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Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by

chronic inflammation that affects synovial tissues of multiple joints. Granzymes

(Gzms) are serine proteases that are released into the immune synapse between

cytotoxic lymphocytes and target cells. They enter target cells with the help of

perforin to induce programmed cell death in inflammatory and tumor cells. Gzms

may have a connection with RA. First, increased levels of Gzms have been found in

the serum (GzmB), plasma (GzmA, GzmB), synovial fluid (GzmB, GzmM), and

synovial tissue (GzmK) of patients with RA. Moreover, Gzms may contribute to

inflammation by degrading the extracellular matrix and promoting cytokine

release. They are thought to be involved in RA pathogenesis and have the

potential to be used as biomarkers for RA diagnosis, although their exact role is

yet to be fully elucidated. The purpose of this review was to summarize the current

knowledge regarding the possible role of the granzyme family in RA, with the aim

of providing a reference for future research on the mechanisms of RA and the

development of new therapies.
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Introduction

Rheumatoid arthritis (RA) is a common, long-term autoimmune

disease that causes chronic inflammation of synovial tissues in

multiple joints. This inflammation can damage cartilage and bone

and cause disability (1, 2). RA is more common in women than that in

men and occurs at any age (1). Approximately 1% of the population is

affected by RA, which significantly affects individuals and society (3,

4). Therefore, it is important to develop novel strategies for timely

diagnosis and treatment to reduce inflammation and prevent further

damage. Genome-wide association studies have linked the

immunopathogenesis of RA to HLA-DRB1, a class II major

histocompatibility gene (5). Other genes and loci also play a role in

the development of RA, including co-stimulatory receptors

molecules, cytokine receptor signaling pathways, and activation of

the innate immune response (6). Multiple factors, including genetic

and epigenetic modifications, immunity, inflammation,

microorganisms, metabolism, and other mechanisms, constitute the

pathological mechanism responsible for RA in which various immune

cells and molecules interact with each other to mediate the

autoimmune reaction, eventually causing bone and joint destruction

or even disability (7–13).

Despite significant progress in understanding the inflammatory

processes involved in RA, the exact mechanism underlying its

development and progression is still not fully understood. However,

recent studies have suggested that members of the granzyme family

play an important role in the immunopathology of RA. Zhang F et al.

(14) applied single-cell RNA sequencing, mass cytometry, bulk RNA-

sequencing, and flow cytometry to identify the cell populations

contributing to joint inflammation in RA. They applied intracellular

staining to tissues from RA samples and RNA-seq to sorted CD8 T

cells. Intracellular staining of GzmK and GzmB proteins in

disaggregated tissue samples from patients with RA revealed that the

majority of CD8 T cells in synovial tissue express GzmK. Furthermore,

most HLA-DR CD8 T cells express both GzmB and GzmK by

intracellular protein staining. Therefore, they defined distinct subsets

of CD8 T cells characterized by a GzmK, GzmB phenotype. Defining

key cellular subsets and their activation states in the inflamed tissue is a

critical step to define new therapeutic targets for RA. Gzms are

proteases produced and released by certain immune cells, including

cytotoxic T cells (CTLs) and natural killer (NK) cells (15, 16). There are

five human Gzms, namely granzyme A (GzmA), granzyme B (GzmB),

granzyme H (GzmH), granzyme K (GzmK), and granzyme M

(GzmM). Gzms are released into the immune synapse between CLs

and target cells, enter target cells with the help of the pore-forming

protein perforin, and activate various pro-apoptotic pathways by

breaking down intracellular substrates (15, 17). Perforin and

granulysin are two pore-forming proteins of cytotoxic granules of

human killer cells, and they have significant roles in mediating Gzm

responses to infection (18). There’s work showing the role of granulysin

as a biomarker and pathogenic factor in RA (19). In addition to playing

a role in the process of apoptosis or programmed cell death, Gzms are

also involved in the immune response to infection and tissue damage

(20, 21). Some studies have shown that Gzms are elevated in the

synovial fluid and synovial tissue of patients with RA and may

contribute to inflammation and joint damage (22, 23). The known
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extracellular activities of Gzms suggest a proinflammatory effect in RA.

This review aims to summarize the current knowledge on the possible

roles of the granzyme family in RA, with the goal of providing a

reference for further research into the disease mechanism of RA and the

development of targeted therapies.
GzmA-mediated proinflammatory
cytokine-induced bone
destruction in RA

Considering all types of killer cells, GzmA is the most abundant

Gzm as it is widely expressed in both CD8 CTLs and NK cells (24).

GzmA is a serine protease secreted by various CLs, such as NK cells

(25), natural killer T (NKT) cells (26), CTLs (27), and CD4 CTLs (28,

29). It plays a key role in the cell death pathway by targeting the

endoplasmic reticulum-associated oxidative stress response complex

called the SET complex. The SET complex contains at least two

GzmA substrates, the nucleosome assembly protein SET (also known

as 12PP2A), and the DNA binding protein HMG2. GzmA-mediated

cleavage of SET cause inhibition of GzmA-activated DNase NM23-

H1 and leads to single-stranded DNA damage (25). GzmA has been

shown to have a variety of proinflammatory mechanisms. Hildebrand

D et al. (30) suggested that GzmA enters target cells independently

and functions as a mediator for inflammation via interleukin (IL)-1b
cleavage. Wensink AC et al. (31) discovered that treatment of

monocytes with GzmA in combination with toll-like receptor-2

(TLR2)- and TLR4-agonists markedly increases the release of

proinflammatory cytokines, such as tumor necrosis factor-alpha

(TNF-a), IL-6, and IL-8. GzmA also promotes inflammation via

extracellular activities, such as extracellular cleavage of urokinase

(32), proteinase-activated receptor-1 (PAR-1), and PAR-2 (33–36). It

is an important proinflammatory mediator in RA (37, 38), psoriasis

(39), and osteoarthritis (40). Additionally, NK cells and CTLs

transport GzmA into the cytoplasm of target cells through the

perforin–granzyme system, and GzmA can cleave the gasdermin B

(GSDMB) protein into GSDMB-N and GSDMB-C (at sites K229/

K224), releasing its N-terminal pore-forming active fragment, thereby

inducing pyroptosis (41).

Abnormal GzmA expression has been linked to inflammatory

reactions (23, 42, 43). GzmA and GzmB levels in the plasma and

synovial fluid are significantly increased during active periods of RA

compared to those during osteoarthritis (OA) (23). GzmA stimulates

peripheral blood mononuclear cells to produce TNF-a, IL-6, and IL-8
(36) and stimulates fibroblasts to produce IL-6 and IL-8 (44). These

cytokines are largely expressed in the synovium and are mainly

produced by macrophages and fibroblast-like synoviocytes (45–47).

Therefore, high levels of GzmA in RA joints can promote synovial

inflammation owing to its influence on cytokine production. The

abnormal expression of GzmA may be related to its abnormal

expression in various immune cells, including T cells, NK cells, and

NKT cells. Perforin is a 70 kDa glycoprotein that is responsible for the

formation of pores on the membrane of target cells (48) and

participates in cytotoxic reactions in target cells (49). CD4+

perforin+ and GzmA+ cells have been observed in RA synovial

samples (50, 51). Nanki T et al. (52) used flow cytometry to analyze
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the expression of GzmA and perforin in peripheral blood CD4+ and

CD8+T cells of patients with RA and healthy people. GzmA and

perforin were mainly expressed by CX3CR1 CD4+ and CD8+T cells

in patients with RA and healthy people, with increased expression in

patients with RA. In addition, Aggarwal et al. (53) found elevated

levels of GzmA in NK and NKT cells and GzmB in NK cells of venous

blood samples in patients with RA. Elevated GzmA and GzmB levels

are associated with disease severity, tissue damage, and joint damage

in RA. Correlation studies showed that the disease activity score

(DAS28) is positively associated with enhanced levels of GzmA-

expressing NK and NKT cells, perforin-GzmA dual-positive NK,

NKT cells, and GzmB-expressing NK cells. Loetscher P et al. (54)

analyzed chemokine-mediated enzyme release from cytotoxic

lymphocytes using cloned and freshly isolated human blood NK

cells and CD8+ T cells. They found that GzmA from CD8+T and NK

cells can be activated by chemokines, suggesting chemokines may be

involved in regulating cytotoxicity in lymphocyte. Many chemokines

capable of inducing Gzms release have been shown to be upregulated

in the synovial tissue of patients with RA (55, 56). Therefore, GzmA

overexpression in CD8+T and NK cells may be related to chemokines

upregulated in RA. Moreover, GzmA and GzmB degrade ECM

proteins in vitro (20). Santiago L et al. (37) evaluated inflammatory

arthritis induced by type II collagen in wild-type, GzmA-deficient,

and perforin-deficient mice, and found that GzmA is more closely

associated with cartilage and bone injury in mouse paws and knees

than with inflammatory signs and synovial cells. Proliferating

osteoclasts (OCs), which are primary bone-resorbing cells, are

hematopoietic in origin and have a monocyte/macrophage lineage.

The formation and activation of OCs are tightly regulated by systemic

and pericellular factors (57). GzmA activates monocytes and other

OC precursors to secrete TNF, thus increasing proinflammatory

cytokine-induced bone destruction observed in RA. However, the

mechanism involved seems to be complex and may be either direct by

promoting OC differentiation or indirect via other inflammatory

responses (37).
GzmB-mediated inflammation and
ECM degradation in RA

GzmB is a granzyme family member with the strongest apoptotic

activity because of its caspase-like ability to cleave substrates at aspartic

acid residues, thereby activating procaspases directly and cleaving

downstream caspase substrates (58). GzmB is a 32 kDa serine protease

that is secreted by NK cells and CTLs (59, 60). When released into the

gap between those cells and target cells, GzmB can enter the cytoplasm of

target cells in the presence of perforin. Subsequently, apoptosis is induced

by cleaving various intracellular substrates (61) associated with DNA

maintenance, such as inhibitors of caspase-activated DNase, poly (ADP-

ribose) polymerase, DNA-dependent protein kinase, and lamin B (62–

65). GzmB can be produced by various immune and non-immune cells,

including T and B cell subsets, monocytes/macrophages, mast

cells, basophils (66–71), vascular smooth muscle cells, lung cells,

keratinocytes, chondrocytes, and various types of cancer cells (70, 72–

79). GzmB can also have extracellular functions, including the

degradation of ECM components, cytokines, cell receptors, and clotting

proteins (21, 22, 80). The potential pathophysiological consequences of
Frontiers in Immunology 03
their cleavage constitute the basis for envisaging a crucial

proinflammatory role for GzmB in the pathogenesis of inflammatory

diseases (81). In the extracellular pathway, direct processing of caspase-3

and caspase-7 by GzmB promotes caspase-mediated degradation of

hundreds of protein substrates, resulting in rapid apoptosis (82).

Abnormal expression of GzmB has been observed in the synovial

tissues of patients with RA (83). Studies have shown that most CD8T

cells in the synovial tissues of patients with RA express GzmK and

GzmB proteins (14). Although Gzms are expressed by CTL, only a

small percentage of granzyme-positive cells in the synovial membrane

are CD8+ and CD4+ T cells, with the majority being NK cells (84).

Elevated levels of GzmB have been found in blood and synovial fluid

of patients with RA, which may be a result of GzmB release from

inflamed joints (23, 84). Tripathy A et al. (85) indicated that RA

patients express functional P2X4 and P2X7 receptors on peripheral

CD8+T cells which when ligate with ATP produce high amounts of

GzmB. When the ATP molecules induce purinergic signaling and

activate T cells via P2X receptors (86), the excess extracellular ATP

acts as a self-adjuvant to generate abnormal immune responses (87)

and triggers inflammation (88, 89). In the case of RA, the release of

ATP and its downstream binding to the purinergic receptors is a key

regulator of the inflammatory activity (90, 91). The CD8+T cells from

RA patients released significant amounts of GzmB in comparison to

the CD8+T cells from HCs when stimulated with extracellular ATP.

Moreover, the CD8+T cells from RA patients were increasingly

activated over time and hence released greater concentrations of

GzmB. GzmB is a specific activation marker protein for CD8+T

cells. It thus implies that the excess extracellular ATP in the plasma of

RA patients can activate immune cells rapidly and hence can be

afflictive for the patients.

Goldbach-Mansky R et al. (92) explored the diagnostic and

prognostic value of serum GzmB in patients with a diverse spectrum

of early inflammatory arthritis and found that GzmB concentrations

were significantly higher in rheumatoid factor positive (RF +) RA than

those in RF-RA. Patients with joint erosions had significantly higher

levels of GzmB than those without, indicating the independent value of

GzmB in the prediction of erosive disease. GZMB+CD4 and CD8 CTL

cells have also been found to be upregulated in the peripheral blood of

active patients with RA (93), potentially reflecting an autoimmune

response. Elevated levels of GzmB in blood may result from

extracellular GzmB not taken up by the receptor during the induction

of apoptotic cell death (92).

GzmB is a multifunctional proinflammatory molecule (94). It can

process and activate proinflammatory, pro-fibrotic, and senescence

mediators belonging to the IL-1 cytokine family (95, 96). GzmB can

process IL-1a into potent proinflammatory fragments, enhancing

inflammation. It stimulates interstitial collagenase production by

fibroblasts and ECM remodeling, thereby regulating both, normal and

aberrant tissue repair (96, 97). Among proinflammatory cytokines, IL-

1a/b and TNF-a can trigger the intracellular molecular signaling

pathway responsible for RA pathogenesis, which activates

mesenchymal cells and synoviocytes and recruits innate and adaptive

immune system cells. Synoviocytes, in turn, activate various mediators,

including TNF-a, IL-1, IL-6, and IL-8, resulting in synovium

inflammat ion , increased ang iogenes i s , and decreased

lymphangiogensis (98). Therefore, GzmB may be involved in the

inflammatory response of RA by regulating IL-1a expression. The
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role of GzmB in bone destruction in RA has also been suggested by

other studies. Single nucleotide polymorphisms in the GzmB gene have

been found to influence the joint destruction rate of RA (99). H. K.

Ronday et al. (100)found that GzmB can degrade proteoglycan

components in cartilage and contribute to the destruction of articular

cartilage in RA. Additionally, GzmB is a potential biomarker for RA

diagnosis, with higher levels of GzmB in serum being correlated with

increased disease activity as measured by the DAS28-CRP score (101).

In summary, GzmB may contribute to inflammation and joint

destruction associated with RA through its proinflammatory and

tissue-degrading effects.

While several studies have reported the role of GzmB as a

proinflammatory molecule in the progression of RA proinflammatory,

Xu et al. (102) found the frequency of GzmB production by regulatory B

cells (Bregs) in patients with RA to be significantly reduced compared to

that in healthy controls. The expression of IL-21 receptor in B cells in

patients with RA was also significantly reduced, which may contribute to

the reduction in GzmB-producing Bregs in these patients. Further

analysis showed that the number of GzmB-producing Bregs was

negatively correlated with erythrocyte sedimentation rate tender joint

count, and disease activity score DAS28. The number of GzmB-

producing Bregs increased significantly after RA treatment. A

reduction in Bregs, especially those that produce IL-10 has been shown

to be negatively correlated with disease activity in RA (103). Those cells

may help maintain immune balance by inhibiting proinflammatory

cytokine production and T cell differentiation (104). Whether GzmB

has cell-specific functional differences remains to be determined.

GzmH and GzmB are structurally similar with 71% amino acid

identity and belong to a gene cluster located on chromosome 14, which

also includes cathepsin G and mast cell chymase. Although they have

high sequence homology, these enzymes have distinct enzymatic

activities (105). GzmH has not been detected in NKT cells,

monocytes, or neutrophils (106). High levels of human GzmH

mRNA have been found in the peripheral blood lymphocytes, lungs,

spleen, and thymus (107, 108). Hou et al. (109) discovered that GzmH

can induce rapid apoptosis in target cells, resulting in mitochondrial

damage, nuclear condensation, and DNA breakage. GzmH-induced

apoptosis depends on caspase activation and cytochrome c release. To

date, no research has been conducted on GzmH in the context of RA.

GzmH is predominantly expressed at high levels in NK cells (110), and

GzmH mRNA has also been detected in activated human T cells (107,

111). IL-15 has significantly higher levels in the serum and synovial

fluid of patients with RA than those with OA and healthy control

groups (112), and plays key roles in promoting activation of NK and

CD8 T cells (113). Zhang B et al. (114) stimulated NK-92 cells with IL-

15, and it was found that IL-15 significantly up-regulated GzmA and

GzmB gene expression, but GzmH transcripts were down-regulated.

Therefore, higher levels of IL-15 in patients with RA might regulate

Gzms expression. However, the specific role of GzmH in RA requires

further investigation, and IL-15 may be a potential target to focus on.
GzmK- and GzmM-mediated
cytokine-based inflammation in RA

GzmK is a trypsin-like molecule in the granzyme family that is

expressed by CTLs, NKT, gd T cells, and CD56bright+ NK cells (110,
Frontiers in Immunology 04
115–117). Besides being a member of the granzyme family, little is

known about the function of GzmK (118). In vitro studies have

demonstrated that GzmK can induce non-apoptotic cell death

through the production of reactive oxygen species (ROS) and

mitochondrial dysfunction when combined with perforin (119).

Further studies have shown that GzmK activates caspase-

independent apoptosis by cleaving the SET complex, leading to SET

destruction. This results in unleashing GzmA-activated DNase

NM23H1, which translocates to the nucleus and nicks DNA (120).

GzmK may also cleave the tumor suppressor p53, thus sensitizing

tumor cells for apoptosis induction (121) and process a vasolin-

containing protein, thus contributing to endoplasmic reticulum stress

and caspase-independent cytotoxicity (122). GzmK inhibits influenza

virus replication in mice (123) and has an immunoregulatory

function in multiple sclerosis (124).Cooper DM et al. (125)

demonstrated GzmK-induced activation of both ERK1/2 and p38

MAP kinase signaling pathways and significantly increased fibroblast

proliferation in patients with sepsis and acute lung inflammation.

Wensink AC et al. (126) demonstrated that extracellular GzmK

potentiates the lipopolysaccharide-induced release of inflammatory

cytokines from monocytes and that this effect is independent of the

catalytic activity of GzmK.

GzmK levels in synovial tissue samples from patients with RA are

higher than the levels in those with OA (127). GzmK may have

proinflammatory effects and can activate PAR-1, a family of G

protein-coupled receptors that mediate the physiological response

to serine proteases (125, 128). PAR-1 is activated by thrombin and

trypsin and can induce the production of inflammatory cytokines,

such as TNF-a, IL-1, IL-6, and monocyte chemotactic protein 1 (129,

130). CD8T cells primarily release GzmK, whereas CD4 T cells

primarily release GzmB (131). In the context of RA synovium

inflammation, GzmK can act as a key inflammatory agent, inducing

synovial fibroblasts to activate proinflammatory pathways, including

IL-6, CCL2, and ROS production. This effect does not require perforin

or any other agent to induce internalization of GzmK, indicating that

GzmK has a proteolytic target on the surface of these cells (129). The

protease activity of GzmK can also promote degradation of the ECM,

leading to inflammatory cell infiltration and tissue destruction.

Blocking GzmK or cytokines that activate CD8T cells, such as IL-12

or IL-15, may be an effective treatment for RA. Anti-citrullinated

protein antibody-negative (ACPA-negative) RA comprises up to one-

third of patients with RA, whereas lack of biomarkers in ACPA-

negative RA poses a big challenge to early diagnosis (132). Lu J et al.

(133) reintegrated across the GSE89408 dataset to evaluate the

performance of GzmK in the diagnosis of ACPA-negative RA. The

expression levels of GzmK in the ACPA-negative RA group were

significantly higher than that in the normal and OA groups, and the

area under the curve of GzmK expression level was 0.916, suggesting

its potential as a biomarker.

GzmM is a trypsin-folding serine protease found specifically in

the granules of NK cells (134). High levels of GzmM protein and

mRNA have been detected in NK, NKT, gdT, and CD8+T cells (118).

Studies have shown that human GzmM promotes cell death in a

manner similar to GzmB, including caspase-3 activation, DNA

fragmentation, ROS production, and the mitochondrial release of

cytochrome c (135, 136). Cytoskeletal components, such as a-tubulin
and ezrin, nucleolar phosphoprotein nucleophosmin, and apoptosis-
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associated p21-activated protein kinase 2, have been identified as

direct GzmM subunits and are cleaved during GzmM-induced cell

death and cytotoxic lymphocyte-induced cell death (137, 138).

Synovial fluid-derived mononuclear cells show GzmM expression,

with the highest expression in CTLs and NK cells. Elevated levels of

GzmM in synovial fluid from patients with RA compared to OA

controls have been shown to stimulate human fibroblasts to release

IL-29, a proinflammatory cytokine, and type III interferon (IFN-l1),
suggesting that GzmMmay play a local role in the pathophysiology of

RA (139). Further studies are needed to fully understand the specific

role of GzmM in RA.
Perspectives and challenges

Gzm-inhibiting serpins are believed to act as a fail-safe

mechanism for CLs to avoid self-injury during granule exocytosis

(140). In recent years, the prevailing theory has been that although

circulating Gzms might not be able to enter cells without a high local

perforin concentration to induce cell death, they could proteolyze cell

surface receptors or extracellular proteins to cause destruction.

Particularly when Gzms present at high concentrations at inflamed

sites in the absence of natural inhibitors (24). To date, SERPINB12,

SERPINB9, SERPINB4, SERPINB1, and inter-alpha inhibitor

proteins, have been identified as intracellular inhibitors of GzmA,

GzmB, GzmM, GzmH, and GzmK (141–146). Although physiological

inhibitors of Gzms are known, no clinical trials have been reported for

their use as treatments. Researchers believe that the development of

GzmA inhibitors for the treatment of RA may have beneficial effects

compared to other commonly used anti-inflammatory drugs, such as

corticosteroids or TNF blockers (37). Some studies have suggested

that cyclosporine and zidovudine may be potential target drugs for

RA treatment in combination with GzmA (43). Zidovudine was

developed as an anti-cancer agent in the 1960s and was later

approved by the US FDA as an anti-HIV therapeutic drug in the

late 1980s after fast track clinical trials (147). Nowadays, this drug is

commonly used in the prevention of perinatal HIV-1 transmission

(vertical transmission) that consists of the use of this drug by the

mother before and during delivery, and treatment of the newborn

(148). New potential inhibitors of GzmB, such as tannic acid,

mupirocin, cefpiramide, xenazoic acid, vidarabine and phytonadiol

sodium diphosphate, have been identified (149). Mi-Sun Kim.et al

(150) developed a novel class of weak small-molecule inhibitors

against human GzmB by docking studies employing binding site

hot spots and three constraints (hydrogen bonding with Arg226, and

hydrophobic interactions for S2 and S4 subsites) based on

computational solvent mapping using FTMAP. The most

distinctive compounds identified were thiazolidinediones 8 (IC50 =

25 mM) and 9 (IC50 = 28 mM), triazole 6 (IC50 = 44 mM), and

diazolidinedione 7 (IC50 = 44 mM). Ikram S et al. (151) identified 12

potential inhibitors of GzmH from two separate databases of small

molecules. Currently, there are no Gzms inhibitors that are

specifically approved for the treatment of RA. Understanding of the

precise mechanisms by which granzymes contribute to the

development and progression of RA is limited. Lack of clear

evidence demonstrating that targeting granzymes is a viable

therapeutic strategy for RA. RA is a complex and heterogeneous
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disease, and it is not clear whether the same granzyme-mediated

mechanisms are involved in all patients with RA. There is currently

no single, reliable biomarker to indicate patterns of Gzms in patients

with RA. Given the intracellular, extracellular, and proinflammatory

effects of Gzms on RA, Gzms and their physiological inhibitors may

be potential therapeutic targets for RA treatment. It is worth noting

that extracellular vesicles (EVs), as one of the important

communication carriers between cells and host, may also be a

potential contact media between the Gzms family and RA (152).

EVs containing granzyme from NK cells and CTLs require

Ca2+-dependent signals to release (153). The EVs from activated

NK cells include a variety of Gzms, such as GzmA and GzmB, which

have cytotoxic effects on tumor cells (154), inhibit cell proliferation,

and promote cell death. They are considered a safe and effective

immunosuppressive agent, which may have potential therapeutic

significance for RA FLS (154, 155).
Discussion

In this review, we described the physiological function, cellular

expression, and potential role of five members of the Gzms family in

RA (Table 1). Gzms are involved in the induction of apoptotic cell

death. In RA, Gzms demonstrate non-cytotoxic activities that include

diverse biological effects, such as stimulation of proinflammatory

cytokines and remodeling of extracellular matrices. Considering the

extracellular and intracellular functions of Gzms, they have the

potential to contribute to the pathogenesis of inflammatory diseases

(Figure 1). First, GzmA level is significantly elevated in plasma and

synovial fluid and can degrade ECM proteins, potentially contributing

to bone destruction in RA. Higher levels of GzmB in serum are

correlated with increased disease activity. GzmB can degrade

proteoglycan components in cartilage and contribute to the

destruction of articular cartilage in RA. A subgroup of B cells, Bregs

that express GzmB, may inhibit proinflammatory cytokine

production and abnormal autoimmune T cell differentiation in

patients with RA. GzmM promotes inflammation mainly by

stimulating the release of the proinflammatory cytokine IL-29 and

is elevated in RA. GzmK is mainly associated with endothelial cells

and fibroblasts, suggesting its role in abnormal angiogenesis and

synovial hyperplasia in RA. However, the specific role of GzmH in RA

requires further investigation. Our search for the latest clinical trials

showed that few clinical inhibitors of Gzms have been identified.

While the development of clinical drugs targeting the Gzms family is

limited, evidence suggests that targeting these proteins may have

potential value for the clinical treatment and management of RA. To

further enhance our understanding of Gzms in RA, comprehensive

use of molecular biology, cellular immunology, and other

technologies is necessary. Notably, Gzms primarily play a biological

role in cell perforation and target cells. The multiple potential roles of

Gzms in RA may include an abnormal manifestation of uncontrolled

or excessive cell death. Additionally, the known extracellular activities

of Gzms suggest a proinflammatory effect in RA. Therefore, further

research on the association between multiple cell death pathways and

RA, and experiments defining Gzm-activated proinflammatory

pathways may be a promising direction to determine the

significance of Gzms as a proinflammatory mediator in future studies.
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FIGURE 1

Role of Granzyme family (GzmA, GzmB, GzmH, GzmM, GzmK) in pathology and progression of RA. Gzms are produced and released by immune cells,
such as cytotoxic T cells and natural killer cells. They play a role in the ability of the immune system to recognize and eliminate infected or damaged
cells. The granzyme family includes several granzyme types, including granzyme A (GzmA), granzyme B (GzmB), granzyme H (GzmH), granzyme M
(GzmM), and granzyme K (GzmK). In the context of RA, Gzms may contribute to the pathology and progression of the disease in several ways. RA is an
autoimmune disorder characterized by chronic inflammation of the joints that leads to joint damage and deformity. Gzms may contribute to the
inflammation and joint damage observed in RA by inducing programmed cell death (apoptosis) in cells within the joint tissue. This can lead to the
destruction of joint cartilage and bone, resulting in joint deformity and loss of function. As the figure shows, GzmA activates monocytes and other OC
precursors to secrete TNF, thus increasing proinflammatory cytokine-induced bone destruction observed in RA. GzmB can degrade proteoglycan
components in cartilage and contribute to the destruction of articular cartilage in RA. GzmM plays a role in the pathophysiology of RA by stimulating the
release of proinflammatory cytokine IL-29. GzmK induces synovial fibroblasts to activate proinflammatory pathways, including IL-6, CCL2, and ROS
production. The protease activity of GzmK can also promote degradation of the ECM, leading to inflammatory cell infiltration and tissue destruction.
(Created with BioRender.com).
TABLE 1 The physiological function, cellular expression, and potential role of the Gzms family in RA.

Granzyme Cellular
expression

in RA

Granzyme relevance to RA

GzmA CD4+T cell
CD8+T cell
NK cell
NKT cell

1. Elevation of GzmA in NK and NKT cells associated with disease severity, tissue damage, and joint damage in RA.
2. GzmA activates monocytes and other OC precursors to secrete TNF, thus increasing proinflammatory cytokine-induced bone destruction
observed in RA.

GzmB CD4+T cell
CD8+T cell
NK cell

1. GzmB concentrations in RF+ RA are significantly higher than those in RF- RA, and patients with joint erosions have significantly higher
levels of GzmB than those without, indicating the independent value of GzmB in the prediction of erosive disease.
2. GzmB can degrade proteoglycan components in cartilage and contribute to the destruction of articular cartilage in RA.
3. Higher levels of GzmB in serum are correlated with increased disease activity as measured by the DAS28-CRP score.
4. The expression of IL-21 receptor on B cells of patients with RA is significantly decreased, which may be a possible mechanism of
reducing GzmB-producing Breg in patients with RA. Regulatory B cells (Bregs), particularly IL-10-producing Bregs, have been shown to be
reduced in number and negatively correlated with disease activity in RA and may contribute to the maintenance of immune functions by
inhibiting proinflammatory cytokine production and T cell differentiation.

GzmM CD8+T cell
NK cell

GzmM plays a role in the pathophysiology of RA by stimulating the release of proinflammatory cytokine IL-29, a type III interferon
cytokine also known as IFN-l1.

GzmK CD8+T cell In the case of synovial inflammation in RA, GzmK itself acts as a key inflammatory agent. GzmK induces synovial fibroblasts to activate
proinflammatory pathways, including IL-6, CCL2, and ROS production. The protease activity of GzmK can also promote degradation of
the ECM, leading to inflammatory cell infiltration and tissue destruction.

GzmH The specific role of GzmH in RA requires further investigation.
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