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Asinine milk mitigates stress-
mediated immune, cortisol and
behavioral responses of piglets
to weaning: a study to foster
future interventions in humans
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Introduction: The present study assessed whether asinine milk supplementation

improved the immune and behavioral responses of piglets during an early life

weaning stress event as a model for its future use in humans.

Methods: For this, 48 piglets from 4 different litters were used. At 20 days of age,

piglets were weighed and allocated with their litter and dam into group pens until

28 days of age. Four piglets from each litter were then randomly assigned to

either (1) asinine milk supplementation (n = 16) (2), skimmed cow milk

supplementation (n = 16) or (3) no supplementation (n = 16; control group).

The supplementations were voluntarily administered for 3 days preweaning and 3

days postweaning using a baby bottle. The effects on the weaning stress

response were assessed through salivary cortisol measurements; behavioral

tests such as the open field, novel object end elevated plus maze tests; and

gene expression of HSD11B1, NR3C1 and IL1B in PBMCs, which was determined

by RT−qPCR and normalized to GAPDH and UBB. To test the effect of the

supplementations on weight, milk intake, gene expression, and behavior, a

randomized block design was used with repeated measurements over time by

the PROC MIXED procedure.

Results and discussion: The effects on salivary cortisol were determined using

the ratio between the morning and afternoon concentrations, considering the

time before and after the weaning event. Principal component analysis (PCA) and

Fisher’s test were performed to evaluate the behavior test data. When comparing

salivary cortisol concentrations between the pre- and postweaning periods,
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there was a difference (p < 0.05) between the supplementation groups in the

afternoon period, suggesting that piglets fed asinine milk had lower afternoon

cortisol concentrations postweaning than their counterparts. For the behavioral

tests, the supplementations had no measurable effects. No difference was

between groups pre- and postweaning for the expression of HSD11B2, which

codes for an enzyme that breaks down cortisol. However, the expression of

NR3C1, which encodes the glucocorticoid receptor, was significantly

upregulated in piglets supplemented with cow milk (mean 1.245; p < 0.05).

Conclusion: Asinine milk downregulated 1L1B gene expression, which codes for

an inflammatory cytokine. In conclusion, these results suggest that

supplementation with asinine milk may represent a strategy to diminish the

damage associated with an early life event by modulating IL1B expression and

reducing salivary cortisol levels in piglets undergoing weaning stress. Further

transcriptomic and metabolomic studies may improve our understanding of the

molecular pathways that mediate this systemic immune-mediated response.
KEYWORDS

nutraceutical profile, early-life stress, gut-brain axis, inflammatory cytokine, health
1 Introduction

Early life is a critical developmental window marked by

vulnerability to permanent physiological and behavioral

modulations (1–3), which may be induced by factors such as

exposure to stress, the presence of pathogens and interactions

with other individuals (4).

The effects of early life stressors may be alleviated with

specialized nutrition, even for particularly susceptible individuals

(5–7), for example, by administering vitamin B9, methionine,

choline, betaine (5, 8, 9), folic acid (10–13) and polyunsaturated

fatty acids (PUFAs – omega-3 and omega-6 FAs) (14–18). Some of

these nutrients may interact with gene expression and the

regulation of physiological mechanisms, thus affecting lifelong

physical and mental health (3, 5). However, well-defined

nutritional guidelines for specific categories of infants are still

lacking (19, 20) and the administration of inadequate diets may

exert long-lasting harmful effects (1, 21, 22).

The characterization of vulnerable developmental periods and

the effects of possible interventions may be carried out with animal

models in translational biology studies. In these translational

studies, pigs are notable (23–25) for their similarities to humans

in brain anatomy, neurodevelopmental processes (26, 27) and

immune response (28–30). In piglets, a critical period of

heightened sensibility to stressors, exposure to pathogens and

intensified interactions with conspecifics is weaning. Within

traditional systems, weaning is done abruptly between 21 and 28

days of age (31) and represents a significant challenge to piglets as it

culminates in the end of maternal care (32, 33), changes in food

source (31), exposure to new individuals and environments (34, 35),

exposure to pathogens and procedures such as vaccination and

administration of medication (32, 34, 36).
02
The combination of these factors results in significant stress,

activating the hypothalamus-pituitary-adrenal (HPA) axis and

stimulating the secretion of corticotropin releasing hormone

(CRH), adrenocorticotropic hormone (ACTH) (37, 38) and

glucocorticoid release (39, 40). Among glucocorticoid hormones,

the most important indicator of stress is cortisol (41). Cortisol

action is mediated by binding to glucocorticoid receptors, such as

those encoded by the NR3C1 gene (42–44).

Research has found that dietary characteristics are likely to

coordinate the metabolic, endocrine, and immune functions of the

host (45, 46), under basal and stressful circumstances. In one of the

established mechanisms, research suggests that microbes

communicate with the host, resulting in the production of

hormones and consequent systemic responses (46). Increased

levels of circulating cortisol are known to lead to long-lasting

changes in metabolism, including a decrease in the host’s

immune capacity to fight pathogens (47). These events may lead

to temporary or permanent modulations in physiology, nervous

system functioning, behavior, and immunity in young individuals

(48–50).

Modulation of the immune system has lifelong consequences

and may be studied through molecular biology assays, which are

tools to explore gene expression levels and regulation methods (51).

Recently, studies have focused on the abundance of mRNAs from

peripheral blood mononuclear cells (PBMCs) (52) isolated from

immune cells in whole blood (53), to assess gene expression changes

in response to adverse stimuli associated with stressful events

(54, 55).

The mRNA levels of the IL-1b, IL-6, and TNF-a genes

measured in PBMCs can be used to assess the effects of weaning

stress on the immune system. IL-1b encodes the IL-1b
proinflammatory cytokine, which affects cells and organs and is
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an important mediator of several immunity-related disorders (56–

59). It may also affect the production of glucocorticoids by binding

to receptors in the hypothalamus as well act as agonists of the IL-1

receptor in the vagus nerve, increasing cortisol production in the

adrenal cortex and causing the release of glucocorticoids into the

bloodstream followed by a decrease in the concentrations of mRNA,

decreasing its transcription and increasing gene destabilization (60).

In addition, NR3C1 and HSD11B2 gene expression measurement in

PBMCs can provide information on the impact of stress and

treatment on the glucocorticoid receptor and glucocorticoid

metabolism, respectively. The NR3C1 and HSD11B2 genes, which

encode the glucocorticoid receptor and the 11 b-hydroxysteroid
dehydrogenase type 2 enzyme, are involved in HPA-axis-mediated

stress responses and their dysfunctions (61–63) and may reflect the

effects of challenges such as weaning.

The responses are interrelated, as glucocorticoids also block

posttranscriptional synthesis via cAMP and inhibit the release into

the extracellular fluid, thereby decreasing the presence of

inflammatory cytokines (64). Previous research has demonstrated

that gene expression is also upregulated in piglets (55, 65), and

calves (66, 67) undergoing weaning stress.

The physiological cascade associated with stress responses

affects behavioral responses, including those associated with

affective states. Regarding the study of affective states, there are

several methods to assess them that have been validated in pigs (68).

Behaviors considered to be indicators of anxiety and fear are the

most studied in pigs (69) however, it is important to consider

species-specific responses and mechanisms developed through

evolution or selection (70, 71).

Dietary characteristics are capable of influencing and

coordinating metabolic, endocrine, and immune functions under

basal and stressful circumstances (45, 46), and translational studies

between animals and humans are necessary to better understand the

relationship and interactions between nutrition, the gut microbiota,

neural physiology, and mental health, as well as the potentially

modulatory effects of nutraceuticals particularly under stressful

situations. One such potential nutraceutical is asinine milk, which

has a high concentration of bioactive molecules and it is used to aid

individuals with immunodeficiency and cardiac and psychological

diseases (72–76). Asinine milk has probiotic potential, as it is rich in

lactose, lysozyme (55, 68, 77) and PUFAs (78). Lysozyme exerts

selective action on the gut microbiota (76, 79, 80). PUFAs are found

in high concentrations in brain tissues and influence perceptive,

intellectual and communication functions as well as growth and

developmental processes (81). The ingestion of foods with increased

fatty acid profiles (82) antioxidant capacity (28, 29) and probiotic

activity (82, 83) may positively impact the prevention and control of

neurologic disorders and ensure adequate growth and development

of brain functions.

Asinine milk production is lower when compared to other dairy

animals, asinine milk has nutraceutical properties; its therapeutic

use has been described before (73, 84). Worldwide research aims to

evaluate the properties of asinine milk and its use in human

nutrition. Italy, China, Greece, France, and Kenya have become

focal research points for asinine milk characteristics and nutritional
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quality (73, 85). Asinine milk can be used for therapeutical

purposes, such as a complementary treatment option for

tuberculosis, gastric ulcers, and metabolic diseases (86). to control

coughing and pneumonia or prevent diseases (such as colds) in

newborn children (87). In studies carried out with the elderly, the

ability of donkey milk to modulate immune functions with a short

administration time was proven (88).

Asinine milk possesses a nutraceutical profile, and weanling

piglets are physiologically, emotionally and immunologically

challenged. Therefore, the goal of this study was to assess whether

asinine milk supplementation has the potential to improve immune

and behavioral responses during an early life stress event in pigs as a

model for future interventions in humans.

The effects of supplementation with asinine milk and skimmed

cow milk on the weaning stress response were assessed through

salivary cortisol measurements, behavioral tests, and mRNA

quantification in plasma PBMCs from blood samples.
2 Materials and methods

2.1 Location and ethics statement

The study was conducted in the Department of Preventive

Veterinary Medicine and Animal Health (VPS) (–21,9484694, –

47,4563268) of the School of Veterinary Medicine and Animal

Science of the University of São Paulo (FMVZ/USP), in the city of

Pirassununga, state of São Paulo, Brazil. Field data collection was

carried out between May and June of 2021, and laboratory and

behavioral test analyses were performed between July and November

of 2021. All procedures described in this study were approved by the

Committee for the Use and Care of Animals in Research (CEUA) of

the School of Veterinary Medicine and Animal Science of the

University of São Paulo, protocol n° 8696141117 (ID 007216).
2.2 Animals and housing conditions

Four lactating sows and their litters were chosen for the study.

The criteria for inclusion of animals in the experiment included a

minimum number of 12 piglets per litter and a minimum age of 20

days. In total, 48 piglets from the TopGen Aphrodite® lineage

(Large White x Landrace) were used.

Sows and respective piglets were weighed and identified with

nontoxic animal markers prior to transportation to the

experimental facilities. Random numbers were assigned to the

piglets at weighing, which were used throughout the experiment

to distribute them into supplementation groups. All animals were

then transferred to the experimental facilities.

Sows were housed with only their respective piglets in pens

fitted with a heat lamp and rubber floor mats and were given hay as

enrichment material during the ten days of the experiment. The first

three days of housing were considered an adaptation period, and no

experimental procedures were carried out. After this period, the

experiment began with saliva samplings, behavioral tests, blood
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collection, milk supplementation, and weaning, followed by another

round of saliva samplings, behavioral tests, and blood collection.

Piglets remained with their sows until 28 days of age, after

which the sows were removed from the pens, and the piglets

remained there until 30 days of age.

While sows and piglets were housed together, the sows received

7 kg of specialized lactation feed daily. No feed was offered to piglets

while they were still nursing. Piglets only began receiving ad libitum

nursery feed after weaning, and this feed contained 18% protein,

0.95% lysine and 3,300 kcal DE/kg, as per usual nutrition guidelines

(89). Feed for both sows and piglets was distributed at 07:30 and

18:30 daily. All feed was produced at the University of São Paulo.

Water was supplied ad libitum via nipple drinkers.
2.3 Experimental design, nutritional
characteristics of the supplementation
and management practices applied
to the animals

The experimental design was organized into blocks with four

sows and litters in the pre- and postweaning phases (Figure 1). In

each litter, four piglets each were assigned to the asinine milk

supplementation group (group DM, n = 16), the skimmed cow milk

supplementation group (group CM, n = 16) and the control group,

with no supplementation (group CTRL, n = 16) so that all

supplementation groups were represented in all litters. Piglets in

groups DM and CM were supplemented for 3 days before weaning

and 3 days after weaning. Before the supplementation period began,

all piglets were offered nursing bottles with sugary water to test their

acceptability and to get the animals used to the bottles that would

later be used to offer the supplementation. Piglets that had better

affinity for the bottles were randomly distributed between groups

DM and CM.

The total volume of milk supplementation per day offered was a

constant daily 300 mL for all piglets in groups DM and CM. During
Frontiers in Immunology 04
preweaning, 50 mL was offered six times a day and 100 mL three

times a day postweaning. The bottles were provided to each piglet

until they either drank the entire content or stopped showing

interest in it. The volume of milk left in each bottle after each

supplementation was noted to calculate the individual milk intake

per piglet.

In the three supplementation days preweaning, the sows were

removed from the pens during the supplementation period, as they

did not respond well to the constant presence of the experiment

team inside the pens and sometimes attempted to drink from the

bottles themselves. The sows were kept together in a grass field

adjacent to the pens, with access to shade, mud, food, and water,

and could maintain visual, auditory, and limited physical contact

with the piglets through the mesh pen doors.

The estimated nutritional value of the asinine milk and

skimmed cow milk is shown in Table 1. The volume of milk

offered to the piglets was determined according to previous

studies (90), which reported that the average milk intake for

piglets is between 43.1 mL/nursing at two weeks and 43.9 mL/

nursing at four weeks of age. The volume of milk for each

preweaning supplementation was set at 50 mL to mimic a natural

nursing session.
2.4 Experimental parameters

2.4.1 Salivary cortisol measurement
Saliva was sampled using cotton rolls attached to dental floss to

assess salivary cortisol from piglets. Sampling occurred one day

before the start of milk supplementation and again on the last

supplementation and was carried out at 7h am and 5h pm on both

days. Cotton rolls were offered for the piglets to chew on, and once

soaked with saliva, they were removed from the piglets and placed

in individually identified 15-mL Falcon tubes. During sampling, the

tubes were kept in polystyrene boxes lined with reusable gel ice

packs and stored at –20°C. The cotton rolls were centrifuged to
FIGURE 1

Experimental scheme showing a detailed timeline to assess asinine milk (DM) and skimmed cow milk supplementation (CM) effect on piglets’
behavior, salivary cortisol concentration, and gene expression before and after weaning. Control group (CTRL).
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extract the saliva, and salivary cortisol concentrations were

determined via enzyme-linked immunosorbent assay (91, 92).

2.4.2 Behavioral tests
2.4.2.1 Open field and novel object tests

To assess behavior, the open field and novel object tests were

used as previously described (93, 94), aiming to determine the levels

of fear and exploratory motivation in the piglets. All piglets were

tested two days before supplementation began and again the day

after supplementation ended. The tests were carried out at 8h am

with a combination of an open field and novel object test (lasting

10 min) immediately after the piglet was introduced to the elevated

plus maze test (lasting 5 min) on both days.

On each testing day, piglets were tested in a random order, and

they were brought one at a time from their pens to the test arena

within 30 seconds. Piglets were tested individually and placed inside

the experimental arena (Figure 2A) for 10 minutes. The first 5

minutes inside the arena were the open field test, and afterward, an

object was lowered from the ceiling through a pulley system for the
Frontiers in Immunology 05
5 minutes of the novel object test (Figure 2B). The object used was a

yellow bottle for the preweaning tests and a pink plushie for the

postweaning tests, so that they would not recognize or remember

the object from the previous test. All tests were recorded by a

camera placed in the ceiling directly above the center of the arena,

and the recordings were later analyzed to assess the behavior of each

animal according to an ethogram (Table 2).

2.4.2.2 Elevated plus maze test

The Elevated plus maze test (95) was placed in a room and

surrounded by blue tarpaulin curtains so that piglets in the test

could not see outside of the room. The maze was raised 1 m above

the ground and had four arms of equal length and width (1.2 m and

0.6 m), and two opposite arms had walls of equal height (0.45 m)

(Figure 3). There were rubber mats on the floor along the maze

arms to break the fall of any jumping piglets.

Immediately after the open field and novel object tests, piglets

were placed individually in the center of the maze and left for 5

minutes. The maze was sanitized between piglets to remove traces

of urine or feces. A camera placed above the maze recorded all tests

for subsequent behavior analyses.

The behaviors analyzed in the maze test were based on

previously published works (95, 96), and included the time spent

in the center, time spent in the open arms, time spent in the walled

arms, time standing still or exploring each arm, urinating,

defecating, escape attempts and jumping.

2.4.3 mRNA expression assays
2.4.3.1 Blood sampling

Blood sampling from the piglets was carried out on the day

before the start of supplementation and two days after the end of

supplementation, always starting at 7h am. The order of blood

piglets sampling was randomized on all days. The blood collection

protocol was based on Moreno (97) and was done from the jugular

vein. Approximately 8 mL of blood was collected from each piglet

from the jugular vein. Blood samples were placed into
A B

FIGURE 2

Open field and Novel object test arena (A). The test arena measured 2.75 m x 2.75 m and had markings along the floor dividing the area into 25
similar quadrants (B).
TABLE 1 Means of nutritional values found in samples of asinine milk
and skimmed bovine milk used to supplement piglets before and after
weaning.

Components Skimmed bovine
milk

Asinine

Proteins (% m/m) 2.9 2.94

Total fat (% m/m) 0.5 0.36

Lactose (% m/m) 4.3 4.41

Non-fat solids (% m/m) 8.4 8.00

Total Solids (% m/m) * 8.36

Titratable acidity (lactic acid/100
mL)

0.14 -0.18 0.17

Mineral Fraction (%) * 0.65
The “*” symbol that means the absence of data.
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polypropylene tubes containing EDTA solution, which were

immediately placed on ice and subsequently centrifuged at 2000 ×

g for 15 min at 4°C. Plasma was then stored at -20°C until analysis.

2.4.3.2 RNA isolation and extraction

Immediately after collection, PBMCs were isolated by Ficoll®

gradient (Ficoll-Paque Plus, GE Healthcare, Chicago, IL, USA)

using the methodology described in Pugliesi et al. (86). Briefly,

whole blood was mixed with an equal volume of PBS, and the

solution was layered onto 15 mL of Ficoll-Paque® solution and

centrifuged. After centrifugation, PBMCs were washed with

hypotonic distilled water and lysis solution until a clean pellet

was obtained. The remaining pellet was stored at –80°C in RNase-

free tubes until RNA extraction. The purity of PBMCs was checked

immediately after the procedure by staining fresh isolate samples

with the quick panoptic protocol according to the manufacturer’s

instructions (Table 3). Samples were considered pure when 95% of

the 200 counted cells were polymorphonuclear cells.
Frontiers in Immunology 06
2.4.3.3 RNA extraction and cDNA synthesis

The isolated PBMC samples were thawed on ice, and RNA

extraction was performed using TRIzol™ reagent (Thermo Fisher

Scientific) according to the manufacturer’s instructions. TRIzol (1

mL) was added to each sample, and the pellets were dissolved by

vortexing the tubes for 2–5 min. After a 5-min incubation at room

temperature, 200 µL of chloroform was added to the samples,

followed by vortexing and then a 2-min incubation at room

temperature. The samples were then centrifuged at 12,000 × g for

15 min at 4°C, and the supernatant was transferred to another tube.

After that, 500 µL of isopropyl alcohol was added to each sample,

followed by vortexing and incubating at room temperature for

10 min. The samples were then centrifuged at 12,000 × g for 15 min

at 4°C. One milliliter of 75% ethanol was added to each sample and

centrifuged at 7500 × g for 5 min at 4°C. The supernatant was

removed, and the remaining pellet was stored at –80°C.

Total RNA samples from PBMCs were treated with DNAse I

(Life Technologies, Carlsbad, USA) for 15 min at room temperature

in a 10-mL reaction volume. The concentration of total RNA

extracts was measured using a spectrophotometer (NanoVue, GE

Healthcare, Chicago, USA). The isolated RNA (1.0 mg) was

subjected to reverse transcription (High-Capacity cDNA Reverse

Transcription Kit; Life Technologies) according to the

manufacturer’s instructions, and the cDNA of each sample was

stored at –20°C until qPCR analysis.
2.4.3.4 cDNA synthesis and real-time PCR (qPCR)

Quantification of specific transcripts was performed by real-

time polymerase chain reaction (RT−qPCR) using SYBR Green

(Life Technologies, Carlsbad, CA, USA), and the reactions were

carried out using a Step One Plus apparatus (Life Technologies).

The mRNA abundance of the target genes IL1B, HSD1B2, and

NR3C1 was quantified by quantitative reverse transcription PCR

and normalized in relation to the reference genes (GAPDH and

UBB). The transcripts were selected according to Silva et al. (98) and

the primer sequences are described in Tables 3, 4.

The synthesized cDNA products were used as the template for

real-time polymerase chain reaction (RT−PCR) amplification

(Applied Biosystems, California, USA). The reactions were run in

triplicate on a 96-well plate, which was sealed with a MicroAmp

optical adhesive cover (Life Technologies) before reading. The

thermocycling profile consisted of 40 cycles of 15 s at 95°C for

denaturation and 12 s at 60°C for annealing and extension,

including a previous activation step of 95°C for 10 min. The final

stage included an analysis of the melting curve, verifying the

presence of a single peak in the different PCRs.

The expression of each gene was quantified by determining the

threshold cycle value (CT) for the fluorescence of the SYBR green

dye within the geometric region of the semilog graph generated

during PCR. In the exponential phase of the amplification curve, the

quantity of cDNA is considered to be duplicated in each

amplification cycle. The amplification data were extracted from

the Step One Plus apparatus, and each sample was analyzed through

the LinReg PCR software® for baseline correction, determination of

qPCR efficiency and cycle quantification values (Cq). The geometric
FIGURE 3

Elevated plus maze test adapted (95). The elevated measured 1.2 m
long, 0.6 m wide and 0.45 m high.
TABLE 2 Definitions of behaviors assessed in the Open field and Novel
object tests.

Behavior Definition

Jumping against wall Piglet jumps against the walls of the arena.

Moving Piglet walks in the arena.

Walking in center Number of times the piglet crosses the center of the
arena.

Time in center Time spent by piglet in the central quadrants of the
arena.

Time in edges Time spent by piglet in the edge quadrants of the
arena.

Time in the walls Time spent by piglet to close to the walls of the arena.

Latency Total time spent before piglet interacts with the object.

Interacting with
object

Piglet interacts with the object.

Elimination Piglet urinates or defecates.
Source: adapted from (68, 94, 95).
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mean of the expression of these two housekeeping genes was used

for normalization of the expression of the target genes. Expression

of each gene relative to the expression of the housekeeping genes

was normalized by the comparative Ct method corrected for

amplification efficiency (99).
2.5 Statistical analyses

To test the effect of supplementation on the weight and

consumption of piglets, a randomized block design was used with

repeated measurements over time by the PROC MIXED command

of the SAS Statistical Package (software version 9.3). Comparisons

between means were made by Fisher’s test. For all data, significance

was declared when p≤ 0.05.

In order to test the effect of supplementation on the weight and

milk consumption of piglets, a randomized block design was used

with repeated measurements over time by the PROC MIXED

command of the SAS Statistical Package (software version 9.3).

Comparisons between means were made by Fisher’s test. For all

data, significance was declared when p≤ 0.05.
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Regarding salivary cortisol, the weaning effect was calculated as

the ratio between the salivary cortisol concentrations of piglets

before and after weaning, considering the collection period

(morning (AM) or afternoon (PM) (morning ratio = before

weaning AM/after weaning AM; afternoon ratio = before weaning

PM/after weaning PM). The effect of the collection period was

determined using the ratio between the morning and afternoon

salivary cortisol concentrations of piglets, both before and after the

weaning event (ratio before weaning = AM before weaning/PM

before weaning; ratio after weaning = AM after weaning/PM

after weaning).

Grubbs’ test was performed to determine the presence of

outliers in the raw salivary cortisol values considering the

collection period (morning and afternoon) and the weaning event

(before and after weaning).

Data distribution was determined using the Shapiro−Wilk test.

Subsequently, a nonparametric Kruskal−Wallis and Nemenyi tests

were performed to compare the ratios mentioned previously

between the supplementation groups. The significance level for

the Grubbs’, Kruskal-Wallis, and Nemenyi tests was p ≤ 0.05.

Analyses were performed in R version 4.0.5 (100).
TABLE 4 Swine specific oligonucleotide forward (F) and reverse (R) primer sequence (5’-3’), amplicon length of the evaluated genes, and primer
efficiency in the standard curve on qPCR.

Target name GenBank ID Primer (5’-3’) Amplicon Efficiency (%)

HSD11B2 AF414125
F:5’ GCGAAAGCTTCCCACTGAAC 3’

59 bp 102.63
R: 5’ AGGGTCTGTTTGGGCTCATG 3’

NR3C1 AF141371
F: 5’ GATCATGACCGCACTCAACATG 3’

68 bp 97.11
R: 5’ TTGCCTTTGCCCATTTCAC 3’

IL1B XM_021085847.1
F: 5’ TTTGAAGAAGAGCCCATCATCC 3’

119 bp 97.98
R: 5’ CCAGCCAGCACTAGAGATTTG 3’

GAPDH NM_001206359.1
F: 5´ TCCTGGGCTACACTGAGGAC 3´

123 bp 109.59
R: 5´ ACCAGGAAATGAGCTTGACG 3´

UBB U72496.1
F: 5´ ACCAGCAGCGTCTGATTTTT 3´

92 bp 100.03
R: 5´ CAAGTGCAGGGTGGACTCTT 3´
TABLE 3 Swine specific oligonucleotide forward (F) and reverse (R) primer sequence (5’-3’), amplicon length of the evaluated genes, and primer
efficiency in the standard curve on qPCR.

Variable in time Phase PC1 (%) PC2 (%) Total

In edges

Before

59.0 1.10 60.1

Close to the walls 30.5 36.9 67.4

Central region 10.5 62.0 72.4

In edges

After

7.60 61.8 69.4

Close to the walls 61.4 2.30 63.7

Central region 31.0 35.9 66.9
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Principal component analysis (PCA) was performed to evaluate

how the behavior measures explained the variance of each principal

component in the open field, novel object and elevated plus maze

tests in each phase using the FactoMineR (101) and factoextra (102)

software packages of the R Core Team software (103).

To test the fixed effect of supplementations and phases (before

and after weaning) on piglet behavior, a randomized block design

was also used with repeated measurements over time with the

PROC MIXED command of the Statistical Package SAS (Software

version 9.3). Comparisons between means were made by the

Fisher’s test was used to compare the means.

Data on gene expression that were not normally distributed

according to the Shapiro–Wilk test were transformed to natural

logarithms. Gene expression was analyzed using analysis of variance

(ANOVA) with repeated measures over time using the PROC

MIXED command of the SAS Statistical Package (software

version 9.2) (104), with animal considered a random effect and

supplementation and their interaction considered fixed effects. The

ratio of gene expression after and before supplementation was

compared by ANOVA using the PROC MIXED command (SAS).

Comparisons between groups within a day were made using the

least significant difference test. The results are presented as

arbitrary units.
3 Results

3.1 Body weight and milk intake

There was no effect of treatments on final body weight of piglets

(p > 0.05). The descriptive statistic of milk intake and body weight is

presented in Tables 4 and 5, respectively.
3.2 Salivary cortisol

Regarding salivary cortisol, 20 data points were removed from

the analysis as they were considered outliers in the Grubbs test. The

proportion of outliers removed per group was DM = 6.25%, CM =

12.5%, and CTRL = 12.5%. When comparing groups according to

time collection (morning or afternoon) and using the weaning event

for the ratio (before weaning/after weaning), there was a significant

difference (p < 0.05), where piglets of group DM had a higher

salivary cortisol ratio than that of group CTRL in the afternoon
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period (p < 0.05) (Figure 4). No differences were found in the

remaining comparisons (p > 0.05).
3.3 Behavioral tests

3.3.1 Open field and Novel object test
The first two PCs from the PCA of the behaviors evaluated

before and after weaning explained 92.3% and 95.6% of the total

variation in the data, respectively. PC1 in the phase before weaning

explained 50.5% of the variation, and PC2 explained 41.8%. After

weaning, values of 50% and 45.6% were observed for PC1 and PC2,

respectively (Figure 5).

A difference was observed in the behavioral variables in PCAs

between periods. Edge behavior had little contribution to PC2

before weaning but a significant contribution after weaning. In

contrast, the CW behavior had little contribution to PC2 only

after weaning.

The time spent in the central region (Table 6) was the behavioral

variable that possibly best explained the total variability of the data

before weaning. Most of the ellipses intersect with each other,

indicating that the type of supplementation possibly did not

interfere with the behavioral variables studied in the maze test.

Furthermore, the tests of comparisons between the average pairs of

the climbing the wall, jumping against the wall, and excretion behaviors

as a function of supplementation were analyzed. Only the jumping

against the wall behavior differed (p < 0.05) between the studied

supplementation treatments (Figure 6). This result demonstrates that

the piglets supplemented with asinine milk jumped more against the

wall than the animals in the other supplementation groups before and

after the supplementation phase.

Regarding the findings of the novel object test, no differences

were observed in the latency (supplementation: p > 0.05; phase: p >

0.05) or interaction time (supplementation: p > 0.05; phase: p > 0.3)

of piglets when considering the median values of the

behavioral variables.

3.3.2 Elevated plus maze
The first two PCs from the PCA referring to the behaviors

evaluated before and after weaning explained 78.2% and 70.8% of

the variation in the total data, respectively (Figure 7). Before the

weaning phase, PC1 explained 52.8% of the variation, and PC2

explained 25.4%. After weaning, values of 42.2% and 28.6% were

found for PC1 and PC2, respectively.
TABLE 5 Descriptive statistics of milk intake for piglets in supplementation of asinine milk (DM), skimmed cow milk (CM) and no supplementation
(CTRL).

Group Mean ± SD Minimum Maximum CV (%)

DM 294.67 ± 11.69 258.30 300.00 3.96

CM 243.68 ± 77.27 102.50 300.00 31.71

CTRL – – – –
fron
SD, standard deviation from the mean; CV, coefficient of variation.
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A difference was observed in the PCAs in the response of

variables in relation to the pre- or postweaning period, meaning

that the contribution toward data variability from certain behaviors

was different. For example, the CA behavior contributed similarly to

explaining the variability of PC1 and PC2 before weaning; however,

it did not contribute significantly to PC2 after weaning. On the

other hand, OA behavior had little participation in PC1 after

weaning. The Center variable had a similar contribution in the

PCA in both periods.

Walking behavior and the time spent in the open arm were the

variables that explained most of the total variability in the data. The

points match the PC1 and PC2 scores before and after weaning the

piglets (Table 7). Most ellipses intersect with each other, indicating

that the type of supplementation may not interfere with the

behavioral variables studied in the labyrinth test.

We analyzed the mean values of the behavioral responses of the

piglets in the maze test. We found no differences between the mean

values of the time spent in the behavioral variables: walking, staying

in the center, staying in the open arm, and staying in the closed arm.

Only the immobility behavior differed (p < 0.05) between the

groups that received supplementation compared to the control

group (Figure 8).
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This finding demonstrates that the animals in the control group

performed more movements than the other supplementation groups.
3.4 mRNA expression assays

The expression of the IL-1B gene (Figure 9B) was significantly

downregulated in the group fed asinine milk (mean 8.11 ± 2.14) in

relation to the group supplemented with skimmed cow milk (mean

15.55 ± 2.14) (p < 0.05). No differences when compared to

expression in the control group (mean 14.50 ± 2.62; p > 0.05).

When analyzing the genes related to the stress response by the

HPA axis, there was significant upregulation of the NR3C1 gene in

the group supplemented with cow milk (mean 1.245 ± 0.28) when

compared to the group that received asinine milk (mean 0.299 ±

0.28; p < 0.05) and the control group (mean 0.315 ± 0.28; p < 0.05)

(Figure 9C). Additionally, no significant difference (p > 0.05) was

found between the groups supplemented with asinine milk,

skimmed cow milk and the control group pre- or postweaning for

the expression of HSD11B2 (Figure 9A). See Figure 10 for raw

genetic expression data.
4 Discussion

The absence of differences between groups in weight and milk

intake parameters is possibly explained by the low concentration of

protein and fat in both asinine milk and skimmed cow milk. The

average protein level of asinine milk is 1.5% to 1.8%, and the

concentration of fat is 0.2% to 1.8%, similar to human milk (75,

105, 106).

These results were expected, as supplementation with both

types of milk was not meant to enhance weight gain but to assess

potential changes in stress response modulation at weaning. The

acceptability of both types of milk during supplementation was

considered adequate.

The decrease in salivary cortisol in the afternoon period could

potentially be assigned to the circadian rhythm of cortisol secretion,

in which cortisol is physiologically produced at higher levels in the

morning and lower levels in the afternoon (107). However, this is

probably not the case in this study, as the circadian rhythm of

cortisol in piglets is established at 16 to 20 weeks of age, with the
FIGURE 4

Distribution and comparison results of the salivary cortisol ratio
calculated before and after weaning considering the period of collection
(AM: morning and PM: afternoon) and supplementation treatment of
piglets. Supplementation: DM (asinine milk); CM (skimmed cow milk);
CTRL (Control without supplementation). Statistical description: ns (not
significant, p > 0.05); ** (significant, p < 0.01).
TABLE 6 Descriptive statistics of the piglet’s body weight f (N=16) before (initial) and after (final) supplementation of asinine milk (DM), skimmed cow
milk (CM) and no supplementation (CTRL).

Group Weight Mean ± SD Minimum Maximum CV (%)

DM
Initial 7.22 ± 1.83 4.8 10.3 25.39

Final 8.81 ± 2.66 5.8 14.0 30.27

CM
Initial 7.54 ± 1.89 5.1 10.8 25.10

Final 9.12 ± 2.64 4.0 14.0 28.96

CTRL
Initial 6.79 ± 1.68 4.1 09.9 24.83

Final 8.63 ± 2.56 5.0 13.5 29.67
fron
SD, standard deviation from the mean; CV, coefficient of variation.
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afternoon decrease in cortisol levels only present after 8 weeks

(108), and all piglets in this study were no older than 5 weeks old.

The lower levels of salivary cortisol postweaning in piglets

supplemented with asinine milk could result from various factors

of the milk composition, such as the high concentrations of lactose,

PUFAs and lysozyme (109, 110) which are greater than those of cow

milk. The specific composition of asinine milk could be relevant for

this result, as previous studies have elucidated valuable information.

For example, researchers have demonstrated that lysozyme in

asinine milk represents 21% of the protein fraction (111, 112).

This enzyme is poorly digested in the gastrointestinal tract and acts

primarily at the gut level in microbiota modulation, favoring

healthy compositions (113–115). In addition, microbiota changes

may influence the gut-brain axis (116, 117), potentially protecting
Frontiers in Immunology 10
piglets supplemented with asinine milk from harmful effects caused

by weaning stress.

Another factor that was previously explored involves the fat

profile of asinine milk (118–121). Asinine milk supplementation

provided higher PUFA levels compared to cow’s milk, and these

compounds may also exert modulatory effects on stress responses

(122), having been found to positively alter the stress response of

piglets during weaning (123).

Asinine milk is also rich in lactose, which is an important source

of galactose. This carbohydrate is a key structural element in

complex molecules that are crucial for early development (124),

and may also positively alter the gut microbiota toward profiles that

are compatible with favorable stress responses (125). Lactose may

also influence acceptability, especially in children, explaining why

asinine milk is considered highly palatable (126–128). The ingestion

of palatable foods may reduce stress levels and have mood-altering

effects (129–132) that may have contributed to the lower stress

response in piglets fed with asinine milk.

Moreover, asinine milk oligosaccharides may have the capacity

to modulate the proliferation, apoptosis, and differentiation of

intestinal cells (133, 134) and may assist in brain development

and cognition (76, 124), by being playing a role in the formation of

myelin (++3) and providing sialic acid (++8 ++9) (75, 135).

Nevertheless, additional research utilizing longer supplementation

periods, higher milk volumes and different types of milk are needed

to assess whether they have modulating effects on systemic events

that constitute stress responses. As in this study, the

supplementation time was only 6 days, so there might not have

been enough time to generate greater modulatory effects compatible

with the broad range of health benefits potentially offered by

asinine milk.

Although the salivary cortisol assessments indicate that piglets

fed with asinine milk were less intensely stressed than those in the

other groups, the results from the behavioral tests do not reflect that

finding. All groups performed similarly in the behavioral tests

regarding indicators of fear and anxiety, with the exception of a

single variable: piglets supplemented with asinine milk jumped

against the walls more during the open field/novel object tests in

the postweaning assessments than piglets in the other
BA

FIGURE 5

Principal component analysis (PCA) of the piglet’s behavior in the Open field test before (A) and after (B) weaning (n = 48) submitted to three
supplementations: DM (Asinine milk), CM (Cow skimmed milk) and CTRL (Control without supplementation). Behaviors: Edges (time in edges), CW
(time close to the walls), CR (time in the central region of the Open field test arena).
FIGURE 6

Leaping behavior in the Open field tests of piglets (n = 48)
supplemented with: DM (Asinine milk), CM (Cow skimmed milk) and
CTRL (Control without supplementation) in the phases before and
after weaning. Statistical description: (p > 0.05); *(significant, p <
0.05) by Fisher’s test.
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supplementation groups did in the same period. It is not possible to

tell from this single behavioral variable whether these animals were

more or less stressed than the others.

It is known that in emotional tests, the most basic and common

result of interest is “movement”; however, this can be influenced by

motor output, exploratory drive, freezing, or other behaviors related

to fear, illness, and relative timing in the circadian cycle, among

many other variables (69).

The high concentration of PUFAs in asinine milk, compared to

the other supplementations, could potentially have generated

greater behavioral effects in these piglets, as demonstrated by the

supplementation of medium- and long-chain PUFAs and the

modulation of behavior in piglets in other studies (136).

Another important factor for consideration is that the

behavioral tests in this study were conducted both pre- and

postweaning; therefore, the repetition could have influenced the

reaction of all piglets in the second exposure to the arenas. Animals

exposed to the open field tests a second time tend to be less active

and less explorative and produce fewer vocalizations than those in

their first exposure to the arena (137).
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Other studies using asinine milk to supplement piglets are

unknown, and the use of behavioral measurements to assess the

physiological significance of early changes in the diet on the

developing pig brain is not yet well established (136). Further

studies with varying supplementation times and volumes are

needed to understand the possible modulation mechanisms of the

physiological and behavioral responses of piglets to stress. The

inclusion of asinine milk for a longer period could be a suitable

option, as other studies have found benefits when supplementing

piglets with PUFAs for more than 30 days (138–140).

Regarding the gene expression profiles in response to weaning,

no significant difference in the expression of the 11b-HSD2 enzyme,

which converts cortisol to the inactive form cortisone (141) was

observed, but we did find a significant upregulation in expression of

the NR3C1 gene at postweaning in the piglets fed skimmed cow

milk when compared to both of the other supplementation groups.

In the assessment of salivary cortisol levels, we found that piglets

supplemented with asinine milk had lower cortisol levels

postweaning in the afternoon samples when compared to both of

the other supplementation groups in the same period.
BA

FIGURE 7

Principal component analysis (PCA) of the piglet’s behavior in the elevated plus maze test before (A) and after (B) weaning (n = 48) submitted to
three supplementations: DM (Asinine milk), CM (Cow skimmed milk) and CTRL (Control without supplementation). Behaviors: OA (open arms), CA
(closed arms), Center, Standing and Walking. Ellipses indicates the region with 95% confidence of the data for each treatment.
TABLE 7 Contributions (in percentage) of the variables to the principal components (PC1 and PC2) measured Elevated plus maze test before and after
weaning of piglet’s.

Variable in time Phase PC1 (%) PC2 (%) Total

Open arms

Before

17.7 29.2 46.9

Closed arms 18.3 21.7 40.0

Central region 25.0 1.30 26.3

Walking 16.0 31.3 47.3

Immobility 23.0 16.5 39.5

Open arms

After

0.27 53.5 53.8

Closed arms 29.3 1.89 31.2

Central region 30.2 0.20 30.4

Walking 2.74 44.3 47.0

Immobility 37.4 0.13 37.5
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The upregulation of NR3C1 expression, as observed after

weaning in piglets fed skimmed cow milk, has been noted in

animals that experienced early life stress (142) and in humans

diagnosed with posttraumatic stress disorder (PTSD) (143, 144).

However, this result contradicts the findings of studies on weanling

piglets (54), that reported downregulation of NR3C1 expression in

contrast to high levels of circulating cortisol.

Research on the dynamics of glucocorticoid receptor expression

in response to stress is a relatively new field (145, 146), and further

studies are needed to elucidate the relevance and nature of

glucocorticoids in relation to NR3C1 expression (143, 144).

Moreover, the present results refer to gene transcription, as they

reflect mRNA levels, and may not reflect the effective protein

expression of glucocorticoid receptors or their density in the

central nervous system.

The results of the mRNA expression of NR3C1 did not

correspond to the levels of salivary cortisol from the piglets, as

there were no significant alterations in relation to salivary cortisol

levels in piglets supplemented with skimmed cow milk. Instead, the

group of piglets supplemented with asinine milk presented lower

cortisol levels in the afternoon postweaning in comparison to both

of the other supplementation groups in the same period. We suggest
FIGURE 8

Immobility behavior in the Elevated plus maze tests of piglets (n = 48)
supplemented DM (Asinine milk), CM (Cow skimmed milk) and CTRL
(Control without supplementation) during the period from 25 to 31
days of life. Statistical description: ns (not significant, p > 0.05);
* (significant, p < 0.05) by Fisher’s test.
A B C

FIGURE 9

Analysis of the gene expression of the three evaluated genes (A) HSD11b2, (B) IL-1b, and (C) NR3C1, considering 2ΔΔCt values. Comparison between milk
supplementation DM (Asinine milk), CM (Cow skimmed milk), and CTRL (Control without supplementation) in the post-weaning period. Data represent
averages ± standard error of the mean (SEM). Statistical description: ns (not significant, p > 0.05); * (significant, p < 0.05).
A B C

FIGURE 10

Representation of the gene expression of the three evaluated genes, (A) HSD11b2, (B) IL-1b, and (C) NR3C1, considering 2ΔΔCt values, divided by
supplementation group and weaning event. DM (Asinine milk), CM (Cow skimmed milk), and CTRL (Control without supplementation). Data
represent averages ± standard error of the mean (SEM).
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that these animals experienced a less intense stress response in this

period than that of the piglets fed with skimmed cow milk and the

control group, as the exposure to stressors such as weaning causes

significant activation of the HPA axis, as evidenced by the greater

production of glucocorticoids (147–149).

The significant variation in IL-1B expression profiles between the

experimental groups can probably be attributed to the fact that each

supplemental milk used in the study possesses different nutritional

properties (73, 124, 150), which favored varying intensities of

immune reaction in response to the weaning challenge.

The downregulation of IL-1B expression in PBMCs of piglets

fed asinine milk follows patterns observed in rats that received

asinine milk for 4 weeks, in which these animals presented with

lower serum concentrations of IL-1 and TNF-a (119, 151) and a

lower inflammatory state in muscle tissue when compared to those

of rats that received cow milk or no supplementation. These results

differ from the findings of a study in which asinine milk was offered

to elderly humans, who showed increased levels of plasma IL-1B,

IL-8 and IL-6 (88); however, the latter results were beneficial in the

specific context, as the subjects were immunocompromised.

Additionally, when asinine colostrum and milk were added to

human PBMCs, they showed the potential to modulate the

expression of IL-1B, TNF-a, IL-10, and IL-12 (88, 152).

The fat profile of asinine milk, which contains high

concentrations of PUFAs (124), might have influenced the

downregulation of IL-1B expression observed in this study, as these

fatty acids are generally considered anti-inflammatory (153–155).

Moreover, the lactoferrin content of asinine milk may also have

contributed to this result, as the supplementation of lactoferrin in

suckling piglets for 7 days has been previously associated with a

decrease in IL-1B and TNF-a and an increase in IL-10 concentrations

in the intestinal mucosa, favoring an anti-inflammatory profile (156).

On the other hand, the upregulation of IL-1B expression in the

group fed skimmed cow milk might be related to its lipid

composition, as it contains higher concentrations of saturated

fatty acids (SFAs), which may favor proinflammatory responses

(151), and poor concentrations of bioactive molecules such as

lactoferrin (84), which does not contain lysozyme.

In addition to cytokines, immunoglobulins could also have been

used in this study as a parameter of the immune response during

weaning stress. The concentration of IgA in piglet saliva may be

modulated by stressful situations, reaching values of 500 mg/L to

800 mg/L from basal concentrations of 100 mg/L in the presence of

stress. Future studies may explore the interaction between asinine

milk supplementation and the IgA response during a stress

challenge, such as the weaning period.

Further studies are needed to investigate whether the inclusion

of asinine milk represents an adequate strategy to mitigate the

negative effects of stressful events in early life. Future studies should

consider improvements in the experimental design, such as

supplementation times and concentrations, to determine the

minimum periods and volumes needed that could provide

benefits in relation to the stress response. Studies with varying

amounts of asinine milk and using a larger sample size are needed

to better answer the questions raised. Our study showed that piglets
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that received asinine milk presented lower postweaning blood

cortisol levels; however, further studies are needed to elucidate

the molecular mechanisms involved in the production, secretion

and the receptors involved in this physiological axis, since our data

were inconclusive.
5 Conclusion

Supplementation with asinine milk modulates the increase in

salivary cortisol levels of piglets undergoing the stress of weaning

and may have the potential to improve immunity parameters

without affecting the expressive behavioral response. Therefore,

asinine milk supplementation may benefit human infants, and

further research should explore this possibility. Further studies

should investigate the mechanisms behind the alterations found

in cytokine gene expression and cortisol concentrations, as well as

the changes in other molecules that may be mediated by asinine

milk supplementation.
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