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Immune-related pulmonary
toxicities of checkpoint inhibitors
in non-small cell lung cancer:
Diagnosis, mechanism, and
treatment strategies

Xinyu Guo, Shi Chen, Xueyan Wang and Xiaowei Liu*

Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of
Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
Immune checkpoint inhibitors (ICI) therapy based on programmed cell death-1

(PD-1) and programmed cell death ligand 1 (PD-L1) has changed the treatment

paradigm of advanced non-small cell lung cancer (NSCLC) and improved the

survival expectancy of patients. However, it also leads to immune-related

adverse events (iRAEs), which result in multiple organ damage. Among them,

the most common one with the highest mortality in NSCLC patients treated with

ICI is checkpoint inhibitor pneumonitis (CIP). The respiratory signs of CIP are

highly coincident and overlap with those in primary lung cancer, which causes

difficulties in detecting, diagnosing, managing, and treating. In clinical

management, patients with serious CIP should receive immunosuppressive

treatment and even discontinue immunotherapy, which impairs the clinical

benefits of ICIs and potentially results in tumor recrudesce. Therefore,

accurate diagnosis, detailedly dissecting the pathogenesis, and developing

reasonable treatment strategies for CIP are essential to prolong patient survival

and expand the application of ICI. Herein, we first summarized the diagnosis

strategies of CIP in NSCLC, including the classical radiology examination and the

rising serological test, pathology test, and artificial intelligence aids. Then, we

dissected the potential pathogenic mechanisms of CIP, including disordered T

cell subsets, the increase of autoantibodies, cross-antigens reactivity, and the

potential role of other immune cells. Moreover, we explored therapeutic

approaches beyond first-line steroid therapy and future direction based on

targeted signaling pathways. Finally, we discussed the current impediments,

future trends, and challenges in fighting ICI-related pneumonitis.

KEYWORDS

immune checkpoint inhibitors, immune-related adverse events (IRAE), pneumonitis,
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Introduction

Recent years, with the understanding of tumor immune escape,

multiple immune checkpoints have been identified for cancer

immunotherapy therapy, including PD1/PD-L1, CTLA4, HLA-E/

CD94-NKG2A, etc. (1–4). Non-small cell lung cancer (NSCLC) is

the highest proportion of all lung cancers (80% - 85%) (5). Once

diagnosed, most of them are in a locally advanced state, and the 5-

year survival rate is less than 3% (6, 7). Immune checkpoint

inhibitors (ICI) therapy has changed the treatment paradigm of

advanced non-small cell lung cancer (NSCLC) and prolonged the 5-

year overall survival rate to 23.2% (7–12). However, ICI commonly

induces the disorder of immune homeostasis, which damages

various normal tissues and organs, termed immune-related

adverse events (iRAEs) (13, 14). About 60-80% ICI treated

pat ients suffer iRAEs, including lung, dermatologic ,

gastrointestinal, renal, ophthalmic, neurologic, endocrine,

musculoskeletal, hematologic, and cardiovascular toxicity (15–17).

Patients who suffer severe iRAEs should immediately or even

permanently discontinue ICI therapy due to the higher severity

and recurrence possibility (13).

Checkpoint inhibitor pneumonitis (CIP) is one of the most

severe and life-threatening iRAEs, especially in patients who suffer

from NSCLC. In NSCLC patients, the tumor has destroyed the lung

function, resulting in the patients receiving ICI with a higher risk of

CIP. The incidence of CIP in NSCLC in real-world settings is about

7-19%, which is significantly higher than the incidence of 3-5% in

other tumors, such as melanoma (6, 10, 18–27). In a retrospective

study of 276 NSCLC patients treated with PD-1/PD-L1 inhibitors,

the incidence of CIP is about 15.2% (24). In another study, the

incidence raised to 19% in NSCLC patients receiving anti-PD-1/

PD-L1 therapy (28). The typical characteristics of CIP are dyspnea,

cough, hypoxia, and along with pulmonary infiltrates on chest

imaging. However, accurate diagnosis and treatment of CIP in the

clinic is still challenging. The radiographic images of CIP are varied

and susceptible to interfere by tumors (29). Furthermore, it is

difficult to distinguish CIP from infection, chemotherapy, and

radiotherapy induced pneumonitis. Generally, patients with CIP

are recommended to be treated with steroids. However, in serious

patients, such as Common Toxicity Criteria for Adverse Events

(CTCAE) grade 3 or higher, patients should discontinue ICI

therapy and receive immune-suppressive treatment (30). As a

result, patients with NSCLC, who escaped death from CIP, may

also experience tumor recurrence. Therefore, a great deal of effort

should be focused on the CIP of NSCLC.

In this review, we summarize the diagnosis, pathogenesis, and

treatment strategies of CIP. Except for the multi-angle monitoring

and systemic examination, we talk about the artificial intelligence

(AI) which can aid in the early diagnosis of CIP. We summarize the

possible pathogenic mechanisms, including disordered T cell

subsets, the increase of autoantibodies, cross-antigens reactivity,

and potential role of other immune cells. Moreover, we highlight

the existing and future potential treatment measures for CIP,

including corticosteroids, immunosuppressants, cytokine
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blockade, and signaling pathways inhibition. Finally, we discuss

the current impediments, future trends, and challenges in fighting

ICI-related pneumonitis.
Current and emerging diagnostic
strategies for CIP

Commonly, once ICI-treated NSCLC patients with the

characteristics of CIP, such as dyspnea, cough, and hypoxia,

should be suspected and receive the standard diagnostic

procedure to confirm (Figure 1). The radiological examination is

the common strategy for diagnosing pneumonia. However, the

radiology examination is difficult to distinguish CIP from

common pneumonia caused by radiation, infections, and

chemotherapy drugs. In recent years, a variety of serological

markers, pathological markers, and AI have been developed and

applied to diagnose CIP, which may change the current dilemma

faced in CIP diagnosis.
Radiology examination

Radiology examination is the routine method of diagnosing

pneumonia. The imaging characteristics of CIP are nodular,

reticulation, consolidation, ground-glass opacity (GGO), leaflet

septal thickening, and opaque cord-like structure (31). According

to the American Thoracic Society/European Respiratory Society

(ATS/ERS) classification of interstitial pneumonia, the imaging

characteristics of CIP mainly are nonspecific interstitial

pneumonia (NSIP)-like, cryptogenic organizing pneumonia

(COP)-like, hypersensitivity pneumonitis (HP)-like, and acute

interstitial pneumonia (AIP)/acute respiratory distress syndrome

(ARDS)-like, with COP (65%) being the most common, followed by

NSIP (15%) (31, 32). Moreover, the radiographic classification of

these pneumonia correlated with the clinical severity of pneumonia,

with AIP/ARDS having the highest severity level, followed by COP

(33). Clinically, Suresh et al. found that CIP manifested in a variety

of radiographic modes, from COP to predominantly GGO or

interstitial patterns (26). In this case, due to the wide range of

imaging features of CIP and the lack of typicality, imaging diagnosis

is difficult to distinguish CIP from infection and radiation-induced

pneumonia, which will affect the accuracy of subsequent treatment.
Serologic markers testing

Serologic markers, including cytokines and leukocytes, can be

used to predict and diagnose CIP (34). For example, Lin et al. found

that lung cancer patients with CIP were characterized by increased

levels of IL-6, IL-10, and lactate dehydrogenase, decreased levels of

albumin and absolute lymphocyte count (ALC) (35). Elevated levels

of anti-CD74 autoantibodies have been found to be a potential

predictor of CIP development and may be useful in identifying
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patients who may develop pneumonitis (36). Pavan et al. found that

elevated neutrophil-to-lymphocyte ratio (NLR) and platelet-to-

lymphocyte ratio (PLR) might be associated with the occurrence,

severity, and subsequent prognosis of iRAEs (37). In another study,

researchers found that the decrease in eosinophils was closely

correlated with the CIP, especially for the high grades CIP (38).

Importantly, the ratio of the percentage of eosinophils to the

percentage of eosinophils at the onset of CIP is an essential

marker for distinguishing CIP from pneumonia caused by

bacterial infection and cancer progression (39). Taken together,

serologic markers are extremely beneficial for improving the early

diagnosis and clinical decision-making of CIP, and more research in

this area is needed in the future.
Pathology test

Pathology testing is not necessary for CIP but is valuable to

distinguish CIP from infections radiation, and chemotherapy

induced pneumonia. Naidoo et al. performed lung biopsy on 11

patients, and histopathological examination showed that CIP

manifested as interstitial pneumonia, organizing pneumonia, and

diffuse alveolar injury. Among them, interstitial pneumonia is found

to have an increase in eosinophils and poor granuloma formation

(40). However, in Imran’s study, none of the 6 CIP patients showed

an increase in eosinophils, granulomatous inflammation, or necrosis

(41). This variability may be due to the relative limitation of sample

size, since lung tissue from NSCLC patients is often biopsied through

the bronchial tube. Nevertheless, it is worth expecting that with the

development of pathomics and AI, the limitations caused by the small

sample size can be effectively addressed.
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Artificial intelligence fuels CIP diagnosis

In recent years, AI algorithms integrating multi-omics technologies

have been widely used in cancer screening, diagnosis, and prognosis

prediction, which provides new directions for future CIP diagnosis

(42). Several studies have integrated imaging data, serological data, and

clinical reports data with AI to diagnose and predict CIP in ICI-treated

patients (43). In a retrospective study, by analyzing the CT radiomics

data, Qiu et al. distinguished CIP from radiation pneumonitis in 126

advanced-stage NSCLC pneumonitis (44). Similarly, by systematically

analyzing the baseline chest computed tomography images of patients

with or without CIP, Colen et al. summarized the radiomics features

that could distinguish and predict the risk of CIP with an accuracy of

100% (p=0.0033) (45). In another study, Park et al. proposed the

likelihood of spectroscopy-based serum proteomic features for

predicting the occurrence and prognosis of iRAEs, which assist in

the diagnosis of CIP (46). For real clinical data, Hindocha et al.

developed an informatics algorithm that integrated AI with CT

reports and electronic health records to identify the CIP of ICI-

treated patients and provided new real-world data on the incidence,

severity and management of CIP (47). Moreover, AI algorithms can

process large volumes of data from pathological sections, helping

pathologists to diagnose iRAE (48). For example, by analyzing the

H&E-stained colonic tissue slides, Kobayashi et al. trained a deep

learning model that efficiently identified the colitis, which can be used

to diagnose and classify colitis grades in ICI-treated patients (49).

Although the integration of AI and pathology tests has not been

applied to CIP diagnosis this can’t deny its great potential in the

diagnosis of CIP. Taken together, AI algorithms will greatly improve

the diagnostic efficiency and accuracy of CIP and improve clinical

decision-making.
FIGURE 1

The diagnosis and management procedure of CIP in the clinic.
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Utility of bronchoscopy and
diagnostic strategies

Bronchoscopic alveolar lavage fluid (BALF) can diagnose lung

infection and interstitial pneumonia by changes in immune cells in

the lavage fluid, which is not currently commonly used in the

diagnosis of CIP. However, BALF is a worthwhile option when

atypical infections (e.g., fungi, pneumocystis carinii pneumonia,

viruses) need to be excluded and the cause of CIP needs to be

investigated (30). Studies by Sabino et al. have pointed to the

possibility of BALF in the diagnosis of CIP. They performed

bronchoalveolar lavage (BAL) analysis on five patients with CIP,

which typically showed an increase of lymphocyte and CD8+ T cells

and a reversal of the CD4/CD8 ratio. Moreover, the grade of adverse

events correlated with the degree of CD3+ HLA-DR+ T cell

activation (50). This suggests that changes in immunological cells

in alveolar lavage fluid can guide the clinical treatment of CIP.

Moreover, oxygen saturation, pulmonary function tests, and 6-

minute walk test should be performed on any patient with suspected

pneumonia to assess the specific condition of patient’s lung

function, in which pulmonary function tests can be useful in

monitoring the response to the treatment of patients in the

management of CIP (30, 51). What’s more, the most important

indicator to pay attention to is oxygen saturation, because it can

directly reflect whether the body is hypoxic, which is very important

for the CTCAE rating of pneumonia patients (30).
Mechanisms of CIP

ICIs specifically block the mutual recognition of tumor cells

with T cells and reactivate T cell-mediated cellular immunity to kill

tumor cells (52–54). Simultaneously, these inhibitors also cause

excessive activation of immunity in normal tissues to generate

iRAEs (15, 55). Following is a discussion of the potential

mechanisms of CIP proposed in existing studies.
Disordered T cell subsets

The imbalance of T cell subsets, including the changes of

CD8+ T cells and CD4+ T cells, has been considered involved in

the occurrence of iRAEs. Recently, Suzuki et al. reported that

CD8+ T cells significantly increased in BALF, which is closely

related to the occurrence of CIP (56). The penetration of CD4+ T

cells, represented by Th1 and Th17 cells, has also been

implicated in a variety of iRAEs, including colitis, nephritis,

pneumonia, and dermatological complications (57, 58). In a

systematic study, Kim et al. analyzed the lymphocytes from

BALF of ICI-treated patients. They found T cell clones were

significantly expanded, especially for IFN-g+ IL-17- CD8+ T and

CXCR3+ CCR6+ Th17/Th1 cells, suggesting the expansion of T

cells plays a critical role in CIP (59). In addition, because Treg

cells express CTLA-4, the anti-CTLA-4 antibody can regulate
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Treg cells in the tumor microenvironment and induce iRAEs by

abolishing the inhibitory function of Tregs (60). Suresh et al.

found that the expressions of CTLA-4 and PD-1 on BALF Tregs

in CIP patients were decreased, suggesting that functional

inhibition of Tregs may associated with the occurrence of CIP

(61). Taken together, the increase of activated T cells and the

decrease of suppressor T cells may result in CIP.
Unbalanced inflammatory factors
and autoantibodies

Unbalanced cytokines and autoantibodies secretion are other

induction factors for CIP. The relationship between cytokines and

iRAE was initially observed in melanoma patients who received ICI

therapy. In an ICI-treated melanoma cohort, Lim et al. found that

the levels of plasma cytokines, including G-CSF, GM-CSF,

FRACTALKINE, FGF-2, IFNa2, IL-12p70, IL-1a, IL1, IL-1RA, IL-

2, and IL-13, were associated with the development of advanced

iRAEs (62). Khan et al. demonstrated that CX-C motifera

chemokine ligands (CXCLs) were strongly associated with the

occurrence of iRAEs. Among them, CXCL9, CXCL10, and

CXCL11 bound to the C-X-C motifoligentine receptor (CXCR) 3

to activate T cells, which promotes the progression of iRAE (63).

For the mechanism of CIP, multiple studies manifested that the

increase of inflammatory factors, C-reactive protein (CRP), IL-6,

IL-17, and IL-35, were related to the occurrence of CIP (27, 35). In a

prospective study, Suresh et al. demonstrated that proinflammatory

and chemotactic cytokines in BALF were significantly correlated

with CIP (58). On the other hand, multiple studies have shown

autoantibodies, such as rheumatoid factor (RF), antinuclear

antibodies, and antithyroglobulin, resulted in patients easier to

suffer from iRAE (64, 65). Tahir et al. found that the levels of

anti-CD74 autoantibodies in patients with CIP increased about

1.34-fold, suggesting the increase in autoantibodies is related to CIP

(36). Overall, the increased levels of various cytokines and

autoantibodies may result in CIP.
Cross-antigens reactivity

T cells are activated during antigen cross-presentation, which

may be an important reason for promoting the progression of

iRAEs. This mechanism has been demonstrated in a patient with

fulminant myocarditis who underwent a combination of

ipilimumab and nivolumab, whose tumor cells simultaneously

expressed cardiomyocyte-specific antigens, suggesting a strong

link between antigen cross-presentation and myocarditis (66).

Another study found T cell clones were shared between skin

and tumors in patients with skin-associated iRAEs, which also

suggested the important role of antigen cross-presentation (67).

On the other hand, tumor destruction and lysis caused by ICI

treatment can also cause epitope spread (ES), leading to the

destruction of normal tissue (68). ES has been reported in
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patients who received tumor vaccines, adoptive cell metastasis

therapy, or anti-CTLA-4 therapy (69–71). Although there have

been no definitive studies to prove whether CIP is associated with

the cross-presentation of antigens and ES, this underlying

mechanism cannot be ignored.
Potential role of other immune cells

As essential components of humoral immunity and initial

immunity, B cells and NK cells may also contribute to the

development of CIP. Studies have shown that blockade of the

PD-1/PD-L1 pathway promotes the activation, proliferation, and

secretion of B cells (72). Similarly, Das et al. found that in patients

with anti-CTLA-4 and anti-PD-1 combined therapy resulted in the

levels of circulating B cells decreased and increased the levels of

CD21lo B cells and plasmablasts, which were strongly associated

with iRAEs (73). They found that detecting the changes of B cells in

blood could predict the occurrence of iRAEs. NK cells are a type of

innate immune surveillance cells. Previous studies found NK cells

expre s s ed PD-1 pro t e in and were invo lved in the

immunosurveil lance of tumors (74). When ICIs were

administrated, NK cells were activated and released pro-

inflammatory factors, which further promoted inflammation and

damaged normal lung tissue (75). These results suggest that other

immune cells also regulate the occurrence of iRAEs, and future

research should be focused on this area.
Frontiers in Immunology 05
Management and new treatment
strategies for CIP

If ICI-treated NSCLC patients were diagnosed with CIP, they

need to be assessed for severity in accordance with CTCAE and

carry out hierarchical management (Figure 1 and Table 1) (30).

According to the CTCAE score, CIP can be divided into four grades.

For patients with grade 1 pneumonia, it is recommended to perform

clinical and imaging observations every 3-4 weeks, and monitor

pulmonary function at the same time, review at least every 3 weeks

(76, 77, 79, 97). When grade 2 pneumonitis has developed, further

treatment with high-dose corticosteroids ought to be used. If

higher-grade pneumonia occurs, the ICI treatment needs to be

forbidden for life, and the patient needs to be hospitalized, and the

option of adding infl iximab, tocilizumab, Intravenous

immunoglobulin (IVIG), mycophenolate mofeti l , and

cyclophosphamide need to be considered when high-dose

corticosteroids are not effective (78, 97).
Corticosteroids treatment

Currently, glucocorticoid, an anti-inflammatory drug is the

first choice for the treatment of CIP in clinical (77). For grade 2

pneumonia, the NCCN guidelines recommend the use of

glucocorticoids and empiric antibiotics, where a moderate dose

of glucocorticoid therapy (1-2 mg/kg/d) is selected. If clinical
TABLE 1 Management and treatment strategies of CIP.

Therapy Mechanism Drugs Status of
application Study summary Refs

Corticosteroid
Suppress immune cells and
inflammatory cytokines

(Methyl)
prednisolone

First-line
option

Corticosteroid is the first-line option for the treatment of
CIP recommended by guidelines, and IVIG and
immunosuppressants are recommended for high-grade
refractory iRAEs.

(76–
80)

IVIG

Downregulate B cell function and
antibody production, neutralize
pathogenic autoantibodies already
present in the body

Immunoglobulin Clinical trial

Immunosuppressant
Inhibit immune cell proliferation
and function, reduce antibody
immune response

Mycophenolate
mofetil,
Cyclophosphamide

Clinical trial

Target cytokines

TNF-a inhibitor Infliximab Clinical trial

Ventilatory status improved markedly with the addition of
infliximab in CIP patients who did not respond to
corticosteroid therapy, but in one patient experienced
transient improvement and then worsened.

(81,
82)

IL-6 inhibitor Tocilizumab Clinical trial
Most CIP patients who do not respond to corticosteroid
therapy have significant improvement in clinical
symptoms after treatment with tocilizumab.

(83)

IL-17 inhibitor Secukinumab Clinical trial
Case Reports: seukinumab is effective in treating
psoriasisform dermatologic toxicity.

(84)

IL-12 inhibitor Ustekinumab Clinical trial
Ustekinumab can be used in the treatment of immune-
mediated refractory colitis.

(85,
86)

IL-23 inhibitor
Ustekinumab,
guselkumab

Clinical trial
Both ustekinumab and guselkumab have been shown to
be effective in the treatment of moderate to severe
psoriasis iRAEs.

(85,
86)

(Continued)
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sin.org

https://doi.org/10.3389/fimmu.2023.1138483
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2023.1138483
improvement happens after monitoring gradually, the dose

should be gradually reduced by 5-10 mg/week and continued

for 4-6 weeks to avoid the recurrence of pneumonia, during

which close observation for infection is needed. When the

pneumonitis reaches grade 3 or 4, pulsatile glucocorticoid

therapy is required in most cases, that is, more than 250 mg of

glucocorticoid therapy for several days (7, 77). However, since
Frontiers in Immunology 06
there is no exact clinical trial to determine the optimal duration

of glucocorticoid treatment, clinical treatment at this stage is

often determined based on the patient ’s response to

g lucocor t i co ids . In add i t i on , a re t ro spec t i ve s tudy

demonstrated that glucocorticoid therapy may promote cancer

progression and reduce overall survival, so glucocorticoids

should be used with greater caution (98).
TABLE 1 Continued

Therapy Mechanism Drugs Status of
application Study summary Refs

IL-1 inhibitor Canakinumab Clinical trial
Canakinumab is effective in the treatment of a variety of
autoimmune inflammations and has great potential for
iRAEs treatment.

(87)

IL-5 inhibitor Mepolizumab Clinical trial
Mepolizumab can effectively reduce eosinophil count in
serum and has great potential to become a treatment
option for iRAEs.

(88)

IL-13 inhibitor Tralokinumab Clinical trial
IL-13 is associated with severe iRAEs, and Tralokinumab,
approved for atopic dermatitis, may be the treatment of
choice for severe iRAEs.

(62,
89)

C3a inhibitor
Eculizumab,
ravulizumab

Clinical trial
Eculizumab and ravulizumab are FDA approved for
paroxysmal nocturnal hemoglobinuria and are potentially
valuable for complement-mediated iRAEs therapy.

(90)

GM-CSF Sargramostim Clinical trial
In a phase II trial, the addition of sargramostim to ICI
was found to be effective in reducing gastrointestinal
iRAEs and CIP and improving survival.

(91)

Target integrin a4 integrins inhibitor Vedolizumab Clinical trial
Vedolizumab is approved for inflammatory bowel disease
and has a high safety profile for long-term use, which has
high potential for the treatment of iRAEs.

(92)

Signaling pathways
inhibitor

JAK-associated pathway
inhibitors

Ruxolitinib,
baricitinib,
tofacitinib,
upadacitinib

Clinical trial

Tofacitinib has been reported in five cases of refractory
colitis, myocarditis and arthritis, with a rapid onset of
action and durable responses.

(93,
94)

Oclacitinib

Under
investigation
in clinical trial
NCT05305066

BTK-associated pathway inhibitor

Evobrutinib

Under
investigation
in clinical trial
NCT03934502 Reductions in cytokines like IL-1b, IL-6, IL-12, and IL-17

caused by BTK inhibitiors in some primary autoimmune
diseases may suggests possible mechanism to abrogate
iRAEs.

(95)Acalabrutinib Clinical trial

Tirabrutinib

Under
investigation
in clinical trial
NCT02626026

MNK1/2-associated pathway
inhibitor

Tomivosertib

Under
investigation
in clinical
trials

Tomivosertib can inhibit the expression of multiple pro-
inflammatory cytokines, such as IL-6, IL-17, and TNF-a,
which are correlated with the development of iRAEs.

(96)

mTOR-associated pathway
inhibitor

Sirolimus Preclinical
Studies have shown that sirolimus not only alleviates
colitis by reducing T cell infiltration, but also inhibits
tumor growth.

(14)
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Immunosuppressants treatment

For grade 4 CIP, guidelines indicate when glucocorticoid

therapy is ineffective, other immunosuppressive options should be

adopted, such as IVIG and immunosuppressant therapy (77).

Immunoglobulin can downregulate B cell function and antibody

production and neutralize pathogenic autoantibodies already

present in the body (99). Previous studies have referred to the

overall rise of autoantibodies in the serum of CIP patients, which

can be effectively treated with IVIG (26). For severe iRAEs,

plasmapheresis need to be considered (100) . As for

mycophenolate mofetil and cyclophosphamide, these two drugs

are common immunosuppressants, which can inhibit immune cell

proliferation and function, reduce antibody immune response, and

can be late candidates for high-grade CIP therapy (77). It is

important that if the patient’s symptoms improve after

corticosteroid use but the later dose cannot be effectively reduced,

MMF can be used as steroid sparing agent as well (79).
Targeting secreting cytokines

Recently, several studies have demonstrated that iRAEs are

associated with some specific cytokines, such as tumor necrosis

factor a (TNF-a), IL-6, and IL-17. Inhibiting the production of

cytokines is a promising strategy to treat iRAE, and relevant

inhibitors have been approved to treat iRAE (Table 1). Infliximab

is a monoclonal antibody of TNF-a, which can achieve anti-

inflammatory effect by inactivate and degrade of TNF-a (30). In

the latest updated guidance, infliximab has been recommended to

treat grade 4 CIP. Data from a retrospective study demonstrated

that the use of infliximab was effective in improving CIP, and the

same results were confirmed in a case report (81, 82). Similarly,

tocilizumab, an IL-6 inhibitor used to treat rheumatological and

giant cell arteritis iRAEs, is also recommended by guidelines (30). In

the study of Stroud et al., tocilizumab was used to treat

glucocorticoids ineffective patients and significantly relieved CIP.

They also found CIP patients with the characteristics of elevated

CRP, which could decrease by tocilizumab (83).

Moreover, the therapeutic effect on CIP remains to be explored

for other cytokine blockers. There have been cases of effective use of

the anti-IL-17 monoclonal antibody secukinumab in the treatment

of intestinal and cutaneous iRAEs, although it may promote tumor

immune escape (101). In addition, with the further deepening of

research on the important cytokines IL-12 and IL-23 involved in the

formation of iRAEs, their important role in tumor immunity and

autoimmune diseases has been valued (62, 102). The IL-12/23

inhibitor ustekinumab and the IL-23 inhibitor guselkumab have

been successfully applied to the treatment of psoriasis (103).

Furthermore, the IL-13 blocker tralokinumab has been approved

for moderate to severe atopic dermatitis, and its use in the treatment

of iRAEs remains to be explored (89). Notably, mepolizumab is an

anti-IL-5 monoclonal antibody that has been shown to lower blood

eosinophil counts, which may be used as an adjunct therapy for CIP

(88). Although research evidence about the application of cytokines
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inhibitor in iRAEs is lacking, the development of targeted cytokine

therapies has extraordinary potential.
Targeting signaling pathways - the
future direction

Cytokines often act as messengers by activating signaling

pathways within cells, so to a certain extent, it is possible to achieve

the treatment of iRAEs by targeting signaling pathways. The mTOR

pathway regulates innate and adaptive immune responses and is a key

factor in the regulation of T cell function, and its inhibitor sirolimus is

often used to maintain immune tolerance and prevent organ

transplant rejection (104, 105). In our previous study, we found

that sirolimus not only inhibited tumor growth but also prevented

colitis by inhibiting the infiltration of T cells, suggesting its great

potential for the treatment of iRAEs and tumors (14, 106). The JAK–

STAT pathway is induced by a number of closely related cytokines,

such as IL-6, IL-12, IL-23, and IL-17, which are essential for the

immune mechanisms of autoimmune diseases and cancer

progression. In addition, JAK-STAT pathway is also an important

pathway for IFN regulation of innate and adaptive immunity, and

abnormal IFN signaling has been shown to lead to autoimmune

diseases. Five JAK-STAT inhibitors (ruxolitinib, baritinib, tofacitinib,

oclacitinib, and upadacitinib) have been approved for autoimmune

diseases. Two patients with iRAEs-associated myocarditis and one

patient with iRAEs-associated arthritis have been reported to have

significant remission with tofacitinib, with rapid onset of action and

long-lasting response (107, 108). Evidently, the development of cell

signaling pathway-oriented therapeutic strategies is worth looking

forward to.
Conclusion and prospects

At present, both the diagnosis and treatment of CIP need to be

solved urgently in clinical. The diagnosis of CIP is an exclusionary

diagnosis, and the uncertainty of various diagnostic indicators will

greatly delay the diagnosis and subsequent treatment. Although

imaging techniques, pulmonary function tests, pathology tests, and

serological tests have been applied in CIP diagnosis (34). It is still

urgent to develop new tools with high accuracy for early diagnosis

of CIP. Another critical aspect is the need to focus more on

predicting high-risk CIP for identifying high-risk patients and

subsequent close observation (109). From a treatment perspective,

the timing of ICI treatment discontinuation and initiation of

glucocorticoid therapy, the dosage, usage, and duration of

glucocorticoid therapy need to be investigated (78). In addition,

the existing treatment methods will affect the prognosis of NSCLC

to a certain extent, and whether it can develop effective treatment of

side effects without affecting the process of primary NSCLC is the

key to the current treatment strategy research. Given this situation,

the choice of cytokine antagonists or blockers of signaling pathways

may open a new door for the treatment of CIP, which requires

extensive research to demonstrate.
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