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Pan-Cancer analysis and
experimental validation identify
the oncogenic nature of ESPL1:
Potential therapeutic target in
colorectal cancer
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Hongyu Wu2, Meng Wang2, Qian Zhang2, Haiyang Feng2*

and Guiyu Wang1*

1Cancer Center/Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin
Medical University, Harbin, Heilongjiang, China, 2Department of Colorectal Cancer Surgery, The
Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of
Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, China
Introduction: Extra spindle pole bodies like 1 (ESPL1) are required to continue the

cell cycle, and its primary role is to initiate the final segregation of sister

chromatids. Although prior research has revealed a link between ESPL1 and

the development of cancer, no systematic pan-cancer analysis has been

conducted. Combining multi-omics data with bioinformatics, we have

thoroughly described the function of ESPL1 in cancer. In addition, we

examined the impact of ESPL1 on the proliferation of numerous cancer cell

lines. In addition, the connection between ESPL1 and medication sensitivity was

verified using organoids obtained from colorectal cancer patients. All these

results confirm the oncogene nature of ESPL1.

Methods: Herein, we downloaded raw data from numerous publicly available

databases and then applied R software and online tools to explore the

associat ion of ESPL1 expression with prognosis , survival , tumor

microenvironment, tumor heterogeneity, and mutational profiles. To validate

the oncogene nature of ESPL1, we have performed a knockdown of the target

gene in various cancer cell lines to verify the effect of ESPL1 on proliferation

and migration. In addition, patients’ derived organoids were used to verify

drug sensitivity.

Results: The study found that ESPL1 expression was markedly upregulated in

tumorous tissues compared to normal tissues, and high expression of ESPL1 was

significantly associated with poor prognosis in a range of cancers. Furthermore,

the study revealed that tumors with high ESPL1 expression tended to be more

heterogeneous based on various tumor heterogeneity indicators. Enrichment

analysis showed that ESPL1 is involved in mediating multiple cancer-related
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pathways. Notably, the study found that interference with ESPL1 expression

significantly inhibited the proliferation of tumor cells. Additionally, the higher the

expression of ESPL1 in organoids, the greater the sensitivity to PHA-793887,

PAC-1, and AZD7762.

Discussion: Taken together, our study provides evidence that ESPL1may implicate

tumorigenesis and disease progression across multiple cancer types, highlighting

its potential utility as both a prognostic indicator and therapeutic target.
KEYWORDS
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1 Introduction

It is well known that cancer incidence is significantly associated with

age. To date, cancer remains the second leading cause of human death

(1). Despite the advances in medical technology and the increasing

number of cancer treatment options, a large number of patients are still

diagnosed at an advanced stage when treatment approaches are often not

feasible, eventually resulting in cancer-related death. Given that surgery

and chemotherapy alone are not enough to save cancer patients, there is

a need to developmore cancer treatment options. Therefore, this calls for

studies to explore the mechanisms of cancer development at the

molecular level for effective diagnosis and treatment.

ESPL1 (extra spindle pole bodies like 1) is a protein-coding gene

whose related pathways are mitotic G1-G1/S phases and cell cycle.

Notably, ESPL1 is regulated by at least two independent mechanisms.

First, it is inactivated via interaction with securin/PTTG1, which

probably covers its active site (2). It should be noted that its

association with PTTG1 is not only inhibitory since PTTG1 is also

required for ESPL1 activation, and thus the enzyme is inactive in cells

in which PTTG1 is absent. Therefore, degradation of PTTG1 at

anaphase liberates ESPL1 and triggers RAD21 cleavage. Second,

phosphorylation at Ser-1126 inactivates it. The complete

phosphorylation during mitosis is removed when cells undergo

anaphase. Studies have proposed that activating the enzyme at the

metaphase-anaphase transition requires the removal of both securin

and inhibitory phosphate (3–5). A previous cancer study discovered

frequent alterations in STAG2 and ESPL1 in bladder cancer, which

suggests that it may be involved in bladder tumorigenesis through sister

chromatid cohesion and segregation process (6). In addition, two other

previous studies concluded that ESPL1 might be a prognostic

biomarker in malignant glioma and endometrial cancer (7, 8).

Considering that ESPL1 is still inadequately studied in cancer

and there are no relevant pan-cancer analyses, the main aim of this

study was to perform a systematic full-scale pan-cancer analysis of

tumor samples from public databases. Specifically, we explored the

expression and prognostic significance of ESPL1 in various human

malignancies using data from The Cancer Genome Atlas (TCGA).

Furthermore, we evaluated the association of ESPL1 expression

with tumor-infiltrating immune cells and immune-related genes,

and then explored the association between ESPL1 expression and
02
tumor mutational load (TMB), microsatellite instability (MSI),

mutant-allele tumor heterogeneity (MATH), and homologous

recombination deficiency (HRD). Moreover, we identified ESPL1

specific genes and signaling pathways that regulate cancer

progression and finally performed a drug correlation analysis.

Collectively, the findings of this study reveal that ESPL1 is

associated with tumorigenesis and progression in a variety of

cancers, which suggests that it is a potential prognostic marker.
2 Materials and methods

2.1 Data collection and processing

Standardized pan-cancer dataset was downloaded from the Xena

functional genomics explorer (https://xenabrowser.net/) database,

followed by extraction of the expression data of ENSG00000135476

(ESPL1) gene in each sample. Next, log2(x+1) transformations were

performed for each expression value. Notably, the expression data of

33 cancer species were obtained. Due to the small sample size of

normal tissues from the TCGA database, we further retrieved normal

tissue expression data from the GTEX database (9). The abbreviations

for the names of the cancers are in Supplementary Table 1. For

colorectal cancer, liver cancer, lung cancer, and cervical cancer, we

also compared gene expression levels using GEO data. These eight

GEO datasets are GSE39001 and GSE6791 for cervical cancer (10,

11), GSE112790 and GSE45267 for liver cancer (12, 13), GSE68571

and GSE75037 for lung cancer (14, 15), and GSE24550 and

GSE21815 for colorectal cancer (16, 17). To ensure data

comparability, we performed normalization of the data using the

“preprocessCore” package. For batch effects, we utilized the

“removeBatchEffect” function from the “limma” package for removal.
2.2 Gene expression and clinical and
survival analysis

The tumor cell line expression matrix was obtained from the

CCLE dataset (https://portals.broadinstitute.org/ccle/about), and

analysis was conducted using “ggplot2” R package (v3.3.3) (18, 19).
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Next, we obtained a high-quality prognostic dataset from the

TCGA prognostic study previously reported by Liu J et al (20). The

Cox proportional hazards regression model was then built using the

“coxph” function of the “survival” R package (version 3.2-7) to

analyze the relationship between gene expression and prognosis in

each tumor. The function “surv_cutpoint” calculates the optimal

cut point for survival analysis and restricts the group proportion

such that a subgroup cannot exceed 60% of the total sample size.

Univariate Cox regression analysis and forest plots generated

through the “forestplot” R package were used to display the P value,

HR, and 95% CI of each variable. For the multivariate analysis, we

utilized the R package “coxph” for data processing and incorporated

various factors such as TNM staging, clinical staging, tumor grade,

tumor location, pathological type, age, and sex for different cancer

types. Finally, the “survminer” package was used to visualize the

results of the multivariate analysis.

For receiver operating characteristic (ROC) analysis, we

performed the analysis using the “timeROC” package (version

0.4) in R language and generated the graphs using the “pdf” and

“plot” functions. The ROC was constructed based on three primary

parameters: survival status, survival time, and ESPL1 expression

level. The training and testing sets were randomly partitioned using

the “caret” package, with a ratio of 70:30 for the partitioning.

Specifically, the “createDataPartition” function was employed for

random partitioning, with the survival outcome as the sampling

parameter. 70% of the samples were designated as the training set

and the remaining 30% as the testing set.

For age comparison, we divided the samples into high and low

expression groups based on the median ESPL1 expression level and

compared the age distribution between the two groups. For

comparison between genders, we directly compared the ESPL1

expression levels between males and females in each cancer type.
2.3 Genetic heterogeneity analysis

Homologous recombination deficiency (HRD) data for each

tumor was obtained from previous studies (21). We then integrated

the HRD and gene expression data of the samples, and then log2(x

+1) was further used to transform each expression value.

MuTect2 software processed the level 4 simple nucleotide

variation dataset downloaded from TCGA, calculated the tumor

mutation burden (TMB) and mutant-allele tumor heterogeneity

(MATH) for each tumor using the TMB and inferHeterogeneity

function of the R package maftools (version 2.8.05), and combined

the TMB and MATH score with gene expression data (22). A log2(x

+1) transformation was further applied to each expression value.

The microsatellite instability (MSI) scores for each tumor were

obtained from previous studies and integrated with the available

data, and finally log2(x+1) transformations were performed (23).
2.4 Immune analysis

The expression data of two types of immune checkpoint

pathway genes [inhibitory (24) and stimulatory (25)] and five
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types of immune pathway genes [chemokine (26), receptor (18),

MHC (21), immuno-inhibitor (24), and immuno-stimulator (27)]

in each sample were extracted from the downloaded TCGA dataset,

and all normal samples were filtered. Log2(x+1) transformation was

performed on each expression value, and the Pearson correlation

between ENSG00000135476 (ESPL1) and marker genes was

calculated. Next, the deconvo_xCell method of the R package

IOBR (version 0.99.9) was used to analyze the relationship

between immune cells and the expression of ESPL1 (24, 28). We

used the false discovery rate (FDR) method to correct the p-values

when performing the correlation analysis to ensure statistical

accuracy. In more detail, the ‘corr.test’ function in the R package

‘psych’ is used for correlation analysis, with the ‘adjust’ parameter

set to ‘fdr’.

Notably, the ESTIMATE algorithm includes three scores:

immune score (assessment of immune cell infiltration level);

stromal score (assessment of immunity of stromal components);

and ESTIMATE score. The “Estimate” R package evaluates the

above three scores for each TCGA sample (29).
2.5 Protein–protein interaction analysis

The protein-protein interaction (PPI) network was established

using the Search Tool for the Retrieval of Interacting Genes

(STRING) (https://cn.string-db.org/) with the following input

parameters: “evidence”, “experiments”, and “low confidence

level”. A total of 31 nodes were finally obtained and subjected to

enrichment analysis. The Kyoto Encyclopedia of Genes and

Genomes (KEGG) resu l t s were rep lot t ed by ht tp : / /

www.bioinformatics.com.cn, a free online platform for data

analysis and visualization.
2.6 Enrichment analyses and similar genes

The GEPIA2 (http://gepia2.cancer-pku.cn/#index) database

was used to obtain the top 200 genes similar to ESPL1 based on

the TCGA dataset using the “Similar Gene” function (30). The heat

map of similar genes and ESPL1 correlation was also obtained using

the “Gene_Corr” function of TIMER2.0 database (http://

timer.cistrome.org/) (31–33). The ESPL1 negatively correlated

genes were identified using the “psych” package in R.

Next, Webgestalt (http://www.webgestalt .org/) and

“clusterprofile” package in R were used for enrichment analysis of

the 200 similar genes (34, 35). The basic parameters were Homo

sapiens, ORA, and pathway-KEGG, whereas the reference set was

genome encoding-protein. In addition, the advanced parameters

were set to FDR < 0.05.
2.7 Drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (GDSC) (https://

www.cancerrxgene.org/) and Cancer Therapeutics Response Portal

(CTRP) (https://portals.broadinstitute.org/ctrp/) databases were used
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for drug sensitivity analysis (25, 36–40). Finally, the two sub-datasets

were pooled, and Pearson’s correlation analyses were performed.
2.8 Cell culture

The present study used eight cell lines from four cancers for in

vitro experiments. Three colorectal cancer cell lines (SW620, LOVO,

and HCT116), two lung carcinoma cell lines (A549 and PC9), two

liver cancer cell lines (HepG2 and Hep3B), and the cervical cancer

cell line Hela are included. HeLa, Hep3B, HepG2, SW620, LOVO,

and A549 cells were grown in 10% FBS-supplemented DMEMmedia.

PC9 was grown in 1640 medium containing 10% FBS. HCT116 was

grown on McCoy’s 5A medium supplemented with 10% FBS. The

cultures were incubated at 37°C with 5% CO2.
2.9 Organoids culture

The study was approved by the Ethics Committee of Zhejiang

Cancer Hospital, and samples were taken from colorectal cancer

patients who underwent surgery at the hospital. After surgery,

colorectal samples were sent to the pathology department for

pathological examination as part of routine clinical care for

cancer patients. Harvesting the tissues had no impact on the

patients’ surgical procedures, post-operative radiotherapy or

chemotherapy, diagnosis, or the cost of treatment, and therefore

the patients’ informed consent was non-mandatory.

A total of 12 colorectal cancer organoids were harvested. Briefly,

after obtaining the cancer tissue, the tissue is first thoroughly

washed using a washing buffer. The tissue is then cut up and

added to the tissue digestion solution. The tumor cells were filtered

using a 70 mM filter, resuspended again using the washing buffer,

and centrifuged three times. After the removal of the supernatant,

the Matrigel (BD, 356234) was added for resuspension. Finally, the

cell suspension was inoculated into 48-well plates (Corning 3300).

Organoid culture medium purchased from STEMCELL

(IntestiCult™ Organoid Growth Medium (Human), Cat.06010).
2.10 Drug sensitivity assay

PHA-793887 (HY-11001), PAC-1 (HY-13523), and AZD-7762 (HY-

10992) were purchased from MCE (https://www.medchemexpress.com/).

DMSO is used as a solvent, and the maximum concentration of DMSO

during cell culture does not exceed 0.5%. Organoid viability assay using the

CellTiter-Glo® 3D Cell Viability Assay (Promega, G9681). All drug

sensitivity verifications were carried out on the third day after the drug

was delivered.
2.11 Cell viability assay

CCK-8 Cell Counting Kit (A311-01) was purchased from

Vazyme (www.vazyme.com/) to assess the proliferative assay. The

assay protocol is carried out in accordance with the manufacturer’s
Frontiers in Immunology 04
manual. The absorbance was measured at 450 nM by a microplate

reader (Tecan, Switzerland).
2.12 Total RNA extraction and qRT‐PCR

FastPure Cell/Tissue Total RNA Isolation Kit V2 (RC112) from

Vazyme® used to extract RNA from cell. HiScript® II Q RT

SuperMix for qPCR (+gDNA wiper) (R223) from Vazyme® used

to reverse transcription. ChamQ Universal SYBR qPCRMaster Mix

(Q711) from Vazyme® used for qPCR validation.

Primer of ESPL1 sequences (5’!3’): F: GAAGACTCA

GCCTCAGGTG, R: TAGAAAGACCAGTGGCTACG.

Primer of GAPDH sequences (5’!3’): CAGGAGGCAT

TGCTGATGAT, R: GAAGGCTGGGGCTCATTT.
2.13 Cell transfects

siRNA transfect was performed using Lipofectamine 2000

reagent (Invitrogen) according to the manufacturer’s instruction.

siRNA-1 sequences: Sense: 5’-AAAGUUGACUCUUUUGAAGCU-

3’, Antisense: 5’-CUUCAAAAGAGUCAACUUUGG-3’. siRNA-2

sequences: Sense: 5’-AGACAAAGAGAAUUCGUUCCA-3’,

Antisense: 5’-GAACGAAUUCUCUUUGUCUUA-3’.
3 Results

3.1 Aberrant expression of ESPL1
in cancer tissues

We first compared the difference in expression of ESPL1

between cancer and normal tissues and found that ESPL1 was

commonly highly expressed in cancers (Figure 1A). Given the

insufficient number of normal samples, the data of normal

samples from the GTEx database was added for comparison.

Results showed that ESPL1 was significantly highly expressed in

ACC, BLCA, BRCA, CECS, CHOL, COAD, ESCA, GBM, KIRP,

LAML, KICH, LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD,

READ, SKCM, TGCT, STAD, USC and UCEC (Figure 1B). We

also used the CCLE database to verify cell line-level expression.

We found that the highest expression of ESPL1 was in

lymphoma, leukemia, neuroblastoma, and liver cancer cell

lines (Figure 1C). Moreover, the expression of ESPL1 was low

in liposarcoma, bile duct cancer, and head and neck cancer

cell lines.

Next, we evaluated the level of ESPL1 expression in multiple

cancer types at different pathological stages. As shown in

Supplementary Figure 1, we divided all samples into early (Stage I

and II) and late (Stage III and IV) groups based on pathological

staging. This type of grouping is more commonly used in clinical

trials. We found significantly higher expression of ESPL1 in stage III

and IV samples in ACC, CESC, KIPAN, KIRC, KIRP, LIHC, LUAD,

UCEC and UCS. In contrast, a different result emerged in THYM

and OV, where expression was lower in advanced-stage samples.
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Finally, we further validated the dysregulated expression of

ESPL1 by comparing it with eight independent GEO datasets,

including cervical cancer, lung cancer, liver cancer, and colorectal

cancer. Consistently, ESPL1 expression was significantly elevated in

cancer samples across all eight datasets (Supplementary Figure 2).

We hypothesized that the expression level of ESPL1 may vary in

different patients with the same cancer type. Thus, we combined

ESPL1 expression with clinical information and found that ESPL1

expression levels showed statistical differences with age and sex in

some cancers. As shown in Supplementary Figure 3A, the high

expression group of ESPL1 had a higher average age in BLCA,

KICH, LGG, PRAD, and UCEC, while in BRCA, ESCA, LUSC,

LAML, PCPG, and THYM, the high expression group had a lower

average age. Similarly, there were gender differences in ESPL1

expression levels, with higher expression levels observed in

females in KIRP, LIHC, and SARC, and males had higher

expression levels in LAML and LUAD (Supplementary

Figure 3B).3.2 ESPL1 has potential as a tumor prognostic marker.

Considering that numerous genes highly expressed in cancer

tissues affect patient prognosis, we speculated that ESPL1 also

impacts patient survival. Therefore, we separated the patients into

high and low expression groups for survival analysis based on

ESPL1 expression, with the cut-off value by the median

of expression.

As shown in Figure 2, a univariate analysis was performed with

patient death as the event endpoint. Results showed that the

prognosis of patients was worse in the ESPL1 high expression
Frontiers in Immunology 05
group in ACC, KIRP, LGG, MESO, KIRC, KICH, UCEC, PAAD,

LUAD, PCPG, SKCM, LIHC, and SARC. Conversely, a positive

correlation was found between high ESPL1 expression and

improved prognosis in THYM. In addition, it was found that

ESPL1 was highly expressed in ACC, CHOL, KIRC, KIRP, LGG,

LUAD, SKCM, and UCEC cancerous tissues, and it shortened the

survival of patients. Figure 2B demonstrates the relationship

between ESPL1 expression and Progression Free Interval (PFI),

where we found that in 18 types of cancer, high expression of ESPL1

was associated with poorer PFI.

Multivariate analysis is a statistical technique that analyzes the

relationships between multiple variables in a dataset. It is used to

determine the strength and direction of the relationships between

variables, and to identify patterns and trends in the data. We

combined ESPL1 expression with various clinical information and

verified the effect of ESPL1 on patient prognosis through

multivariate analysis. As shown in Supplementary Figure 4,

ESPL1 remained a prognostic risk factor (HR>1 and p<0.05) for

ACC, KICH, LUAD, MESO, PAAD, PCPG, SKCM, SARC, and

LGG, further suggesting that ESPL1 may play an oncogenic role.

We postulated that ESPL1 could potentially serve as a marker

for predicting cancer development. We constructed a receiver

operating characteristic curve based on ESPL1 expression to test

this. As shown in Figure 2C, the heat map demonstrates the area

under the curve (AUC) for predicting patient OS for ESPL1 in 32

tumors. In ACC, MESO, KICH, KIRP, LGG, and PCPG, the AUC

were determined with high precision to be greater than 0.70
B

C

A

FIGURE 1

ESPL1 is aberrantly expressed in tumor tissue. (A) Expression profile of ESPL1 in TCGA cohorts. (B) Expression analysis of ESPL1 in tumor tissues from
TCGA database and matched normal tissues from the GTEx database. (C) Expression of ESPL1 in different types of cell lines. *P<0.05, **P<0.01;
***P<0.001, ****P<0.0001; ns, Not Significant. GTEx, Data of Genotype-Tissue Expression; TCGA, The Cancer Genome Atlas.
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(Figure 2D). Specifically, in ACC, the AUC of ESPL1 predicted

prognosis with a value between 0.83 and 0.94. In GBM and UVM,

the AUC for predicting 5-year survival reached 0.74 and 0.87,

respectively, although the accuracy of predicting 1-4 year prognosis

was poor.

Finally, we plotted Kaplan-Meier survival curves grouped

according to ESPL1 expression based on the best cut-off value
Frontiers in Immunology 06
method. As shown in Figure 3, the survival time was shorter for

high expression of ESPL1 in the 18 tumors.

Based on these findings, we conclude that ESPL1 may have

oncogenic characteristics, and high expression is associated with

poorer prognosis in cancer patients. We believe that, following

validation through further prospective clinical studies, ESPL1 has the

potential to become a prognostic biomarker in various malignancies.
B

C D

A

FIGURE 2

ESPL1 expression correlates with patient prognosis. Forest plot of associations between ESPL1 expression and (A) OS and (B) PFI. (C) Heat map of
AUC of ESPL1 expression to predict patient prognosis from 1 to 5 years. (D) ROC of ESPL1 expression to predict prognosis in ACC, MESO, KICH,
KIRP, LGG and PCPG. OS, overall survival; PFI, Progression Free Interval; AUC, Area Under Curve; ROC, Receiver Operating Characteristic.
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3.3 Correlation between ESPL1 and
tumor microenvironment

The tumor microenvironment (TME) is critical for tumor

growth and is directly associated with tumor progression and

metastasis. Therefore, we analyzed the correlation between ESPL1

expression in various cancers and the immune cells/scores using the

XCELL algorithm (Figure 4A). We found that THYM and THCA

correlated extremely well with ESPL1 expression. In particular, in

THYM, there was a strong correlation with a variety of T cells. In

contrast, in THCA, ESPL1 expression was positively correlated with

immune cells and stromal cells. LUAD, PAAD, STAD, LIHC,

COAD, LUSC, ESCA, UCEC, BLCA, and SARC negatively

correlated with immune microenvironment cells. This result gives
Frontiers in Immunology 07
us a hint that ESPL1 may play different roles in the immune

microenvironment in different cancers.

We also calculated the immune, stromal, and ESTIMATE

scores using the ESTIMATE algorithm. It was found that the

expression of ESPL1 was negatively correlated with these scores

in most cancers. However, THCA, KIPAN, GBMLGG, and KIRC

were positively correlated with immune scores (Figure 4B;

Supplementary Table 2). Similarly, THCA, KIPAN, and

GBMLGG were positively correlated with stromal scores

(Figure 4C; Supplementary Table 2). The same results were also

found about the estimate scores. Moreover, the expression of ESPL1

was positively correlated with the ESTIMATE score in THCA,

KIPAN, GBMLGG, and KIRC (Figure 4D; Supplementary Table 2).

In THYM, ESPL1 was significantly positively correlated with the
FIGURE 3

Kaplan-Meier plots with statistically significant differences in overall survival analysis by best-cut off value method for ESPL1.
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immune score but negatively correlated with the ESTIMATE score.

This finding is consistent with xCell results, which show that ESPL1

expression significantly correlates with T and B cells, increasing the

immune score. However, the correlation with stromal cells is

negative or not significant, resulting in a negative correlation in

stromal score. In LUAD, PAAD, STAD, LIHC, COAD, READ,

LUSC, ESCA, UCEC, BLCA, SARC, and ACC, the xCell results

demonstrated a negative correlation trend between various T cells,

B cells, macrophages, and ESPL1 expression, which is consistent

with the immune score in ESTIMATE. Overall, the three immune

scores showed a significant negative trend in GBM, ESCA, STES,

SARC, STAD, UCEC, SKCM, PAAD, OV, BLCA, and ACC. In

KIPAN, THCA, there was a significant positive correlation. No

statistically significant correlations existed in MESO, READ, KIRP,

LAML, UVM, UCS, CHOL, and DLBC. This indicates that the

function of ESPL1 may differ significantly among different types

of tumors.
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3.4 Correlation between ESPL1 expression
and immune markers

Given that immunoregulatory genes are closely associated with

cancer development, we evaluated the expression data of 150

immunoregulatory genes in each sample and correlated them

with the expression of ESPL1 (Figures 5A–E). Figure 5A shows

the heatmap of immunostimulatory genes with ESPL1 expression.

Through clustering, we found high positive correlations in DLBC,

KIPAN, and THCA. While in PRAD, READ, LIHC, OV, KIRC,

LAML, HNSC, UVM, MESO, and GBMLGG, there is a

predominantly positive correlation trend. An extremely strong

correlation emerged in THYM. This trend switched to a negative

correlation in LUAD, LUSC, and STES. Notably, CD276, MICB,

PVR, and ULBP1 showed statistically significant correlations with

ESPL1 in most tumors, suggesting that these genes may be essential

to unlocking the influence of ESPL1 on tumor development.
B

C

D

A

FIGURE 4

The effect of ESPL1 on TME in pan-cancers. (A) Correlation between ESPL1 and TME cells by xCELL algorithm. Representative results of correlation
analysis between ESPL1 expression and immune score (B), stromal score (C) and ESTIMATE score (D) by ESTIMATE algorithm (Three most positive
correlations versus three most negative correlations). *p<0.05, **p<0.01, ***p<0.001. TME, tumor microenvironment.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1138077
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2023.1138077
Chemokines are very powerful and can impact tumor migration

and immune cell infiltration. Through Figure 5B, we explored the

correlation between chemokines and ESPL1. Similarly, the

correlations showed a divergent trend, with the expression of

chemokine genes increasing with the expression of ESPL1 in

KIPAN, KIRC, THCA and, conversely, a statistically negative

correlation in TGCT, GBM, LUSC and THYM. Figures 5C–E

shows the correlation results of ESPL1 with receptor,

immunoinhibitor and MHC, respectively. The bifurcation trend

was again observed, with STES, STAD, and LUSC showing a

negative trend among receptor-related genes, while GBMLGG,

KIPAN, THCA, PRAD, KIRC, LIHC, and HNSC showed a

positive trend. In the correlation analysis with MHC, significant

positive correlations were also found in KIRC, LGG, GBMLGG,

KIPAN, THCA, and PRAD. These results suggest that the

correlation between ESPL1 and immunity is extremely strong in

KIPAN, GBMLGG, and THCA; in these tumors, more immune-

related validation is needed.
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3.5 Correlation between ESPL1 expression
and tumor heterogeneity

Cons ider ing tha t TMB and MSI corre la ted wi th

immunotherapy efficacy, we further assessed the correlation

between ESPL1 expression and TMB and MSI. Immune

checkpoint inhibitor sensitivity is associated with high tumor

mutational burden (TMB), Figure 6A shows the information of

TMB with ESPL1 expression in each cancer. The results

indicated that TMB posit ively correlated with ESPL1

expression in DLBC, CHOL, ACC, LUAD, KICH, PRAD, LGG,

STAD, PADD, BRCA, SARC, and READ. Surprisingly, there was

a statistically negative correlation between the expression of

ESPL1 and TMB in THYM, with high expression of ESPL1

being associated with a better prognosis. The instability of

microsatellites results from defects in the mismatch repair

system, resulting in hypermutation patterns. MSI is often used

to guide treatment, such as in colorectal cancer, where immune
B C

D E

A

FIGURE 5

The effect of ESPL1 on immunological genes in pan-cancers. Correlation between ESPL1 and (A) immunostimulators, (B) chemokines, (C) receptors,
(D) Immunoinhibitor and (E) MHC. *p<0.05, **p<0.01, ***p<0.001.
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checkpoint blockade treatment decisions are made based on a

patient’s MSI status. From Figure 6B, we can find that MSI

showed a significant negative correlation with the expression of

ESPL1 in DLBC and a positive trend in LUSC, ACC, and STAD.

Previous studies have reported that homologous recombination

deficiency will produce specific and quantifiable genomic

changes, and the HRD status is a key indicator of treatment

and prognosis in many tumors (21, 41, 42). After analyzing the

relationship between HRD and ESPL1 expression, we found that

HRD increased with the increase of ESPL1 expression in 22 types

of tumors (Figure 6C). Mutant-allele tumor heterogeneity

(MATH) is an algorithm for assessing tumor heterogeneity,

wi th h igher MATH values ind ica t ing h igher tumor

heterogeneity (26, 43). This study explored the relationship

between MATH and ESPL1 expression and found a significant

correlation in 14 tumors, with a positive correlation in 10 tumors
Frontiers in Immunology 10
and a negative correlation in four tumors (GBMLGG, LGG,

KIPAN, and THCA) (Figure 6D).
3.6 Enrichment analysis of ESPL1

To further explore the molecular mechanisms and functions of

the ESPL1 gene in tumorigenesis, enrichment analysis was

performed to screen for ESPL1-related proteins and pathways.

First, protein–protein interaction (PPI) network analysis was

performed using STRING, and the top 30 genes associated with

ESPL1 were obtained (Figure 7A). After KEGG analysis of these

genes and drawing Sangchi map, it was found that the pathways

significantly associated with tumor were enriched in cell cycle, the

AMPK signaling pathway, and the PI3K Akt signaling pathway

(Figure 7B). Next, we performed gene ontology (GO) enrichment
B

C D

A

FIGURE 6

Correlation of ESPL1 with tumor heterogeneity. Correlation between ESPL1 expression and (A) TMB, (B) MSI, (C) HRD and (D) MATH. TMB, tumor
mutational burden; MSI, microsatellite instability; HRD, homologous recombination deficiency; MATH, mutant-allele tumor heterogeneity.
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analysis with regard to biological processes, cell components, and

molecular functions (Figure 7C). In addition, we combined the

expression data of all TCGA tumors and identified the top 200

genes most related to ESPL1 expression (the list of the top 200

similar genes is provided in Supplementary Table 3). We then

analyzed the correlation between the first ten similar genes and

ESPL1 and found that all were significantly positively correlated

with ESPL1 expression (Figure 7D). Moreover, the KEGG

enrichment results showed that the 200 genes were mainly

associated with cancer-related pathways, including cycle, DNA

replication, and mismatch repair (Figure 7E). To further explore

the biological functions of down-regulated ESPL1-related proteins,

we obtained the top 200 genes negatively correlated with the
Frontiers in Immunology 11
expression level of ESPL1. We performed enrichment analysis on

these genes (Supplementary Tables 4, 5). However, these 200 genes

showed no statistically significant enrichment in the terms or

pathways identified in the KEGG or GO analyses. No terms with

an FDR<0.05 were enriched for BP, MF, and CC. This set of 200

genes may have lacked annotations in the enrichment analysis or

may not be involved in any specific biological functions.
3.7 Drug sensitive analyses of ESPL1

Furthermore, GDSC and CTRP, two of the largest tumor-

related drug databases, were utilized to discover drugs that target
B

C D

E

A

FIGURE 7

Enrichment analysis of ESPL1-related partners. (A) PPI analysis of ESPL1. (B) Sankey diagram of KEGG pathway analysis results. (C) GO functional
classification. (D) Heat map of ESPL1 correlations with the top 10 similar genes in different cancer types. (E) Volcano plot of KEGG results for 200
similar genes. PPI, protein-protein interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes. BP, biological process. CC, cellular component.
MF, molecular function. FDR, false discovery rate.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1138077
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2023.1138077
tumors with high ESPL1 expression. the CTRP database indicated

that GSK-J4 (R= -0.471) and BRD-K30748066 (R= -0.469) were the

most negatively correlated with ESPL1 expression (Figure 8A).

Figure 8B shows the top 20 drugs negatively correlated with high

ESPL1 expression via GDSC, with NPK76-II-72-1 (R= -0.318)

being the most negatively correlated. Using the intersection, we

identified twelve medicines that appeared in both datasets

(Figure 8C). Three medications that impede the cell cycle or

induce apoptosis are among the most remarkable findings from

comparing the data. PHA-793887 is a strong CDK inhibitor with

anti-cancer effects on the cell cycle (44). The activation of

procaspase-3, which promotes apoptosis, is the approach through

which Procaspase activating compound 1 (PAC1) kills cancer cells

(45). AZD-7762 is a checkpoint kinase inhibitor that inhibits tumor

proliferation and growth by targeting Chk1 and Chk2 (46).

Coincidentally, ESPL1 is a critical cell cycle regulator, and as

ESPL1 expression rises, so does the drug sensitivity of the cell

cycle inhibitors list above.

Therefore, we determined the connection between ESPL1

expression and these three small molecule inhibitors using

colorectal cancer patient-derived organoids. Figures 8D–F show

the molecular structures from PubChem of PHA-793887, PAC1,

and AZD-7762, respectively. Figure 8G depicts images of the

organoids in normal culture before and two days after adding the

drugs (days 0 and 2). The normal growth of the organoid had a

circular form with a maximum diameter of 200 mM; however, the

addition of drugs resulted in a considerable reduction in roundness,

fragmentation, and darkening. Figure 8H shows the distribution of

the expression of ESPL1 in 12 cases of organoid. The expression of

ESPL1 varied greatly, with the maximum expression of PDO#6

being 57 times higher than the lowest expression. By analyzing the

link between drug sensitivity and ESPL1 expression in the

organoids, we determined that the IC50 of the three drugs

reduced dramatically with increasing ESPL1 expression

(Figures 8I–K). We also discovered that the IC50 of PHA-793887

varied widely between organoids, with the greatest IC50 reaching

179 mM (PDO#10) and the lowest reaching only 6.6 mM (PDO#06).

To investigate whether ESPL1 is a direct target of PAC1, AZD-

7762, and PHA-793887, we performed IC50 assays after knocking

down ESPL1 expression in HCT116 and SW620 cell lines. As shown

in the Supplementary Figure 5, there was no significant change in

the IC50 values of the three drugs after ESPL1 knockdown. Only in

SW620, the IC50 of AZD7762 was reduced after knockdown using

s i1 , which was unexpected and may contradict our

initial hypothesis.
3.8 Knockdown of ESPL1 impact on
proliferation in vitro

A total of 8 types of cell lines, including colorectal, liver, lung,

and cervical cancer, were used to verify the impact of knockdown

ESPL1. ESPL1 is highly expressed in these cancers, and the
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prognosis is worse for high expression. Initially, we inhibited the

expression of ESPL1 in these cell lines using siRNA and confirmed

the results at the mRNA level (Figure 9A). We found that cell

proliferation in both cancer cell lines was significantly inhibited

following interference with ESPL1 expression (Figure 9B). This

conclusion is consistent with expectations, as ESPL1 is a critical

gene involved in cell division, and its suppression has a definite

effect on cell proliferation.
4 Discussion

The cell cycle represents a series of tightly integrated events that

allow the cell to grow and proliferate (27). Notably, cancer represents

a dysregulation of the cell cycle so cells that overexpress cyclins or do

not express the CDK inhibitors continue to undergo unregulated cell

growth (27, 47). ESPL1 encodes separase, a protein that regulates the

cell cycle and plays an important role in the process of chromosome

segregation. Previous studies have confirmed that ESPL1 is an

oncogene that is overexpressed in many human cancers of breast,

bone, brain, and prostate (48, 49). However, although researchers

have gained some insight into the cell cycle regulation by ESPL1,

more is needed to know whether and how it drives tumorigenesis,

progression, and metastasis.There are no relevant pan-cancer

analyses to date. Overall, as a key cell cycle-associated gene, the

potential role of ESPL1 in carcinogenesis and cancer development is

worth investigating.

First, we investigate the relationship between ESPL1 expression

and the prognosis for survival of common cancers. Comparing

cancer tissues to normal tissues revealed that ESPL1 was highly

elevated in a number of malignancies. This could be due to the fact

that upregulation of ESPL1 promotes cell cycle progression,

resulting in a rapid increase in cell proliferation. Moreover, by

comparing the expression of ESPL1 in various clinical stages, we

discovered that ESPL1 expression increased as pathological stages

progressed. Interestingly, as the disease advanced in SKCM and OV,

ESPL1 expression decreased, particularly in SKCM, where patients

with high ESPL1 expression had a poorer prognosis. However, the

tumor stage was negatively correlated with the expression of ESPL1,

a phenomenon that deserves further study. Kaplan-Meier and

univariate Cox regression analyses revealed that upregulation of

ESPL1 expression was associated with poor prognosis. Using the

optimal cutoff value, we found that high expression of ESPL1 was

significantly associated with poor prognosis in 18 different types of

cancer. To avoid sample size imbalance, we ensured that the sample

size of each group was at most 60% of the total sample size after

grouping, thus ensuring comparability and statistical significance

between the two groups. However, high ESPL1 expression was

associated with better OS prognosis in THYM patients, implying

that ESPL1 may be protective in this cancer. However, the PFI of

THYM predicted by ESPL1 did not statistically distinguish a better

prognosis, suggesting that additional confounding factors

influenced the prediction of OS by ESPL1 in THYM. Through
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multivariate analysis that integrates clinical information, ESPL1

remains a prognostic risk factor in multiple types of cancer. We

hypothesized that ESPL1 expression is a reliable indicator of

prognosis. Using ROC, we obtained an AUC of 0.7+ in ACC,

MESO, KICH, KIRP, LGG, PCPG, GBM, THYM, and UVM for

predicting 5-year survival.

It is worth noting that cancers develop in complex tissue

environments, the tumor microenvironment, which they depend

upon for sustained growth, invasion, and metastasis (50). TME
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consists of three critical components: tumor cells, stromal cells, and

ECM (51). This study also integrated, for the first time, the

correlation between ESPL1 expression and the tumor

microenvironment. Results demonstrated that high expression of

ESPL1 in THYM showed a positive correlation with various CD4+

T cells, and a negative correlation with epithelial cells and

macrophages. However, most other cancers showed a negative

correlation with CD4+ T cells, which may be one of the reasons

why the high expression of ESPL1 in THYM exhibited a better
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FIGURE 8

The relationship between ESPL1 and drug sensitivity. The drugs with the strongest correlation in ESPL1 expression were in the (A) CTRP and
(B) GDSC databases. (C) Venn diagram of the results of the two databases. (D-F) The three-dimensional structure of drugs in PubChem. (G) Patient
derived organoids (PDO) before and after coculture with drugs. Scale with 500 mM. (H) Expression level of ESPL1 in 12 PDOs. Correlation of ESPL1
expression in organoids with IC50 of (I) PHA793887, (J) PAC-1 and (K) AZD7762.
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prognosis. Moreover, we found that Th2 cell was positively

correlated with ESPL1 expression in the majority of tumors.

The ESTIMATE algorithm has been shown to predict tumor

purity and reflects the characteristics of TME. Most tumor scores

decreased with the increase in expression of ESPL1, but the opposite

was true for THCA. The three scores were positively correlated with

ESPL1 expression, and most cells in the TME were positively

correlated with ESPL1 expression; in THCA, ESPL1 may affect

immunity through a different mechanism. The immune score

reflects the number and functional status of immune cells

infiltrating the tumor microenvironment, including T cells, B cells,

plasma cells, natural killer cells, and others. By using Immune Score,

we can obtain information about the immune infiltration in the

tumor microenvironment. XCELL, on the other hand, provides a

detailed evaluation of each type of immune cell present in the

microenvironment. In summary, these two algorithms can help us

understand the relationship between ESPL1 and the tumor

microenvironment from a macro and cellular level.
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A slight association between TME cells and ESPL1 expression

was found in UCS and CHOL, which implies that ESPL1 is not a

suitable TME therapeutic target in these two tumors.

The same conclusion was obtained in the pan-correlation

analysis, which explored the association between immune-related

genes and ESPL1. The analysis showed that the correlation between

ESPL1 and immune-related genes in USC and CHOL was not

strong, suggesting that the effect of ESPL1 on these two cancers is

not through the immune function. CD276 belongs to the

immunoglobulin superfamily and participates in the regulation of

T-cell-mediated immune response. We found that CD276 is

statistically correlated with ESPL1 in a variety of tumors and that

there may be an intrinsic link between them. ULBP1 is a ligand of

NKG2D, an immune system-activating receptor on NK cells and T-

cells. here was also a significant co-expression relationship between

ESPL1 and ULBP1; ESPL1 could be involved in the immune

regulation of tumors. Notably, ESPL1 was negatively correlated

with immune-related genes in LUAD, LUSC, STAD, THYM, SARC,
B

A

FIGURE 9

Interference with ESPL1 expression inhibits cell proliferation in a variety of cell lines. (A) Validation of siRNA interference efficiency. (B) Cell
proliferation curves following interference with ESPL1 expression in eight different cell lines.
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GBM, and TGCT. High expression of ESPL1 was associated with

better survival in THYM, suggesting that ESPL1 may influence

patient prognosis by affecting immunity.

The TMB, MSI, MATH, and HRD are indicators of tumor

heterogeneity and can be used to guide application of tumor

immunotherapy. In THYM, the expression of ESPL1 was

negatively correlated with TMB, while high expression of ESPL1

was coincidentally associated with a better prognosis. This may

indicate that ESPL1 could decrease TMB and thus improve patient

survival, but further validation is required. In BLCA, STAD, and

LUSC, ESPL1 expression was positively correlated with TMB and

MSI, suggesting that these tumors may show good response to

immunotherapy. In LUSC and BLCA, ESPL1 was also positively

correlated with MATH, HRD, and all the four indicators suggesting

that target ESPL1-targeted treatments may be effective in LUSC

and BLCA.

Analysis of GDSC and CTRP databases identified drugs

negatively correlated with ESPL1, suggesting that tumor cells with

high ESPL1 expression are likely to be more sensitive to these drugs.

GSK-J4 is a potent dual inhibitor of H3K27me3/me2-demethylases

JMJD3/KDM6B and UTX/KDM6A. GSK-J4 inhibits LPS-induced

TNF-a production in human primary macrophages and can induce

endoplasmic reticulum stress-associated apoptosis. GSK-J4 is

thought to be effective in diffuse intrinsic pontine glioma (DIPG)

(52), and the drug sensitivity of GSK-J4 is enhanced with increased

expression of ESPL1. Perhaps it is feasible to use ESPL1 as an

indication for GSK-J4 in DIPG. BRD-K30748066 is a CDK9

inhibitor, a member of the cyclin-dependent protein kinase

(CDK) family. This correlation is consistent with the function of

ESPL1. A total of 12 drugs were shown to be more sensitive in

cancer cell lines with high ESPL1 by correlation analysis of the two

drug databases. Interestingly, a variety of mTOR inhibitors were

involved, including AZD-8055, OSI-027 and PI-103. In addition,

pro-apoptotic and cell cycle inhibiting drugs are also listed,

including PHA-793887, PAC-1 and AZD-7762. Through

organoid drug sensitivity testing, we confirmed that the

expression of ESPL1 was statistically linked with PHA-793887,

PAC-1, and AZD-7762, and that the expression of ESPL1 in

colorectal cancer patient tissues may indicate the use of these

drugs. In patients with high ESPL1 expression, certain drugs may

be more effective. However, interference with ESPL1 expression in

cell lines should lead to increased drug resistance. The absence of

this trend may indicate that ESPL1 does not directly affect the

response to these three drugs. The relationship and mechanisms

between ESPL1 expression levels and PAC1, AZD7762, and

PHA793887 deserve further investigation and discussion.

Finally, through in vitro studies, we demonstrated that ESPL1

can impact the proliferation, which is concordant with the

bioinformatics results.

In conclusion, this study demonstrates the potential of ESPL1 as

a cancer biomarker in various malignancies, with high expression of

ESPL1 associated with worse prognosis in multiple cancer types and

immune infiltration. Additionally, ESPL1 expression is associated
Frontiers in Immunology 15
with TMB, MSI, MATH, and HRD in several cancer types,

suggesting a connection with tumor heterogeneity. We assessed

drug sensitivity using organoids and found that those with high

ESPL1 expression were more vulnerable to cell cycle inhibitors.

Therefore, ESPL1 could serve as a marker for cancer therapy. In

vitro assays confirmed that interference with ESPL1 can affect cell

proliferation. Nonetheless, the study has some limitations,

including the small sample size for organoid drug sensitivity tests,

which may lead to bias. Future research should further investigate

ESPL1 in other malignancies.
5 Conclusions

Through the use of public data mining, we were able to confirm

that ESPL1 is an oncogene, that it can serve as a prognostic marker

for several cancers, that it can be used to direct cancer medication

therapy in patient derived organoids, and that ESPL1 knockdown

can limit cell growth in vitro.
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SUPPLEMENTARY FIGURE 1

Relationship between ESPL1 expression and pathological staging. ns. not

significant; *, p<0.05; **, p<0.01; ***, p<0.001.

SUPPLEMENTARY FIGURE 2

Validating the aberrant expression of ESPL1 through GEO. (A, B) Cervical
cancer. (C, D) Liver cancer, (E, F) Lung cancer, (G, H) Colorectal cancer.

SUPPLEMENTARY FIGURE 3

Relationship between ESPL1 expression and clinical information. (A) Box plots
showing the relationship between ESPL1 expression and age. (B) Box plots

showing the relationship between ESPL1 expression and gender.

SUPPLEMENTARY FIGURE 4

Multivariate survival analysis based on ESPL1 expression and multiple
clinical information.

SUPPLEMENTARY FIGURE 5

The IC50 values of HCT116 and SW620 cells after siRNA-mediated

interference of ESPL1 expression. (A and C) IC50 curves of three drugs in
HCT116 and SW620 cells. (B and D) Column chart comparing IC50 values.
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W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

30. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for
large-scale expression profiling and interactive analysis. Nucleic Acids Res (2019) 47
(W1):W556–w60. doi: 10.1093/nar/gkz430

31. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive
analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol
(2016) 17(1):174. doi: 10.1186/s13059-016-1028-7

32. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-
infiltrating immune cells. Nucleic Acids Res (2020) 48(W1):W509–w14. doi: 10.1093/
nar/gkaa407

33. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A web server for
comprehensive analysis of tumor-infiltrating immune cells. Cancer Res (2017) 77(21):
e108–e10. doi: 10.1158/0008-5472.CAN-17-0307

34. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis
toolkit with revamped UIs and APIs. Nucleic Acids Res (2019) 47(W1):W199–w205.
doi: 10.1093/nar/gkz401

35. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an r package for comparing
biological themes among gene clusters. Omics (2012) 16(5):284–7. doi: 10.1089/
omi.2011.0118

36. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al.
Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker
discovery in cancer cells. Nucleic Acids Res (2013) 41(Database issue):D955–61. doi:
10.1093/nar/gks1111

37. Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, et al. A
landscape of pharmacogenomic interactions in cancer. Cell (2016) 166(3):740–54. doi:
10.1016/j.cell.2016.06.017

38. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, et al.
Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature
(2012) 483(7391):570–5. doi: 10.1038/nature11005

39. Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, et al.
Harnessing connectivity in a Large-scale small-molecule sensitivity dataset. Cancer
discovery. (2015) 5(11):1210–23. doi: 10.1158/2159-8290.CD-15-0235
Frontiers in Immunology 17
40. Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, et al. An
interactive resource to identify cancer genetic and lineage dependencies targeted by
small molecules. Cell (2013) 154(5):1151–61. doi: 10.1016/j.cell.2013.08.003

41. Casolino R, Paiella S, Azzolina D, Beer PA, Corbo V, Lorenzoni G, et al.
Homologous recombination deficiency in pancreatic cancer: A systematic review and
prevalence meta-analysis. J Clin Oncol (2021) 39(23):2617–31. doi: 10.1200/
JCO.20.03238
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