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NR2F6, a new immune
checkpoint that acts as a
potential biomarker of
immunosuppression and
contributes to poor clinical
outcome in human glioma
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Abdallah Badou1,4,5*
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University, Casablanca, Morocco, 2Department of Neurosurgery, University Hospital Center (UHC) Ibn
Rochd, Casablanca, Morocco, 3Laboratory of Research on Neurologic, Neurosensorial Diseases and
Handicap, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco,
4Mohammed VI Center for Research and Innovation, Rabat, Morocco, 5Mohammed VI University of
Sciences and Health, Casablanca, Morocco
Intoroduction: Nuclear receptor subfamily 2 group F member 6 (NR2F6) is a

promising checkpoint target for cancer immunotherapy. However, there has

been no investigation of NR2F6 in glioma. Our study systematically explored the

clinical characteristics and biological functions of NR2F6 in gliomas.

Methods: We extracted RNA sequencing (RNA-seq) data of 663 glioma samples

from The Cancer Genome Atlas (TCGA) as the training cohort and 325 samples

from the Chinese Glioma Genome Atlas (CGGA) as the validation cohort. We also

confirmed the NR2F6 gene expression feature in our own cohort of 60 glioma

patients. R language and GraphPad Prism softwares were mainly used for

statistical analysis and graphical work.

Results:We found that NR2F6was significantly related to high tumor aggressiveness

and poor outcomes for glioma patients. Functional enrichment analysis

demonstrated that NR2F6 was associated with many biological processes that

are related to glioma progression, such as angiogenesis, and with multiple

immune-related functions. Moreover, NR2F6 was found to be significantly

correlated with stromal and immune infiltration in gliomas. Subsequent analysis

based on Gliomas single-cell sequencing datasets showed that NR2F6 was

expressed in immune cells, tumor cells, and stromal cells. Mechanistically, results

suggested that NR2F6 might act as a potential immunosuppression-mediated

molecule in the glioma microenvironment through multiple ways, such as the

recruitment of immunosuppressive cells, secretion of immunosuppressive

cytokines, M2 polarization of macrophages, in addition to combining with other

immune checkpoint inhibitors.
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Conclusion: Our findings indicated that intracellular targeting of NR2F6 in

both immune cells and tumor cells, as well as stromal cells, may represent a

promising immunotherapeutic strategy for glioma. Stromal cells, may represent a

promising immunotherapeutic strategy for glioma.
KEYWORDS

NR2F6, glioma, immunotherapy, glioma progression, immune and stromal infiltration,
immunosuppression, clinical outcome
Introduction

Glioma is the most aggressive and lethal type of the central

nervous system that originates from neuroglial stem or progenitor

cells, with glioblastoma (GBM) being the worst malignant subtype

(1). According to the world health organization (WHO), glioma is

categorized into oligodendroglioma, astrocytoma, glioblastoma,

and mixed gliomas (2); and classified into low grade glioma (I

and II) and high grade glioma (III and IV) (3). Despite multimodal

treatment approaches consisting of maximal surgical resection,

followed by external radiotherapy with concomitant and adjuvant

Temozolomide, there has been relatively little improvement, with a

median overall survival (OS) of less than 15 months, 7 to 8 months

of median progression-free survival (PFS), and a 5-year rate of only

6.8% (4–8). This is profoundly associated with heterogeneous

tumors, with different regions of the tumor exhibiting distinct

cellular and molecular features which facilitate immune evasion

(9, 10). Moreover, high level of immunosuppressive cell infiltration

(e.g., regulatory T cell (Treg), tumor-associated microglia, tumor-

associated macrophages, and myeloid-derived suppressor cells) and

a high prevalence of exhausted T cells represent a significant barrier

to immunotherapies in GBM (11–16). Although, different

immunotherapeutic modalities have been combined with

conventional therapies to enhance the clinical outcomes of GBM

patients, including oncolytic virus, checkpoint inhibitors, vaccines,

T-cell therapy, adoptive T-cell transfer, and chimeric antigen

receptor (CAR) (17), currently, a small percentage of patients

experience more durable responses and are still alive two years

following diagnosis, and in fewer cases, they survive even longer (7,

18, 19). Moreover, immunotherapy is assumed to elicit an anti-

tumor response, PD-1 and CTLA-4 inhibition have shown
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significant effectiveness in treating several solid cancers, such as

melanoma and lung cancer (20–22). However, GBM patients are

refractory to current immunotherapies assessing nivolumab, an

anti-programmed cell death protein 1 (anti–PD-1) therapy, alone

or in combination with radiotherapy and temozolomide (6, 23).

According to recent reports, immunotherapy failure may be related

to upregulation of various immune checkpoints in glioma patients

after blocking the PD1/PDL-1 pathway (24), indicating the

importance of deciphering novel biomarkers for an additive or

synergistic impact on glioblastoma patients to guide and improve

immune-mediated therapy concepts (25, 26).

Recently, NR2F6 has attracted particular interest as a potential

novel immune checkpoint receptor target (27). NR2F6 acts as a

transcriptional repressor in different cell subsets, such as Th0, Th17,

CD4 T cells, and CD8 T cells, by antagonizing the DNA accessibility

of NFAT and AP-1 transcription factors through direct binding to

multiple regions within key cytokine promoter loci such as IL-2,

IFNg, and TNFa (28). Different research has provided an overview

regarding the proper contribution of NR2F6 in the immune

response. Overall, NR2F6 plays a crucial role in cellular

homeostasis and various diseases, including cancer (29–32).

NR2F6 has been reported to be ubiquitously weakly expressed

in resting T cells and highly expressed in effector T cells, where

it triggers an anti-inflammatory response (27). Moreover, NR2F6

is overexpressed in a variety of malignancies, including lymphoma,

head and neck squamous cell carcinoma, acute myeloid leukemia

(AML), colon cancer, and breast cancer (33–37). Consequently,

the researchers found that NR2F6 expression appears to be

associated with quicker tumor progression and worse overall

patient survival (27, 38). Furthermore, evaluating tumor-

infiltrating lymphocytes from non-small cell lung cancer

(NSCLC) patients’ biopsies provides substantial preclinical

evidence that NR2F6 overexpression at the tumor niche produces

effector T cells unable to mount a robust immune response against

malignancy (39). Interestingly, genetic knockout of NR2F6

significantly improves responses to PD-1/PDL-1 cancer immune

checkpoint inhibition (39).

As a promising intra-cellular immune checkpoint inhibitory,

NR2F6 might be a good target for immunotherapy besides those

present on the cell surface. Nevertheless, a rigorous assessment of

NR2F6 involvement in glioma patients has yet to be handled.

Therefore, we set out to explore NR2F6 mRNA profiling in

glioma through 1048 samples. The RNA-sequencing dataset from
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the Cancer Genome Atlas (TCGA) was used as a training cohort,

and our results were validated in an independent cohort using the

Chinese Glioma Genome Atlas (CGGA) dataset and the Moroccan

glioma patient cohort. The present study is the first to clinically,

molecularly, and immunologically characterize NR2F6 expression

in gliomas.
Materials and methods

Clinical samples

A total of 60 tumor samples from glioma patients were collected

from the Ibn Rochd University Hospital, neurosurgery department

from May 2016 to April 2022 (30 specimens of high-grade glioma:

22 glioblastomas, 3 astrocytomas grade III, and 5 ependymomas

grade III and 30 specimens of low-grade glioma: 19 astrocytomas

grade I, 2 astrocytomas grade II, 3 oligoastrocytomas grade II, 5

ependymomas grade II, and 1 xantoastrocytoma grade II) (Table

Supplementary 2). All patients underwent surgery, and fresh tumor

tissue was obtained during surgery. Moreover, none of them

received any chemotherapy or radiotherapy before tumor

resection. Signed informed consent forms were obtained from all

subjects. The Ethical Board of the Ibn Rochd University Hospital of

Casablanca approved this study.
Public data acquisition and preprocessing

From the TCGA dataset, RNA sequencing expression data and

the clinicopathological characteristics from 663 glioma samples

(glioblastoma (GBM) 150 cases, low-grade glioma (LGG) 513

cases) (Table Supplementary 1), were analyzed in our study

(http://cancergenome.nih.gov). In order to corroborate the

findings that we have revealed in the TCGA dataset, 325 glioma

samples from the CGGA dataset were used as a validation cohort

(Table Supplementary 1). CGGA transcriptome sequencing data

were generated using the Illumina Hiseq platform, which is publicly

available (http://www.cgga.org.cn/). The Limma package (40) of R

software was utilized for the normalization of RNA expression

profiles and the batch effect between TCGA-LGG samples and

TCGA-GBM samples was corrected using the SVA package (41).

We established the following criteria for patients screening:

WHO Grade II-III-IV, IDH mutation status, sex, age,

histopathological type, survival status and overall survival data.

As long as the six types of data mentioned above were available, we

would include these subjects in this study, and there are no

additional exclusion criteria.
RNA extraction and cDNA synthesis

Total RNA from 60 fresh biopsies was isolated using Trizol

reagent (Invitrogen, France) (42, 43). We analyzed RNA

concentration and purity with the use of a NanoVueTM Plus

Spectrophotometer (GE Healthcare, UK). The samples were then
Frontiers in Immunology 03
diluted with ultrapure water to ensure that each tube had the

same concentration of RNA. According to the manufacturer’s

instructions, cDNA was synthesized from 1 mg of RNA included

in a 20 ml reaction mixture containing RNase-Free Water Random

Hexamer Primer (Bioline, France) and incubated at 70°C for 5 min.

Afterward, 1 µL RNase-free water, 4 µL Tetro reverse transcriptase

buffer, 0.5 µL RNase inhibitor (Invitrogen, France), 4 µL dNTP (10

mM), and 0.5 µL Tetro reverse transcriptase enzyme (Bioline,

France) were added, followed by incubation at 25°C for 10 min,

then at 45°C for 30 min, and finally at 85°C for 5 min.
Real-time quantitative PCR

The expression levels of NR2F6 and b-Actin were assayed using

fluorescence-based quantitative real-time PCR (RT-qPCR) (SYBR

Green PCRMaster Mix; (Thermo Fischer)). A reagent mixture of 18

µL (7 µL ultra-pure water, 0,5 µL of each primer sequence (forward

and reverse), and 10 µL SYBR Green) besides 2 µL of cDNA were

added to each well of the PCR plate. Instead of cDNA, 2 µL of ultra-

pure water were used in the negative control well. The genes were

amplified under the following conditions: hold stage at 95°C for

10 min, followed by 40 cycles of denaturation at 95°C for 15 s, and

annealing and extension at 60°C for 1 min. The relative expression

level was calculated using the 2^(−DCT) method described by Livak

and Schmittgen (44) and the house-keeping gene b-Actin was used

as an internal reference. At the end of the assay, a melting curve and

electrophoresis were constructed to verify the specificity of

the reaction.

The primers used for qPCR were as follows: b-actin, forward:
5 ′- GAGATGGCCACGGCTGCTT-3 ′ and reverse : 5 ′-
GCCACAGGACTCCATGCCCA-3′, product length was 446 bp,

instead of b-actin, forward:5′-TGGAATCCTGTGGCATCCATGAAAC-
3′ and reverse: 5′-TAAAACGCAGCTCAGTAACAGTCCG-3′, product
length was 144 bp.
CIBERSORT

CIBERSORT is a deconvolution algorithm that characterizes

the cell composition of complex tissue from their gene expression

profiles (9, 45). This method enables the quantification of a specific

cell type abundance and has been verified by fluorescence-activated

cell sorting (FACS) (46). We used CIBERSORT (https://

cibersortx.stanford.edu/) to assess the relative fractions of 22

tumor-infiltrating immune cell types in high and low NR2F6

expression groups, with the algorithm run using the LM22

signature matrix at 1000 permutations. These TIICs included 7 T-

cell types (Tregs, naïve CD4+ T cells, CD8+ T cells, resting memory

CD4+ T cells, T follicular helper (Tfh) cells, gd T cells, activated

memory CD4+ T cells), activated NK cells, resting natural killer

(NK) cells, macrophages (M1 macrophages, M2 macrophages, M0

macrophages), monocytes, resting mast cells, resting dendritic cells

(DC), activated DC, activated mast cells, memory B cells, naïve B

cells, eosinophils, plasma cells, and neutrophils. The sum of all

evaluated immune cell-type fractions equals 1 for each sample.
frontiersin.org
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xCell

xCell, reported by Aran (47), a method based on ssGSEA (single

sample gene set enrichment analysis) that estimates the abundance

scores of 64 cell types, was used to evaluate the proportion of the 12

types of stromal cell: Adipocytes, Endothelial cells, Chondrocytes,

Fibroblasts, MSC, Osteoblast, Pericytes, Preadipocytes, Skeletal

muscle, Smooth muscule, ly Endothelial cells, mv Endothelial cells

and 34 types of immune cell: B-cells, CD4+ T-cells, CD4+ Tcm,

CD4+ memory T-cells, CD4+ naive T-cells, CD8+ T-cells, CD8+

Tcm, CD8+ Tem, CD8+ naive T-cells, Class-switched memory B-

cells, Memory B-cells, NK cells, NKT, Plasma cells, Tgd cells, Tregs,

Th1 cells, Th2 cells, naive B-cells, pro B-cells, Basophils, Dendritic

cells, Eosinophils, Macrophages, Macrophages M1, Macrophages

M2, Mast cells, Monocytes, Neutrophils, Activated dendritic

cells, Conventional dendritic cells, Immature dendritic cells,

Plasmacytoid dendritic cells.
Single-cell level analysis

We obtained GBM single-cell sequencing data (GSE102130,

GSE103224, GSE135437, GSE138794, GSE141383, GSE141982,

GSE148842, GSE162631, GSE163108, GSE70630, GSE139448,

GSE131928) Based on the Tumor Immune Single-Cell Hub

(TISCH) online database (http://tisch.comp-genomics.org/) (48,

49), which was used to classify stromal cells, immune cells, and

malignant cells by hierarchical clustering. Then, NR2F6 expression in

these cells was evaluated, and the results were illustrated by heatmaps.
Identification of differentially
expressed genes

The differentially expressed genes between low-NR2F6 and high-

NR2F6 were performed using limma package with the voom function

(40). We removed genes with low expression levels to correct the

batch effect. We used the calcNormFactors function to calculate the

normalization factor for each patient and the voom function to

perform CPM normalization, adjusted by the TMM method.

Quantile normalization was used to normalize RNA-seq data. The

results are presented as a table of genes ordered by significance (Table

Supplementary 3, 4), and a |log fold change (FC)| > 0.4 and adj. P

value < 0.05 were further conducted as the cutoff criteria for the DEGs

screening. The GO enrichment analysis of DEGs was shown by

heatmap using the visual hierarchical cluster analysis by the web-

based Morpheus software (https://software.broadinstitute.org/

morpheus/). VennDiagram package in R software was used to

identify overlapping DEGs between TCGA and CGGA.
Gene functional and pathway
enrichment analysis

The biological functions and signaling pathways related to

NR2F6 were explored by Gene ontology (GO) and Kyoto
Frontiers in Immunology 04
Encyclopedia of Genes and Genomes (KEGG) analyses using the

Database for Annotation, Visualization, and Integrated Discovery

(DAVID) (https://david.ncifcrf.gov) (50–52). Terms with p-value

<0.05 was considered significantly enriched.
Statistical analysis

The statistical software R (version 4.0.3) and GraphPad Prism 8

software (version 8.0.2) were used for the statistical analysis and

generation of figures. The median value of NR2F6 expression was

considered as the cutoff value to separate patients into the high and

low groups. Survival analysis was conducted using Kaplan-Meier

analysis and the log-rank test. The Wilcoxon Signed Rank test,

Mann-Whitney and unpaired t-test were used for statistical analysis

between two groups, while the Kruskal-Wallis test was applied to

statistical analysis between more than two groups. Non-parametric

Spearman test was conducted to evaluate the correlation of two

variables. All statistical tests were independently performed by two

different scientists, and a p-value less than 0.05 was considered

statistically significant.
Results

High NR2F6 expression was related to
higher tumor malignancy in glioma

To explore the expression pattern of NR2F6 in glioma, we first

assessed NR2F6 expression in 663 RNA sequencing samples

from the TCGA database, according to glioma grades. The

NR2F6 expression level increased with increasing tumor grade

(Figure 1A). The higher expression of NR2F6 was significantly

observed in high-grade versus low-grade glioma tissues (Figure 1B).

We also validated our findings in CGGA database (Figures 1D, E),

as well as in the in-house cohort (Figures 1G, H). IDH mutation

status is a well-established clinically relevant molecular biomarker

of glioma (53). Therefore, we analyzed the NR2F6 expression

pattern based on IDH mutation status. NR2F6 expression was

significantly up-regulated in IDH-wildtype gliomas than IDH-

mutated gliomas in TCGA as well as CGGA and in-house cohort

(Figures 1C, F, I). Taken together, these results indicated that

NR2F6 expression was more prevalent in aggressive glioma. The

correlation between NR2F6 expression and clinicopathological

characteristics of patients with gliomas in the TCGA, CGGA, and

in-house cohorts is presented in Supplementary Tables 1,

2, respectively.
NR2F6 expression was relevant to worse
survival in glioma

As we discussed above, higher expression of NR2F6 was

observed in higher grades of glioma, highlighting the possible

relationship between NR2F6 expression and a poorer prognosis.

Thus, we divided glioma patients into low and high-expression
frontiersin.org
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groups to evaluate NR2F6’s prognostic value. The Kaplan–Meier

curves of the overall survival (OS) of patients with gliomas are

illustrated in Figure 2. As shown, patients with glioma with lower

NR2F6 expression exhibited significantly longer OS compared with

patients with higher NR2F6 expression in both TCGA and CGGA

cohorts (Figures 2A, B). These results indicated that high expression

of NR2F6 conferred worse outcomes in glioma patients.
Frontiers in Immunology 05
Differential gene enrichment analysis
between NR2F6 groups

Since NR2F6 expression in glioma was strongly associated with

malignancy, we inferred that NR2F6 may have important biologic

functions in glioma. The GO functional analysis with DAVIDwas used

to determine the biological role of NR2F6 in gliomas. First, we
B C

D E F

G H I

A

FIGURE 1

Association of NR2F6 expression with clinical glioma parameters in TCGA, CGGA databases, and in in-house cohort. NR2F6 expression level
significantly increases with increasing tumor grade in gliomas (A, D, G). The NR2F6 gene is strongly expressed in high grade compared with low
grade glioma tissues (B, E, H). NR2F6 expression is significantly enriched in IDH wild-type glioma (WT) compared with IDH mutant (Mut) (C, F, I). In
all statistical analyses, p values less than 0.05 were considered statistically significant, **p<0.01; ***p<0.001; ****p<0.0001.
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performed a differential gene analysis between low- and high-NR2F6

expression samples. According to adjusted P < 0.05 and |

log2FoldChange| ≥ 0.4, 2159 genes were identified as DEGs in

TCGA, of which 1127 were downregulated and 1032 were

upregulated (Supplementary Table 3), and CGGA contained 772

DEGs, including 397 downregulated genes and 375 upregulated

genes (Supplementary Table 4). GO Enrichment analysis of

differential genes showed upregulation of many biological processes

related to glioma progression such as extracellular matrix organization,

collagen fibril organization, and angiogenesis. Of note, upregulated

genes were also involved in several immune processes, such as

leukocyte migration, cytokine-mediated signaling pathway, and

inflammatory response. GO terms related to biological processes that

are normal and indispensable, such as neuron projection development
Frontiers in Immunology 06
and nervous system development were downregulated. All the results

mentioned above were shared by the two datasets (Figures 3A, B). In

line with previous studies (27), these results indicate that NR2F6 might

have dual pro-tumor activity in tumor cells and immune cells in the

glioma microenvironment.
NR2F6-related immune signatures
in glioma

To further identify the NR2F6-associated immune signature in

glioma, we downloaded gene sets of the immune system from

AmiGO 2 web portal (http://amigo.geneontology.org/amigo). We

identified 226 overlapping upregulated DEGs in TCGA and CGGA
BA

FIGURE 3

Biological function analysis for NR2F6 in glioma. NR2F6-related gene ontology (GO) terms in TCGA (A) and CGGA datasets (B). Red to blue
represents high to low DEG expression. The samples were ranked according to NR2F6 expression, from high (red color) to low (green color). The
color bars at the right side of the heatmap represent the enriched gene ontology terms of upregulated and downregulated DEGs. DEGs, differentially
expressed genes.
BA

FIGURE 2

Survival analysis of glioma patients based on NR2F6 expression. Kaplan–Meier analysis indicated that high expression of NR2F6 was related to
significantly worse prognosis in glioma patients, in TCGA (A) and CGGA (B) cohorts. Patients were divided into two groups based on the median
value of NR2F6 expression. The red curve represents patients with high expression of NR2F6, and the blue curve represents patients with low
expression of NR2F6.
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datasets, which were ranked according to adjusted P <0.01

(Figure 4A). GO and KEGG enrichment analyses were used to

clarify the biofunctions of these genes. The results showed that

overlapping genes were highly enriched in innate immune response,

T cell receptor signaling pathway, I-kappaB Kinase/NF-kappaB

signaling, and response to cytokines in GO terms (Figure 4B).

The KEGG pathway analysis suggested that NR2F6 may be involved

in TNF signaling pathway, leukocyte transendothelial migration,

Toll-like receptor signaling pathway, NOD-like receptor signaling

pathway, and other immune-related pathways (Figure 4C). These

findings suggest that NR2F6 may be associated with both innate and

adaptive immune responses.
NR2F6 was associated with infiltrating
immune and stromal cells in
glioma microenvironment

To get a better understanding of the relationship between

NR2F6 and the infiltrated cells, we analyzed the proportion of 22

immune cells between high and low NR2F6 expression groups in

both TCGA and CGGA datasets using CIBERSORT software (45).

We compared the analytical results of TCGA (Figure 5A) and

CGGA (Supplementary Figure S1A), where we found a similar

statistically significant difference in the distribution of T cells

follicular helper, monocytes, NK cells resting, NK cells activated,

M0 macrophages, M2 macrophages, and Mast cells activated. The

increase in NR2F6 expression was associated with an increase in the

proportion of T cells follicular helper, NK cells resting, M0

macrophages and M2 macrophages, and a decrease in the

proportion of monocytes, NK cells activated and Mast cells
Frontiers in Immunology 07
activated. This suggests that NR2F6 has a remarkable influence on

the infiltration level of immune cells. To further determine these

findings, we next employed xCell (47) to analyze the correlation

between NR2F6 expression and 46 immune and stromal cell

populations. As shown in Figure 5B and Supplementary Figure

S1B, in both TCGA and CGGA datasets, NR2F6 expression was

significantly associated with immune score, stroma score, and

microenvironment score. NR2F6 was remarkably positively

correlated with the majority of stromal cells, as well as Treg,

macrophages, M2 macrophage phenotype, and neutrophils,

whereas B cells, eosinophils, plasma cells, Th1, Th2, CD8+ T cells,

and CD8+ Tcm were negatively correlated with NR2F6 expression.

These results strongly suggested that NR2F6 has an important

influence on the infiltration of immune and stromal cells in the

glioma microenvironment. The TME plays a pivotal role in tumor

occurrence and development, which may accelerate tumor

deterioration and affect the prognosis. We further used the TISCH

database to analyze NR2F6 expression in TME-related cells. We

found that NR2F6 was expressed in immune cells, malignant cells,

and stromal cells. NR2F6 expression was the highest in malignant

cells and stromal cells in the microenvironment of gliomas

(Figure 6). These findings demonstrated that NR2F6 was closely

related to TME in glioma.
NR2F6 was associated with
immunosuppressive properties

Immunosuppressive cells promote immune evasion by producing

immunosuppressive cytokines in the tumor microenvironment,

resulting in dysfunctional T cells. Our analysis of the tumor-
B C

A

FIGURE 4

NR2F6-related immune signatures in glioma. A total of 226 common upregulated DEGs were identified from TCGA and CGGA datasets (A). Gene
ontology (B) and KEGG pathway analysis (C) of the 226 DEGs. The bar charts represented the P value and the color represented the count. The
vertical axis represents the item name. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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infiltrating immune cells showed that NR2F6 was related to

immunosuppressive cells such as regulatory T cells (Tregs),

macrophages, and neutrophils. Therefore, we postulated that

NR2F6 could be implicated in the immunosuppressive properties of

glioma. To validate this, a correlation analysis was performed to

determine the relationship between NR2F6 expression and critical

immunosuppressive cytokines secreted by Tregs, tumor-associated

macrophages, myeloid-derived suppressor cells, and tumor-associated

neutrophils, as well as chemokines attracting these cells toward
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the tumor (54–56). We found that NR2F6 was significantly

positively correlated with the majority of the chemokines and

immunosuppressive cytokines (Figures 7A, B). TAMs are the most

important immune cells in the glioma microenvironment, which

skew towards an M2 phenotype and play a critical role in

immunosuppression (57, 58). Interestingly, NR2F6 was positively

associated with key factors driving M2 phenotype differentiation

(54, 55) (Figures 7C, D). Taken together, these findings revealed

that NR2F6 might play an important immunosuppressive role in
B

A

FIGURE 5

Analysis of tumor immune and stromal cell infiltration relative to the NR2F6 level in the TCGA dataset. (A) Proportions of the 22 types of tumor-
infiltrating immune cells (TIICs) in different NR2F6 groups. (B) Correlation between NR2F6 expression and xCell scores in gliomas. Each colored
square within the figure illustrates the correlation between NR2F6 and immune, stromal, and microenvironment scores and 46 cell types. blue,
positive correlation; red, negative correlation. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, not significant.
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glioma through recruiting and promoting immunosuppressive cells to

secrete immune-inhibitory cytokines, as well as regulating

M2 transformation.
NR2F6 was correlated with other immune
checkpoint markers in gliomas

Considering the increasing clinical benefits of targeting immune

checkpoints as a combination therapy (59, 60), we enrolled several

immune checkpoint molecules that have been examined in clinical

trials or clinical situations into correlation analysis to assess their

relationship with NR2F6 in glioma samples using both TCGA and

CGGA datasets (61, 62). NR2F6 showed a positive association with

PD-1, LAG-3, and B7-H3 in both datasets (Figures 8A, B),

indicating the potential synergistic effects of NR2F6 with these

checkpoint members.
Discussion

Glioma, especially glioblastoma, is the most aggressive type of

brain cancer and has a severe impact on patient health (63–65). Even

with intensive therapies, the prognosis for glioblastoma patients is

still dismal. This highlights the urgent need for new therapeutic

approaches. In recent years, glioblastoma immunotherapy has gained

increased interest, particularly in blocking immune checkpoints

CTLA-4 and PD-1 (66). Glioma checkpoint inhibitor therapies

have made continuous progress. However, a large proportion of

patients do not respond to a single checkpoint inhibitor, therefore, it

is necessary to explore novel immune checkpoints for additive or

synergistic anti-tumor activities (66–68).

In this study, we comprehensively analyzed the expression

pattern and related biological characteristics of the new immune
Frontiers in Immunology 09
checkpoint NR2F6 and its clinical significance in glioma. First, we

proved that the expression of NR2F6 was significantly upregulated

in the higher malignant pathological type of gliomas. Moreover, we

also found that high expression of NR2F6 was highly enriched in

the phenotype of known malignant molecule, the IDH wild-type

state. All these results indicated that NR2F6 expression was

associated with more malignant biologic process as other solid

and hematologic malignancies (33, 36, 69, 70). Most likely, these

malignant biologic behaviors have contributed to tumor recurrence

and resistance to therapy. Revealing the mechanism of NR2F6 in

glioma may be the key to triumphing over this fatal disease. Our

findings also showed that a high expression level of NR2F6 in

glioma was relevant to a worse prognosis in both the TCGA and

CGGA databases. This was consistent with previously reported

results (34, 69, 71), overexpression of NR2F6 predicted poor patient

prognosis in various malignant tumors, such as ovarian cancer,

early cervical cancer, and head and neck cancer.

Through an in-depth analysis of the biological function of NR2F6

in glioma, we found that NR2F6 was involved in extracellular matrix

organization, angiogenesis, cell adhesion, and other biological

processes related to glioma progression. Meanwhile, NR2F6 was

involved in multiple immune-related functions and pathways, such

as leukocyte migration, inflammatory response, T cell receptor

signaling, and innate immune response. Moreover, the results of

the tumor-infiltrating cells analysis showed that NR2F6 expression

significantly correlates with infiltrating stromal and immune cells in

the glioma microenvironment. More interestingly, we found that

NR2F6 was expressed in both immune and malignant cells, as well

as stromal cells in glioma patients using the TISCH database. Hence,

the function of NR2F6 in glioma may be realized by the wide

expression of NR2F6 in immune cells, glioma cells, and stromal

cells. Previous studies have demonstrated that NR2F6 plays a dual

function in immune cells and in tumor cells. In effector T

lymphocytes, NR2F6 negatively controls TCR/CD28-mediated
FIGURE 6

Expression levels of NR2F6 analysis by using TISCH in malignant cells, immune cells, and stromal cells. The lift figure shows the heatmap of NR2F6
expression using glioma single-cell sequencing datasets. The middle figure shows uniform manifold approximation and projection (UMAP) lots
showing the glioma cell landscape. The right figure shows the UMAP plots illustrating the expression of NR2F6 clusters based on the GSE103224 and
GSE139448 datasets.
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signal transduction by antagonizing the DNA accessibility of

activation-induced NFAT/AP-1 transcription factors at critical

cytokine gene loci such as IL2 and IFNg (28, 72). Recently, it has

been shown that the genetic elimination of NR2F6 improves

intratumoral CD4+ and CD8+ T-cell infiltration as well as effector

functions by increasing the production of effector cytokines, resulting

in strongly decelerated tumor growth in different spontaneous as well

as transplantable mouse tumor models (39, 73). Besides its role in

immune cells, NR2F6 is upregulated in various human cancer cells,

such as cervical cancer (69), ovarian cancer (71, 74), colon carcinoma

(36), leukemia (33, 35), lung cancer (70), breast cancer (37), and

hepatocellular cancer (75), indicating that NR2F6 is involved in

tumor promotion and progression.

Immune evasion and suppression are significant factors that

prevent current immunotherapies from effectively fighting glioma.

In tumors, immune-suppressive microenvironments promote the
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lesion’s growth and malignant properties while evading the body’s

immune response (76–78). Thus, the discovery of potential

immunosuppressive features of glioma has considerable

importance. Here, we conducted correlation analysis with two

different large datasets, and found that NR2F6 expression

significantly positively correlates with chemokines that recruit

immunosuppressive immune cells, such as Treg, macrophages,

and neutrophils, as well as key immunosuppressive cytokines

secreted by these cells. Macrophages are the main immune cells

in the glioma microenvironment, which may constitute up to 50%

of the total cellular composition and are usually polarized to M2

phenotype (79). In gliomas, M2 macrophages exhibit an

immunosuppressive phenotype and are associated with poor

prognosis (80). Our analysis found that NR2F6 was positively

related to M2 differentiation factors, suggesting that it may

contribute to a tumor microenvironment favorable for tumor
B

C D

A

FIGURE 7

NR2F6 correlates with immunosuppressive activities. (A, B) Correlation of NR2F6 and immunosuppressive cells chemokines and immunosuppressive
cytokines. The color intensity of the square is proportional to the correlation coefficients. Purple, positive correlation; Brown, negative correlation. (C, D)
Correlation between NR2F6 and M2-promoting differentiation factors. Plot size and color depth show the intensity of the relationship, purple, positive
correlation; brown, negative correlation; larger plot indicates a stronger correlation. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, not significant.
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growth through promoting the M2-polarization of tumor-

associated macrophages. In addition, a positive association was

observed between NR2F6 and multiple immune checkpoints.

Studies have revealed that the upregulation of immune

checkpoints such as PD-1, LAG-3, and B7-H3 in glioma aids

tumor immune evasion, resulting in T cell dysfunction (81–86),

which suggests that NR2F6 may promote glioma immune evasion

through upregulation of immune checkpoint expression.

Collectively, we can speculate that, on the one hand, NR2F6

functions as a nonimmunological regulator: expressed in cancer,

facilitating angiogenesis and tumor invasion. On the other hand,

NR2F6 functions as an innate and adaptative immunity regulator:

expressed in immune and stromal cells, promoting tumor escape from

immune surveillance, resulting in poor outcomes for glioma patients.

Mechanistically, NR2F6 might regulate the immunosuppressive

microenvironment by recruiting immunosuppressive cells to produce

immunosuppressive cytokines, regulating M2 polarization, and

combining with other immune checkpoint inhibitory molecules.

In comparison with monotherapy, immunotherapies targeting

combined checkpoint inhibitory pathways have demonstrated

profound clinical benefits (87, 88). Specifically, combination

treatment approaches were more effective and associated with

significantly longer progression-free survival compared to

checkpoint monotherapy (87). Recent studies have shown that

Nr2f6-deficient mice exhibit tumor growth inhibition due to an

enhanced anti-tumor immune response against both solid tumors

and metastases, leading to overall survival benefit (39, 73). More

importantly, the genetic ablation of NR2F6 in combination with the

established blockade of surface checkpoints (PD-L1, CTLA-4) has a

strong synergistic effect compared to the inhibition of immune

checkpoints alone (39, 89, 90). Moreover, anti-tumor immune

responses in the Nr2f6−/− therapy groups did not show any signs

of immune-related adverse events (irAE) (39). Thus, it can be
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inferred that the combination of NR2F6 blockade with other ICIs,

such as PD-1, LAG-3, and B7-H3, may be an alternative treatment

method for glioma patients.

The current study, which takes advantage of large population

databases and systematic data analysis and shows promising

transcriptional findings, provides novel insights regarding the

involvement of the NR2F6 pathway in immune responses and

cancer development. Therefore, it will greatly help with the

development of more effective glioma treatment agents. However,

future studies would help confirming the crucial role of NR2F6 in

gliomas by examining NR2F6 expression at protein levels.
Conclusion

In recent years, immunotherapy research for glioma has

increased exponentially due to the success of immune checkpoint

blockade in other cancers. However, current immunotherapies have

been proven ineffective for most patients. This has raised our

interest in finding novel alternative checkpoint target, which

could result in enhanced therapeutic benefits for glioma treatment.

This is the first study exploring the expression pattern,

clinical value, and biological function of the immune checkpoint

NR2F6 in glioma. We found that high expression of NR2F6 was

closely related to high tumor aggressiveness and predicted a

poor outcome, and that NR2F6 expression was involved in

glioma immunosuppression, tumor invasion, and progression in

the inflammatory microenvironment of glioma. Our results

highlighted NR2F6, which positively interacts with other

checkpoint proteins in glioma, as a promising candidate for

immunotherapy. Further investigation is required on the potential

use of NR2F6 pathway inhibition in combination with multiple

other immune checkpoint blockade for the treatment of glioma.
BA

FIGURE 8

Association between NR2F6 and immune checkpoint markers in gliomas. the correlation of NR2F6 with other immune checkpoints including PD-1,
PD-L1, CTLA-4, LAG-3, and B7-H3, based on TCGA (A) and CGGA (B) datasets. The color intensity of the square is proportional to the correlation
coefficients. Blue, positive correlation; Red, negative correlation. **p<0.01; ****p<0.0001; ns, not significant.
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