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specific chimeric antigen
receptor T cells: an off-the-
shelf promising therapeutic
option for treatment of
diffuse large B-cell lymphoma

Tiantian Yu1,2, Cancan Luo1, Huihui Zhang3, Yi Tan3 and Li Yu1*

1Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang,
Jiangxi, China, 2Division of Hematopathology and Department of Pathology, Duke University Medical
Center, Durham, NC, United States, 3R&D Department, Qilu Cell Therapy Technology Co., Ltd., Jinan,
Shandong, China
Purpose: Autologous chimeric antigen receptor (CAR) T cell therapy is one of the

most significant breakthroughs in hematological malignancies. However, a

three-week manufacturing cycle and ineffective T cell dysfunction in some

patients hinder the widespread application of auto-CAR T cell therapy. Studies

suggest that cord blood (CB), with its unique biological properties, could be an

optimal source for CAR T cells, providing a product with ‘off-the-shelf’

availability. Therefore, exploring the potential of CB as an immunotherapeutic

agent is essential for understanding and promoting the further use of CAR T cell

therapy.

Experimental design: We used CB to generate CB-derived CD19-targeting CAR

T (CB CD19-CAR T) cells. We assessed the anti-tumor capacity of CB CD19-CAR

T cells to kill diffuse large B cell lymphoma (DLBCL) in vitro and in vivo.

Results: CB CD19-CAR T cells showed the target-specific killing of CD19+ T cell

lymphoma cell line BV173 and CD19+ DLBCL cell line SUDHL-4, activated

various effector functions, and inhibited tumor progression in a mouse (BALB/c

nude) model. However, some exhaustion-associated genes were involved in off-

tumor cytotoxicity towards activated lymphocytes. Gene expression profiles

confirmed increased chemokines/chemokine receptors and exhaustion genes

in CB CD19-CAR T cells upon tumor stimulation compared to CB T cells. They

indicated inherent changes in the associated signaling pathways in the

constructed CB CAR T cells and targeted tumor processes.

Conclusion:CB CD19-CAR T cells represent a promising therapeutic strategy for

treating DLBCL. The unique biological properties and high availability of CB

CD19-CAR T cells make this approach feasible.

KEYWORDS

cancer immunotherapy, chimeric antigen receptor T cells, CD19, cord blood, diffuse
large B-cell lymphoma
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1139482/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1139482/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1139482/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1139482/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1139482/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1139482/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1139482&domain=pdf&date_stamp=2023-06-27
mailto:ndefy02021@ncu.edu.cn
mailto:zengyulii@126.com
https://doi.org/10.3389/fimmu.2023.1139482
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1139482
https://www.frontiersin.org/journals/immunology


Yu et al. 10.3389/fimmu.2023.1139482
Introduction

One of the developmental milestones in immunotherapy of

hematologic malignancies is chimeric antigen receptor (CAR) T cell

therapy (1). Genetically engineered T cells expressing CARs can

specifically target tumor cells (2). CAR is a fusion protein consisting

of an extracellular domain binding target antigen and linked to an

intracellular signaling domain. First-generation CARs were

designed using only the CD3z intracellular signaling domain of

the TCR/CD3 complex. Second- and third-generation CARs

contain costimulatory molecules fused to CD3z, such as CD28

and/or 4‐1BB, which leads to enhanced proliferation, durable

activity, cytokine secretion, apoptotic resistance, and in vivo

persistence (2). Currently, the Food and Drug Administration has

approved the use of four CAR T programs as third-line therapy of

large B cell lymphoma (LBCL): BREYANZI (lisocabtagene

maraleucel) (3), Novartis’s KYMRIAH (tisagenlecleucel) (4),

Gilead’s YESCARTA (axicabtagene ciloleucel) (5), and Gilead’s

TECARTUS (brexucabtagene autoleucel) (6) and second-line

therapy of LBCL: YESCARTA (7). The overall response rate has

been observed to be as high as 73% with 54% complete response

(CR) rate (8). With this clinical success, CAR T cells have

revolutionized the treatment of relapsed/refractory (R/R) LBCL.

Use of autologous CAR T (auto-CAR T) cells targeting CD19 has

led to outstanding data for patients with R/R LBCL (9). However,

following leukapheresis, auto-CAR T cell engineering is a bespoke

fabrication procedures for all patients, leading to certain well-known

shortcomings, such as high out-of-pocket payments and prolonged

wait time. Some patients may show disease progression or may lose

eligibility for treatment-related complications over the waiting

period, causing delayed or failed availability of auto-CAR T cell

therapy (10). Moreover, auto-CAR T cells may be ineffective owing to

T cell dysfunction, wherein immunosuppression receptors are

expressed (11). The functional characteristics of auto-CAR T cells

are inversely affected by the previous accumulation effects of

chemotherapy (12). For these reasons, some patients fail to receive

autologous T cells for producing CAR T cell products (13). Finally,

the cost of this auto-CAR T cell therapeutic approach remains high

and it is not readily available for all patients, which is a challenge for

healthcare systems (14).

The ‘off-the-shelf’ allogeneic CAR T (allo-CAR T) cells from

healthy donors with simplified and standardized manufacturing are

expected to address these problems. Allo-CAR T cells host several

prospective advantages, for example lower and affordable costs,

owing to the application of scaled manufacturing processes and the

capacity to generate multiple CAR T cells from a single donor (15).

Allo-CAR T cells with pre-prepared and cryopreserved features can

be taken as needed, making therapy available instantly for patients

(15). In addition, a crucial difference is that allogeneic cell

manufacturing involves a batch of products, which can be used if

repetition is necessary. In contrast, a collection of autologous cells

can only be used to produce a single-cell product. The ‘off-the-shelf’

allo-CAR T cells also can combinate with antibody targeting co-

inhibitory molecule (16). Clinical studies have shown that donor-

derived CAR T cells exhibit effective expansion in patients with
Frontiers in Immunology 02
acute lymphoblastic leukemia (ALL), achieving a high CR and

controllable safety (17). However, allogeneic approaches suffer

from two significant problems. First, allogeneic T cells may lead

to life-threatening graft-versus-host disease (GVHD). Second, the

host immune systemmay rapidly recognize and eradicate allogeneic

T cells, thereby limiting their anti-tumor activity (18).

Allo-CAR T cells are primarily derived from peripheral blood

mononuclear cells (PBMCs) and not often from cord blood (CB).

CB transplantation has been successfully used to cure hematologic

malignancies in recent decades, owing to decreased graft failure

rates and transplantation-related mortality. Research indicates that

the exceptional biological characteristics of CB cells may result in

improved anti-cancer efficacy. Therefore, CB could be an ideal

option for immunotherapy, offering products that are readily

accessible ‘off-the-shelf’ (19). CB-derived CAR-NK cell therapy

has been successfully used to treat hematologic malignancies. 73%

(8/11) of patients responded to treatment with CB-derived CARNK

cells without developing major toxic effects (20). Through genetic

manipulation and stimulation of costimulatory molecules, the

formerly naïve CB T-cell has been directed to differentiate into

effector T cells (21). In a mouse model of ALL, CB-derived CAR T

cells show a higher naïve T cells proportion and better tumor

growth inhibition than PB-derived CAR T cells from R/R ALL

patients (22). However, the number of clinical trials using CB-

derived CAR T cells products is limited. Thus, we generated CB-

derived CD19-targeting CAR T cells and assessed the anti-tumor

activity of CB CD19-CAR T cells in diffuse large B cell

lymphoma (DLBCL).
Materials and methods

Cell lines, cell culture, and
animal experiments

SUDHL-4, DB, BV173, and K562 cells were obtained from the

Stem Cell Bank of the Chinese Academy of Sciences. All cell lines

were cultured in RPMI-1640 medium supplemented with 10% fetal

bovine serum (Gibco, Billings, MT, USA). All cell lines were

authenticated by Short Tandem Repeat profiling and regularly

tested negative for mycoplasma contamination.

This study used male BALB/c nude (BALB/c-nu) mice aged 5-6

weeks, purchased from Hunan Slake Jingda Experimental Co., Ltd.

Ethical approval was received from the Medical Research Ethics

Committee of the Second Affiliated Hospital of Nanchang

University, and written informed consent was obtained. A total of

1 × 106 SUDHL-4 cells suspended in a mixture of 100 mL Matrigel

and PBS were subcutaneously injected into the backs of BALB/c-nu

immunodeficient mice. Definition tumor engraftment at day 9,

mice were then randomly divided and received CB CD19-CAR T

cells in treatment groups and CB T cells in control groups at day 10,

and tumor measurement was monitored every 3 days (n=7 per

group). After experimental observation, the mice were euthanatized

following the painless cervical dislocation, and their tumors were

collected for subsequent analyses.
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CD19-CAR construct design and lentiviral
vector production

The construct of generating the CD19 CAR lentiviral was

performed based on the methods previously published in a patent

(CN 108753774 B). The scFv (VL-linker-VH) sequence of CD19

CAR was encoded using synthetic DNA technology (GENEWIZ,

China). Next, the CAR was subcloned into a second generation with

a 4-1BB costimulatory domain. A truncated version of the CD19

CAR was created by deleting the cytoplasmic domains. 293T cells

transfected with packaging plasmids and the scFv vector, including

CAR construct, generate lentiviruses products. The viral

supernatant was harvested after 48–72h, concentrated and stored

at −196°C until further use.
T-cell isolation, culture, and transduction

According to the manufacturer’s instructions, we isolated CD3

+ T cells from fresh cord blood by CD3 positive selection

microbeads (Miltenyi Biotech, Germany). For activating the T

cells, we resuspended the isolated CD3+ T cells (1 × 106 cells/ml)

in X-VIVO 15 medium (Thermo Fisher Scientific, Waltham, MA,

USA) supplemented with 5% human AB serum (Thermo Fisher

Scientific) and 200 U/mL recombinant human IL-2 (PeproTech,

USA) at 37°C in 5% CO2. Sterile, non-tissue-culture-treated 24-

well plates were coated with Retronectin (Thermo Fisher Scientific)

at 6 µg/cm2 and left to stand overnight at 37°C in 5% CO2. Next,

the lentivirus supernatant was transferred to plates, and then T

cells activated using recombinant human interleukin-2 (250 U/mL)

were added, followed by incubation at 37°C for 24h after

centrifugation. The medium was changed 24h later and every

other day afterwards.
Cytotoxicity and multiplex cytokine assay

All anti-human antibodies, including CD45RA-APC

(Cat: 550855), CD3-FITC (Cat: 555339), CD4-APC-Cy7 (Cat:

557871), CD8-PerPCy5.5 (Cat: 560662), CCR7-PE (Cat: 552176),

CD27-PE-Cy7 (Cat: 560609), CD28-BV711 (Cat: 563131), Fixable

Viability Stain (FVS) (Cat: 562247), PD-1-BV421 (Cat: 562584),

and TIM-3-BV605 (Cat: 747961), were purchased from BD

Pharmingen (BD Biosciences, Franklin Lakes, NJ, USA). Tumor

cells were labeled with 2 µM intracellular tracing reagent

carboxyfluorescein succinimidyl ester (CFSE) (Invitrogen,

Waltham, MA, USA), and dead cells were marked with FVS. All

flow cytometric analyses were performed using a BD FACSCanto

(BD Biosciences) and analyzed with FlowJo Version 10 (Tree Star,

Ashland, OR, USA). The capacity of CB CD19-CAR T cells

recognizing and killing target cells was evaluated by analyzing the

percentage of CFSE-labelled target cells after coculturing for 24 h at

different effector: target (E: T) ratios of 1:1, 2:1, 5:1, 10:1.

Supernatants were harvested after 48 h, and multiple cytokines

(IL-2, IL-4, IL-6, IL-10, TNF-a, and IFN-g) were detected using the
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BD Cytometric Bead Array (CBA) Human Th1/Th2 Cytokine Kit

(BD Pharmingen) by flow cytometry.
RNA sequencing analysis

CB T and CB CD19-CAR T cells were collected (three biological

replicates) as samples for RNA-seq analysis. This RNA-seq was also

used to analyze CB CD19-CAR T cells before and after co-culture

with SUDHL-4 cells an E: T ratio of 1:1 for 48h. cDNA library

construction, library purification, and transcriptome sequencing

were executed using the DNBseq platform according to the

ins truct ions provided by Kindstar Globa l Company

(www.kindstar.com.cn). For RNA-seq data, the gene expression

levels were quantified in fragments per kb of exon model per million

mapped reads exon model. The differentially expressed genes

(DEGs) were analyzed using EdgeR software and the significance

was adjusted P-value of <0.05 and absolute log2 (absolute ratio

value) ≥ 1.
Statistical analyses

Statistical analyses were executed using GraphPad Prism 8.0

(GraphPad Software). Two-tailed Student’s t-test was used to

compare two groups to identify significant differences. A two-way

ANOVA with Tukey’s multiple comparison test was used for three

and more groups. For experiments in the animal tumor model, two-

way ANOVA was used to analyze tumor volume and weight.

Experimental data were collected from a minimum of three

independent experiments for each analysis. Data are presented as

the mean ± standard error of means (SEM), and statistical

significance was set at P < 0.05.
Data availability

The data generated in this study are available upon request from

the corresponding author. Data were generated by the authors and

included in the article
Results

Generation and characterization of CB
CD19-CAR T cells

We generated a CD19scFv-based CAR construct with a 4-1BB

costimulatory domain and a CD3z signaling domain (Figures 1A,

B). CB T cells without CD19 CAR transduction were used as

control. Activated CB T cells were transfected with lentiviral

vectors, with consequential expression of CD19 CAR (Figure 1C).

Subsequently, we tested the immunophenotypes of CB CD19-CAR

T and CB T. Flow cytometry data indicated that the proportions of

CD4, CD8, TCR-a, and TCR-g cells did not differ between CB
frontiersin.org
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CD19-CAR T and CB T (Figures 1D, E). Following expansion, both

CB CD19-CAR T and CB T cells were enriched for naïve T cells

(CD45RA+CCR7+; CD28+CD27+), indicating that they were

similarly cultured with no significant proliferation differences. We
Frontiers in Immunology 04
performed RNA-seq analysis of CB CD19-CAR and CB T cells

(Figures 1F, G). CB CD19-CAR T cells manifested changes in genes

related to adherens junction, cytokine-cytokine receptor

interaction, chemokine signaling pathway and antigen processing
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FIGURE 1

The construction, characterization, and gene expression of CB CD19-CAR T. (A) Schematic diagram of anti-hCD19 scFv. (B) Schematic diagram of
plasmid construct for pHR- anti-hCD19CAR. (C) Representative flow cytometry analysis of transduction efficiency of CB T cells. (D) Representative
flow cytometry analysis of the maturation profile shows there is no difference found in either the fraction of CB CD19-CAR T cells or CB T cells.
(E) Data show mean ± SEM. (F) The heatmap of top 50 DEGs expression profiles. (G) KEGG pathway functional enrichment analyses of CB CD19-
CAR T cells compared with CB T cells. TN, Naive T cell; TCM, Central memory T cell; TEM, effector memory T cell; TEMRA, Terminal effector T cell;
DGEs, differentially expressed genes; SEM, standard error of means; ns, non-significant.
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and presentation. This may be associated with the assembly of CAR

to enhance cell membrane’s function and T cell immune response.
CB CD19-CAR T cells specifically recognize
and kill BV173 cells

To investigate the cytolytic ability of CB CD19-CAR T cells for

distinguishing and eliminating CD19+ tumor cells, we first selected

BV173 cells (a CD19+ ALL cell line) for verification. Compared

with the CB T group and CD19-negative cell line K562 group, CB

CD19-CAR T cells mediated cytotoxicity against the CFSE-labelled

BV173 cells (P < 0.05, n = 3; Figures 2A, B), indicating that CB T

cells expressing CAR constructs were able to eliminate tumor cell.

We also detected cytokine products of CB CD19-CAR T cells

following coculture with target tumor cells for the examination of

the effector function. Supernatants analyzed by the CBA assay

revealed that only BV173 group could elicit release of multiple

cytokines by CB CD19-CAR T cells (Figure 2C and Figure S1A),

further indicating that the CB CD19-CAR T cells exhibited specific

activation with target cell stimulation.
CB CD19-CAR T has potent anti-tumor
efficacy against CD19+ DLBCL cells in vitro
and in vivo

SUDHL-4 cells are DLBCL cells expressing CD19 markers that

can be recognized explicitly by CB CD19-CAR T cells. DB cells are

DLBCL cells that are not CD19-positive. To confirm their

cytotoxicity against CD19+DLBCL cells, we cocultured SUDHL-4

and DB cells with CB T and CB CD19-CAR T cells at different E: T

ratios of 1:1, 2:1, 5:1, 10:1. In contrast to CB T cells, CB CD19-CAR

T cells showed strong lysis function during coculture with SUDHL-

4 cells (P < 0.05, n = 3; Figures 3A, B). We observed cytotoxicity

towards SUDHL-4 cells but not DB cells, which was mirrored by the

anti-tumor activity post antigen stimulation (P < 0.05, n = 3;

Figures 3A, B). While the outgrowth of SUDHL-4 was not

affected by the dose of CB CD19-CAR T cells, the low amount (E:

T of 1:1) of CB CD19-CAR T cells still led to anti-tumor activity

against CB CD19-CAR T cells. CB CD19-CAR T cells cocultured

with SUDHL-4 cells also showed significantly higher cytokine

secretion, including IL-2, IL-4, IL-6, IL-10, TNF-a, and IFN-g
(Figure 3C and Figure S1B), further demonstrating the CD19-

dependent cytotoxicity of CB CD19-CAR T cells.

To evaluate the anti-lymphoma activity of CB CD19-CAR T

cells in vivo, we established a murine xenogeneic model using

SUDHL-4 cells. Subcutaneous injection of SUDHL-4 cells into the

backs of BALB/c-nu mice allowed the tumor to expand. Following

confirmation of tumor engraftment on day 9, animals received CB

CD19-CAR T cells or CB T cells on day 10. The growth of tumors

and their weight were followed in three groups (Figures 3D-F). CB

CD19-CAR T cells were able to control the growth of tumor

compared with CB T cells and untreated group, the representative

images and data from n = 4 mice per group (Figure 3D). No

significant decrease in mouse body weight or other toxicity signs
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was observed in any treatments, including CB T cells and CB CD19-

CAR T cells, suggesting little systemic toxicity with good tolerability

(Figure 3F). These results support the results of our in vitro study

and indicate that CB CD19-CAR T cells effectively inhibit tumor

growth in a DLBCL model.
Changes in genes expression of CB CD19-
CAR T cells following coculture

We analyzed the changes after CB CD19-CAR T cell interaction

with tumor cells. After 48h of coculture, CB CD19-CAR T cells

showed loss of the CCR-7 phenotype and naïve T cells converted

them into terminally differentiated effector memory cells re-

expressing CD45RA (TEMRA) T cells; the formerly naïve CB T cell

population promptly differentiated into an effector cell (Figure 4A).

The upregulation of immune checkpoint proteins might limit the

anti-tumor activity causing resistance of immune cell-mediated

therapy. Among them, programmed cell death protein-1 (PD-1)

and T cell immunoglobulin and mucin domain-containing protein

3 (TIM-3) have recently received increased attention for playing a

critical role in inhibition of T cell proliferation and function.

Therefore, we investigated changes in the expression of PD-1 and

TIM-3 on the surface of CB CD19-CAR T cells. As shown by our

flow cytometry results (Figure 4B), mean TIM-3 expression was

significantly higher in CB CD19-CAR T cells after coculture with

SUDHL-4 cells. PD-1 expression levels were not statistically

significant. CB-derived CAR T cells showed elevated immune

checkpoints after coculture with SUDHL-4, which might hinder

the ability of CB CAR T cells to expand and act continuously

in vivo.

To elucidate which gene is responsible for these changes, we

analyzed the RNA-seq data of CB CD19-CAR T cells cocultured

with or without SUDHL-4 cells. The resulting SUDHL-4 cells were

cultured for 48 h when CB CD19-CAR T cells were selected using

magnetic beads. We identified 3331 DEGs, 1584 upregulated and

1747 downregulated, in the two comparisons (Figure 5A). The top

50 DEGs following coculture was listed in Figure 5B. KEGG analysis

of the top DEGs showed that immune-related gene pathways were

mainly altered following coculture. A functional enrichment

analysis in all two comparisons showed that most of the KEGG

pathways were signal “focal adhesion” “cytokine-cytokine receptor

interaction,” and “chemokine signaling pathway,” which are

associated with recognition or killing by CAR T cells binding to

tumor cells (Figure 5C).

Next, we analyzed DEGs associated with immunity between CB

T subsets, CB CD19-CAR T subsets, and CB CD19-CAR T/

SUDHL-4 coculture subsets in our combined dataset. Hierarchical

clustering of 65 immune-related genes led to the identification of

chemokines/chemokine receptors (CXCL10, CCL2, CX3CR1,

CXCR4, and CCL5), costimulation (TNFRSFs gene families),

exhaustion- (NR4As gene families), and memory-associated genes

(IL7R and IL2RA) (Figure 5D). Coculture of CB CD19-CAR T cells

with SUDHL-4 cells significantly upregulated canonical exhaustion-

associated genes (NR4A3), costimulation genes (TNFSF9, TNFRSF8,

and TNFRSF9) and STAT1, and downregulated memory-associated
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1139482
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2023.1139482
genes (IL7R, CXCL10, and CXCR4) compared to coculture with CB

T cells. Notably, we found that genes associated with ferroptosis

(TFRC and SLC40A1) in CB CD19-CAR T/SUDHL-4 coculture

were more likely to be differentially expressed compared to CB T

and CB CD19-CAR T. Here, it may indicate the involvement of

ferroptosis in CB CD19-CAR T cell death (Figure 5D).
Frontiers in Immunology 06
Discussion

CAR T cell therapy has been presented as a second or even first-

line treatment in patients with R/R LBCL (23–25). The ‘off-the-

shelf’ product is under intense investigation to enable higher and

broader availability of CAR T therapy. Several studies have shown
CFSE

FVS

Pe
rc

en
ta

ge
Sp

ec
ifi

c
Ly

si
s%

IL-2 IL-4 IL-6 IL-10 TNF-α IFN-γ
0
5

10
15
20
25
30

200
300
400

50.3% 69% 76.4% 85%

13.1%12.0%10.7% 9.05%

5.37% 8.36%7.53% 8.37%

A

B C

FIGURE 2
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that CB, a lesser-used source of CAR T cells, is an effective source of

cancer immunotherapy (22, 26). For example, studies have used

primary cells from CB to culture-specific T cells that target acute

myeloid leukemia and ALL (27, 28). The activity of CB-derived

CAR T cells has also been confirmed in ALL cell lines and mouse
Frontiers in Immunology 07
models (22). Additionally, CAR-NK cells from CB cells have been

safely administered without complete HLA matching and showed

practical anti-tumor effects in NHL. Considering the unique

characteristics of CB, we designed a study on the application of

CB CD19-CAR T cells in CD19+ DLBCL. CB CD19-CAR T cells
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E: T ratio of 1:1 for 24h. (D) Representative tumor resectates from each group. (E, F) Data are expressed as mean ± SEM of tumor masses and body
weight (n=4 mice per group). SEM, standard error of means; ns, non-significant; *P < 0.05; ***P < 0.001; ****P < 0.0001.
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displayed cytotoxicity targeting the CD19+ T cell lymphoma cell

line BV173 and CD19+ DLBCL cell line SUDHL-4, triggered

secretion of multiple cytokines in coculture assays, and limited

tumor growth in a mouse model. Gene expression profiles

confirmed increased chemokines/chemokine receptors and

exhaustion genes in CB CD19-CAR T cells upon challenge with

tumor cells compared to CB T cells. Our results show that CB

CD19-CAR T cells are a promising therapeutic strategy for

treating DLBCL.

A single dose of CB can amplify 108 CAR T cells, and CB T cells

have an advantage over auto-CAR T cells because of insufficient T

cells in post-chemotherapy patients. T cells derived from CB also

possess a unique antigen-naïve status (29). There is ample evidence

that demonstrates different subsets of naïve T cells play distinct

roles in immunity (30) and that the stemness of anti-tumor T cells

can increase the potential of immunotherapy (31). CAR T cells

constructed with different costimulatory domains show different

features. We built CB CD19-CAR T cells using 4-1BB as a

costimulatory molecule, as CARs confer longer persistence in the

presence of 4-1BB (32). Additionally, 4-1BB-based T cells tend to
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behave like central memory-like T cells, improving mitochondrial

and expiratory capability and fatty acid metabolism (33). Moreover,

we argue that CB CD19-CAR T cells could specifically recognize

and kill the CD19+ ALL cell line BV173 and DLBCL cell line

SUDHL-4 in an antigen-specific manner in vitro and control tumor

progression in vivo. Overall, we determined that CB CD19-CAR T

cells show specific cytotoxicity and simultaneous cytokine

production can effectively eliminate CD19+ DLBCL cells.

PBMCs-naïve T cells cause severe GVHD in murine models

(34). However, T cells derived from CB were transformed into CAR

T cells after transfection with a surface antigen specific CAR

because these cells lack the CD3/TCRab complex; therefore, their

responses are not HLA-restricted (35), which is a characteristic of

the placenta. Different from all other tissue cells, extravillous

cytotrophoblast cells in the placenta express only HLA-C, HLA-E,

and HLA-G, and syncytiotrophoblast cells are HLA-negative (36);

these potential features result in minimal risk of GVHD (37).

Furthermore, this implies an additional reason for the decreased

risk of GVHD. The reactivity of CB T cells is reduced by impaired

nuclear factor of activated T cell signaling (38). We observed a
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weight reduction in the CB CD19-CAR T cell group after treatment

compared with the control group, but it increased again after a

week. No diarrhea, rash, or jaundice, which are common symptoms

of GVHD, were observed during the observation period. We

concluded that CB CD19-CAR T cells were associated with

minimal GVHD.
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are clinical conundrums in the CAR T cell therapy era (39). CAR T

cell expansion and persistence are essential components for CAR T

efficacy, patients achieving CR, and preventing relapse. Defining

phenotypic and functional changes in CAR T cells is paramount for

developing practical CAR-T strategies (40). Our study also
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elucidated that after coculture with DLBCL cell lines, CB CD19-

CAR T cells show significantly upregulated TNFSF9, TNFRSF8,

TNFRSF9, and STAT1 compared with CB T and CB CD19-CAR T

cells. Several TNFR family members participate in sustaining T cell

responses after T cell activation (41). Another study demonstrated

that the STAT1 pathway defends T cells from NK cell-mediated

eradication involved in T cell survival (42). CB CD19-CAR T cells

may be activated by naïve CB T cells to initiate the STAT1 signaling

pathway and TNK pathway and release cytokines to play an effector

role. However, we also found that NR4As gene families were

upregulated, and IL7R was downregulated in the coculture group

compared with CB CD19-CAR T alone. NR4As genes play an

essential role in T cell dysfunction and cause CAR T cells to enter

an exhausted or dysfunctional state in solid tumors (43, 44).

Previous reports have shown that IL7R blocks the development of

T cells, and patients with IL7R-inactivating mutations present with

severe combined immunodeficiency (45, 46). Short persistence and

early exhaustion of T cells are significant limitations to

immunotherapy efficacy and its broad application (47, 48). Thus,

targeting IL7R and NR4A is a promising CAR T cell therapy

strategy. Many strategies, such as designing CB-derived CAR T

cells with specificity to immunodeficiency genes and virus-specific

antigens (49), must be explored to address these problems.

Nevertheless, our work addresses a significant barrier to the

progress of this emerging class of therapeutic agents. These

possibilities will be examined in the future to develop CAR

T therapy.

In conclusion, we generated CB CD19-CAR T cells and

confirmed their anti-tumor activity against DLBCL cells. We also

studied the underlying cellular pathways in CB CAR-T cells and

explored their exhaustion mechanisms. The development of CB

CAR T cells as an ‘off-the-shelf’ CAR T cell readily available for

patients with R/R LBCL in an affordable and timely manner would

significantly get patients close to these therapeutics. Our trial results

could help inform patients who require immunotherapy of more

excellent choices.
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