keras.metrics.

The architecture of the ANN has input layers that vary according to

the set of biomarkers entered. Next, the model has two fully

connected layers with 10 hidden neurons each. We also increased

the epochs of the ANN until the error (binary cross entropy) kept

dropping. The scripts containing the ANN simulation are available

at https://github.com/gustavsganzerla/covid-biomarker/blob/main/

XAI/SHAP-ANN.
2.7 Explanation of the classification model

We used Shapley Additive Explanations (SHAP) (21) to provide

interpretability to the successful classification models. SHAP will

assign a score (either positive or negative) for each input variable in

assigning a label to an observation. If the SHAP score of a given

feature is positive, it is positively correlated with the assigning of a

label; otherwise, it is negatively correlated with the target label.

The SHAP approach is defined as a solid theoretical foundation

that may be used to explain any predictive model locally and

globally. From this, we employed the kernel.explainer method in

the SHAP module. As our classifier is not a tree-based algorithm,

the Kernel SHAP is applied. Kernel SHAP will measure the

contribution of each input feature to the outcome of the model, it

consists of five steps:
I. Sample all possible coalitions (i.e., combination of input

features) in the dataset: Z
0
K ∈ f0, 1gM ,  K   ∈ f1,…,  Kg.

(0 = feature absent and 1 = feature present in the

coalition).

II. The prediction of each Z’K is obtained with the

application of Z’K to the predictive model.

III. The weight of each Z’K is computed by the SHAP kernel.
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Fron
IV. The model is fitted.

V. Return the SHAP coefficients fi.
In conclusion, A flowchart describing the data analytical

process employed in this study is available in Figure 1.
3 Results

3.1 Clinical characteristics and
survival analysis

We provide Table 1 to clinically depict the population that

composes the cohort (n=112). We identify that most patients in the

cohort are male (60%) with an average age of 64.7 years old. The

average ICU stay was 38.3 days. Finally, 63.7% of all patients

survived while the lowest reported mortality was in sepsis (30%)

patients followed by sepsis COVID (32.4%) patients and septic

shock patients (38%). We also report that the patients with septic

shock have a higher count of neutrophils. Differences in the

neutrophil counts were found to be associated with the severity of

the disease; i.e., in the severe form of sepsis, the leukocytes count

increased 1.62-fold and the increase in sepsis patients was 1.41-fold,

while the leukocytes count remained more stable in septic shock

(1.005-fold) patients. Next, we report the differential WBC count in

sepsis, sepsis COVID, and septic shock (1.44, 1.15, and 1.08,

respectively). Patients were assessed according to positive

microbiological culture. We report that the COVID patients

showed a smaller proportion of patients with viral and bacterial

co-infection, i.e., superinfection (9 patients, 7 in LDMOF and 2 in

HDMOF). The positive culture results for patients without COVID

was found stable across both groups in sepsis and septic shock.

Finally, we found the most common comorbidities to be

hypertension, affecting 45% of the entire population of the cohort,

followed by obesity (18%), and chronic obstructive pulmonary

disease (15%). At the time of the study (i.e., September 2020 to

March 2021), the circulating COVID-19 variant in the British Isles

was B.1.1.7.

We also employed a survival analysis by days 28 and 90

(Figure 2) to assess the mortality probability of sepsis, septic
tiers in Immunology 04
shock, and sepsis COVID patients. First, in Figure 2A, up to 28

days, the three groups of patients did not present significant

differences in their survival probability (p=0.051); however, the

low p value indicates a trend among the three groups’ survivability

rate, placing septic shock as the highest mortality rate after 28 days.

When a 90-days analysis was considered (Figure 2B), the survival

rate among the patients showed statistical significance (p = 0.044),

where the septic shock group presented the lowest survival

probability and sepsis the highest.

Finally, to validate the binarization we performed, described in

(18), we selected clinical parameters in our data that each,

individually, represent the failure of a single organ. By following a

logical expression that considers vasopressor as an exclusive

(conjunction, AND) variable and platelets, bilirubin, creatinine,

and P/F ratio as inclusive (disjunction, OR), our binarization

resulted in an AUROC score of 0.91 followed by a Youden index

of 0.71 (Supplementary Material S3).
3.2 Outcome of feature
selection algorithms

To select a subset of biomarkers that explain the target variables

(i.e., LDMOF and HDMOF), we performed a feature selection process.

We chose three algorithms of distinct classes, namely Boruta, LR, and

IG. Each application returned a different subset of biomarkers with

varied lengths. We show in Figure 3, through panels A, B, and C, the

outcomes of the Boruta, LR, and IG algorithms, respectively. The

subsets of biomarkers obtained are as follows: i) PDL1, IL15, IL6,

VCAM, IL1ra, IL1b, IL10, and CCL2 in Boruta; ii) MPO, VCAM, IL1b,

VEGFC, IL17a, GMCSF, ANG2, CCL2, IL12, GRANB, and SGP130 in

LR; and iii) PDL1, GRANB, IL15, ICAM, and IL1ra in IG.
3.3 Assessing the classification capacity
of groups of biomarkers with
different algorithms

We assessed the classification feasibility with five different

machine learning algorithms, i.e., SVM, RF, CART, KNN, and
FIGURE 1

Overview of the data analysis procedure employed in this study. In Figure 1, we show the three stages of the data analytical process employed in this
study. First, 30 biomarkers from sepsis, sepsis COVID, and septic shock patients were obtained. Secondly, to reduce the number of variables, three
algorithms are applied in the Feature Selection stage, i.e., Boruta, Lasso Regression, and Information Gain. The full outcome of the three algorithms
is classified into an Artificial Neural Network (ANN). A second filter is applied to promote more reduction to the data using Exhaustive Search, whose
outcomes are yet fed into ANNs in to compare their performance with the full outcomes of Boruta, Lasso Regression, and Information Gain. After
running multiple ANNs, the prediction model is evaluated with SHAP.
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ANN. We fed the classification models with the input variables

identified by each one of our three FS algorithms (Table 2). From

that, we identified that the ANNs presented the most satisfactory

predictability as its accuracy score outperformed the other methods.

The results displayed in Figure 4 indicate the detailed

performance of the ANN models. To identify the best performing

subset of biomarkers, we selected the model that presented the best

error drop rate after 100 epochs, area under the curve (AUC),
Frontiers in Immunology 05
accuracy, precision, specificity, and recall. Next, the selected model

was trained and tested with the subsets of biomarkers obtained in the

FS stage. From that, the IG algorithm did not produce satisfactory

results due to the imbalance of its prediction capacity, in which a low

recall value was found (67.1%), indicating that it identified too many

FNs in proportion of TPs, which is explained by the high error drop

rate of the ANNmodel. Conversely, the ANNs trained/tested with the

outcomes of LR and Boruta yielded satisfactory results, which is
A B

FIGURE 2

Kaplan-Meier survival rate. Kaplan-Meier survival probabilities were identified. In (A), we show the Kaplan-Meier survival rate of sepsis, sepsis COVID,
and septic shock patients after 28 days. Firstly, the data was identified as non-parametric (Shapiro-Wilk p = 1.377e-08) and the Kruskal-Wallis test
was chosen to compare the averages (p = 0.051). In (B), we show the Kaplan-Meier curve for sepsis, sepsis COVID, and septic shock after 90 days,
the data also follows a non-parametric distribution (Shapiro-Wilk = 6.036e-11) and the same Kruskal-Wallis test was employed to compare the
averages (p = 0.044).
TABLE 1 Clinical characteristics of the cohort.

Sepsis Sepsis COVID Septic shock All patients

LDMOF HDMOF LDMOF HDMOF LDMOF HDMOF

n (%) 21 9 28 22 18 14 112

Age (mean ± standard deviation) 58.2 ± 10 65.2 ± 15 62.4 ± 10 68.3 ± 10 63 ± 15 69.1 ± 16 64.7 ± 12.8

Female (n) 7 4 12 10 8 3 44

Male (n) 11 8 11 17 8 13 68

ICU stay (days, mean) 27 25 25 53 16 19 38.3

Survived [n (%)] 18 (85%) 3 (33.3%) 21 (75%) 10 (45.4%) 13 (72.2%) 6 (42.8%) 71 (63.3%)

SOFA score (mean) 4.5 10.4 4.6 10.2 2.9 12 7.6

White blood cells 13.1 18.8 11.7 13.5 23 24.9 16.5

Neutrophil count (mean) 9.6 15.6 9 12.7 18.6 18.7 13.8

Lymphocyte count (mean) 1.2 0.9 0.8 0.8 2.1 2.7 1.3

Positive culture (%)1 66.6% 66.6% 27% 9% 66.6% 57% 49%

Coinfection (sars-cov-2 + bacteria) (%) – – 21% 36% – – –

Comorbidities (n [%])

Hypertension 9 (43%) 2 (22%) 8 (28.5%) 12 (54.5%) 7 (39%) 3 (21.5%) 39 (35%)

Cancer 2 (9.5%) 1 (11%) 1 (3.5%) 2 (9%) 3 (17%) 6 (43%) 15 (13.5%)

Asthma 1 (5%) 0 (0%) 6 (21.5%) 4 (18%) 1 (5.5%) 2 (14%) 14 (12.5%)

Diabetes mellitus 1 (5%) 0 (0%) 4 (14%) 6 (27%) 0 (0%) 4 (28.5%) 15 (13.5%)

Obesity 2 (9.5%) 2 (22%) 8 (28.5%) 3 (13.5%) 5 (27.5%) 0 (0%) 20 (18%)

Chronic obstructive pulmonary disease 5 (24%) 3 (33%) 5 (18%) 2 (9%) 0 (0%) 2 (14%) 17 (15%)
front
1Patients labeled with positive culture indicate bacteria present in their samples. The most common microorganisms are Staphylococcus epidermidis (n=11), Pseudomonas aeruginosa (n=7),
Enterococcus faecalis (n=6), Escherichia coli (n=5), Klebsiella pneumoniae (n=2). The full description of the microbiology of each patient is included in Supplementary Material S2. "-" means that
the information was not available.
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observed by the proximity of AUC, accuracy, and error drop rate

(Figures 4A–C) as well as the balanced metrics provided for the

models in Figure 5D. Therefore, ANNs successfully distinguished the

severity of patients with the consortium of input biomarkers: i) PDL1,

IL15, IL6, VCAM, IL1ra, IL10, IL1b, IL4, and ii) MPO, VCAM, IL1b,

VEGFC, IL17a, GMCSF, ANG2, CCL2, IL12, GRANB, and SGP130.

3.4 Model interpretation

To interpret the decision pattern of each ANN model, a SHAP

approach was applied to the training dataset. Since the ANN trained/

tested with the biomarkers obtained by the Information Gain approach

did not produce satisfactory classification metrics, we opted not to

interpret this erroneous classification model. For both Boruta and

Lasso regression, we analyzed the SHAP value for each input

biomarker. We targeted the LDMOF class out of our train dataset

and checked the contribution of each biomarker in predicting the class.
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First, in Figures 5A, B, we show that both PDL1 and MPO were the

biomarkers that mostly contributed to predictions in their models.

Next, in Figures 5C, D, we demonstrate the concentration of each

biomarker in assigning the LDMOF label for each patient. From that,

we see that there is a clear division between patients with high/low

concentrations of input biomarkers (blue and red dots, representing

each patient of the train set) getting negative and positive SHAP values,

which directly affects the label assignment. To provide individual

explanations for each biomarker, we targeted the ones that are

positively correlated with LDMOF (i.e., VCAM, IL1ra, and IL4) and

the biomarkers that are negatively correlated with HDMOF (i.e., PDL1,

MPO, IL17a, and VEGFC). The remaining biomarkers did not have a

clear separation between our target variables. Additionally, our two

ANN models did not produce the same results regarding IL1b since it

had different behaviors in each model. Therefore, the XAI approach of

our tool enabled us to locate biomarkers with pro- and anti-

inflammatory activities.
TABLE 2 Benchmarking different classification algorithms.

Boruta (%) Lasso Regression (%) Information Gain (%)

CART 58 57.6 64.66

KNN 58.33 58 56.66

SVM 57.33 58 58.33

RF 63.66 59.33 64.66

ANN 96 96.2 78.3
B

C

A

FIGURE 3

Biomarker selection using three feature selection algorithms. (A) indicates the feature selection process using the Boruta algorithm. The first set of
obtained variables was submitted to a tentative fix method to deliver a more reliable subset. In the plot, the columns shown in green are the ones
confirmed by the algorithm to be statistically significant and have higher importance in describing the data’s label. (B) shows the results obtained by
the feature selection using Lasso Regression. The x-axis of the figure indicates the log of lambda. Since Lasso Regression might be used as a
classification model, the y-axis shows the AUC when including the number of variables shown at the top of the plot. The table below shows the
variables stored in the lasso$lambda.min object, which corresponds to the variables with the best lambda values. The more distant a value is from
zero, the more relevant it is for the predictor once that Lasso Regression sets the lambda = 0 to unimportant variables. (C) conveys the information
gain derived from dataset entropy reduction achieved by the Information Gain algorithm. The vertical dashed line represents a threshold that
considered the five most impactful biomarkers.
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3.5 Conserved programmed death Ligand-
1 and myeloperoxidase signals across
patients with distinct manifestations of
organ failure syndromes

We selected the two biomarkers flagged by the ANN (i.e., MPO

and PDL1) to look for statistical differences between biomarker

concentration and i) the three diseases of our cohort (sepsis, septic

shock, and sepsis COVID-19) and ii) the two severity levels our
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binarization considered (LDMOF and HDMOF) (Figure 6).

Statistical significance (p = 0.007) was found only in the

distinction of the MPO concentration among HDMOF and

LDMOF patients (Figure 6A), while the severity groups could not

be statistically explained in terms of their PDL1 concentration

(Figure 6B). We only found statistical difference (p = 0.045) in

using MPO as a distinguisher of sepsis and sepsis COVID

(Figure 6C), while the PDL1 concentration could not statistically

differentiate sepsis, sepsis COVID, and septic shock (Figure 6D).
A

B D

C

FIGURE 5

Decision pattern of ANNs classifying patients’ severity with different input biomarkers. The importance of each input biomarker determined by SHAP
is displayed in (A, B) for the ANN derived of Boruta and Lasso Regression, respectively. In (C, D) we track the decision of two ANN models in
classifying patients. For that, each biomarker is included in the y axis; each patient is represented by a dot in the plot, which has a high or low value
corresponding to the biomarker concentration. Finally, the longitudinal location of the dots in the x axis indicates the impact in the SHAP value.
Positive SHAP values are used to explain our target class, i.e., LDMOF while negative SHAP values represent the opposite class (i.e., HDMOF).
A B

D

C

FIGURE 4

ANN classification performance. Three ANN models fed with different input biomarkers had their classification performance assessed over 100
learning epochs (Boruta in green, Lasso regression in orange, and information gain in blue). In (A), we compare the area under the curve of the three
models; in (B) we show the accuracy of each model; and in (C) we show the error drop rate (represented by binary cross entropy). Finally, in (D), we
show at the 100th epoch the accuracy, precision, recall, and specificity of each model.
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4 Discussion

In our study, we could explain the severity of sepsis, sepsis

COVID, and septic shock patients as a function of an unbalanced

concentration of biomarkers. The input parameters of our function

are subsets of biomarkers that explain a dysregulated host immune

response. Moreover, we could isolate both MPO and PDL1 as the

key contributors to the function.

The output parameters of our function are high and low degree

of multi-organ failure (i.e., severity) of subgroups of patients that all

meet sepsis-3 criteria, clinically placing the patients into a wider

group, converging with past evidence (4). Our findings allowed us

to immunologically place the patients from different disease models

together as we failed to find major statistical significances in the

concentration of PDL1 and MPO (Figures 6C, D) that distinguish

sepsis, sepsis COVID, and septic shock all together. The only

differences we could observe were in the MPO concentration

between sepsis COVID and sepsis patients, and we argue that this

is a result of the generally higher neutrophil count in bacterial

induced sepsis (22). Finally, the SOFA score-based binarization we

achieved is on par with results previously reported (18).

Next we showed that the WBC count increased with severity.

Neutrophils, the most abundant WBC, were higher in the severe

manifestations of the diseases we assessed. Moreover, the WBC and

neutrophil count was lower in COVID sepsis, matching previous

references of neutrophils being one of the most responsive cells

toward bacterial infection (22). We argue that the lower occurrence

of bacterial infection found in COVID (i.e., superinfection) patients

contributed to their lower count of WBC and neutrophils.
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Nonetheless, neutrophils remained an important immune cell to

express cytokines, which might explain their response toward

infection. Furthermore, no records of comorbidities influencing

severity were found, except from cancer; we found the proportion of

patients with cancer was higher in the severe form of the three

disease models we assayed. The two key biomarkers we found (i.e.,

MPO and PDL1) are parts of important pathways in cancer

immunotherapies (23) providing an opportunity for future studies

of data science approaches for biomarkers involved in cancer.

Statistically, no significant differences were found that

distinguished our patients based on their severity (Figures 6A, B).

It was previously reported that when statistics do not reach a

satisfactory classification performance, Machine Learning (ML)

might be a valid approach (24). We tried different ML approaches

to classify our data. From five algorithms tested, only ANNs yielded

a satisfactory classification. In fact, the robustness of this method

was previously reported (24) as a solid way to find patterns in

tabular data, among others. Additionally, the appropriate selection

of the input variables is a key process in obtaining satisfactory

results (25). In many cases, classification and regression models

derived from lower-dimensional datasets benefit the downstream

decision-making process (26, 27). We further address this

discussion by linking the appropriate selection of biomarkers with

easily interpretable results in an information curation step. In this

study, we were able to reduce a total of 30 biomarkers using three FS

algorithms into subsets that conveyed satisfactory classification

results in two instances. The three algorithms we selected belong

to diverse classes of FS methods. In fact, they all have successfully

been applied in reducing the complexity of ML inputs (20, 28–32)
A B

DC

FIGURE 6

Statistical tests employed for PDL1 and MPO as characterizers of severity and disease model. Statistical significance tests comparing the averages of
different groups of patients. In (A, B), we show the mean comparison of MPO and PDL1 (respectively) in distinguishing each one of the target labels
(i.e., HDMOF and LDMOF). In (C, D), we employ the mean concentration MPO and PDL1 (respectively) in distinguishing sepsis, sepsis COVID, and
septic shock.
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without creating synthetic datasets. The results we obtained

highlight the reduced complexity in employing data-

preprocessing (DP) techniques. In fact, DP accounts for most of

the workload involved in ML applications (33). We link the lack of

success of the information gain algorithm in producing satisfactory

predictability to the fact that this algorithm will only look for the

association between input variables with a label (i.e., biomarkers

and LDMOF/HDMOF). The other two FS algorithms will fit a

model to determine the importance of each individual variable in

predicting a label, granting them mathematical robustness.

Therefore, we argue that a systematic evaluation of DP techniques

such as the one here proposed is highly beneficial for developing in-

silico models.

After selecting optimal input biomarkers, we applied them in a

classification system that uses this immunological information to

predict the severity trajectory of critically ill patients. For that, our

model, when fed with distinct subsets of biomarkers, could predict

patients’ severity. In fact, biomarkers have themselves been

proposed as good predictors of a plethora of medical conditions

(34–36); on the immunological side, they have been associated with

pro- and anti-inflammatory responses (37) and we gathered

evidence in support of our model succeeding to capture this.

There are hundreds of biomarkers containing valuable

information about the organic systems of the body and their

functions. For their capacity to be interpreted, and consequently

aid decision making and drug development, we argue that

biomarkers related to a specific condition be systematically

selected as we have proposed in this study.

We interpret our ANN model by linking the concentration of

biomarkers in explaining LDMOF. First, Multiple Organ

Dysfunction and even death have been reported to be associated

with increased levels of VCAM-1 in adults and neonates diagnosed

with sepsis (38–40). Similarly, our model shows a negative

correlation between increased VCAM levels and LDMOF

development. Next, IL1ra was used in a recombinant treatment

and was successful in reducing levels of mortality (41). Our last

biomarker positively associated with LDMOF is IL4, which was

reported to act together with IL6 to induce Th2 cells and

macrophage differentiation (42). Lower concentrations of this

biomarker were associated with lower mortality of severe sepsis

patients (43).

We spotted four biomarkers that are negatively correlated with

LDMOF, granting them a negative effect on a patient’s favorable

outcome. First, low concentrations of IL17a have been reported as a

good predictor for mortality in sepsis caused by distinct pathogens

(44, 45). Next, septic shock and sepsis can lead to hypoxia due to

tissue hypoperfusion (1). A transcription factor named hypoxia-

inducible factor 1-alpha (HIF-1a) accumulates in cells under

hypoxic conditions and can upregulate the expression of VEGF

and PD-L1 (46, 47). The activated HIF pathway can also trigger the

activation of innate immune cells, including macrophages, dendritic

cells, neutrophils, and natural killer cells (48). Furthermore,

increased levels of PD-L1 will suppress the adaptive immune

response by inhibiting the proliferation and activity of the CD4+

effector T cells and enhancing the differentiation of Tregs (49, 50).

This persistent inflammatory condition caused by innate immune
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activation along with suppressed adaptive immune response

contributes to hypoxia-induced organ failure. It has also been

reported that PD-L1 knock-out animals show a better survival

rate after a septic challenge compared to wild-type animals (51).

VEGF is also known to induce VCAM-1 expression, and its

upregulation is correlated with damaged vascular endothelium

and organ dysfunction (40, 52). Thus high levels of PD-L1 and

VEGF can be considered key markers of multi-organ failure.

Finally, myeloperoxidase (MPO), an enzyme produced by

neutrophils, is found to be increased in severe patients suffering

from septic shock, despite having no significant difference in

neutrophil count (53). In another study, MPO levels during the

early stages of sepsis were found to be negatively correlated with

patient survival (54).

The mapping of the XAI model provided meaningful

information on the course of dysregulated immune responses and

also converged with clinical interpretations regarding the

neutrophil count of the disease models (i.e., neutrophils tend to

increase with severity). A compelling example is the pro-

inflammatory function our model attributed to MPO. This

enzyme is primarily produced by the granulocytes of neutrophils.

The overexpression of MPO generates harmful chemicals that have

a detrimental effect on organ inflammation (11). Our model also

identified PDL1 as a pro-inflammatory protein. The blockade of the

binding between PDL1 and PD1 might inhibit lymphocytes from

apoptosis. The upregulation of PDL1 by neutrophils is increased in

sepsis as the higher migration of these cells might allow them to be

trapped in the lung vasculature (55, 56). Therefore, with more

neutrophils expressing PDL1, immunosuppressant effects start to

occur with the death of neutrophils. The highest counts of

neutrophils were found in the severe manifestations of the three

disease models we investigated. Therefore, we can track the course

of the multi-organ failure syndrome of our patients with increased

neutrophils leading the overexpression of MPO and PDL1.

In-silico models are an efficient paradigm of experimentation.

Compelling examples are found in big data-based applications that

have been assisting in several areas in the medical sciences, such as

predicting heart attacks (57), telediagnosis (58), and preventing

disease outbreaks (59), among others. A guideline proposed by the

Center for Drug Evaluation and Research (CDER) (60) shows that

the development of therapeutics might initiate with screening

characteristics that indicate biological processes. Here we

propound to employ data science as an initial step for screening

biomarkers, enabling the gathering of solid mathematical evidence

for linking concentrations of biomarkers with patients’ severity.
5 Conclusions

In the present study, we built a function whose input is the

concentration of biomarkers and the output is the level of severity of

a patient. For our goal to be achieved, a systematic data mining

procedure enabled us to identify the upregulation of PDL1 and

MPO as good predictors of severity in sepsis (viral and bacterial

induced) and septic shock patients. After interpreting the results

both clinically and immunologically, we found that there is solid
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1137850
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Martinez et al. 10.3389/fimmu.2023.1137850
medical and biological evidence for why the upregulation of PDL1

and MPO is a major driver of severity. To this extent, we posit that

data mining routines such as the one we proposed be used to

identify the biomarkers that can function as part of an early

diagnosis system.
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