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The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING)

pathway is critical in cancer immunity. Autophagy is a highly conserved process

that is responsible for the degradation of cytoplasmic material and is involved in

both innate and adaptive immunity. Recently, cGAS-STING and autophagy have

been shown to be interconnected, which may influence the progression of

cancer. Although cGAS-STING and autophagy have been shown to be

interrelated in innate immunity, little has been reported about cancer

immunity. As cancer immunity is key to treating tumors, it is essential to

summarize the relationship and interactions between the two. Based on this,

we systematically sorted out the recent findings of cGAS-STING and autophagy

in cancer immunity and explored the interactions between cGAS-STING and

autophagy, although these interactions have not been extensively studied. Lastly,

we provide an outlook on how cGAS-STING and autophagy can be combined,

with the hope that our research can help people better understand their potential

roles in cancer immunity and bring light to the treatment of cancer.
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1 Introduction

Cancer is one of the world’s most serious threats to human health, with high morbidity

and mortality rates, and according to the latest global data, 9.96 million patients will die

from cancer in 2020 (1). Cancer is a genetic abnormal disease triggered by a long-term

combination of multiple factors. When the human body is affected by chemical, physical,

viral, and other carcinogenic substances in the environment or due to its own genetic,

endocrine, gender, age, and other factors, a series of abnormal genetic changes will occur to

form malignant tumors (2). Tumor cell growth is initiated by mutations that activate

oncogenic drivers. This process is combined with the genetic or non-genetic activation or

inactivation of genes that promote or inhibit tumor proliferation (3). In many cancers,
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oncogenesis is accompanied by the accumulation of mutations,

which can provide a selective advantage to cancer cell populations

by increasing the degree of genetic diversity and accelerating their

evolutionary adaptation (4, 5). However, this diversity comes at a

cost: the more the cancer cell differs from normal cells, the more

likely it is to be recognized as a foreign agent by the immune system.

Current clinical treatment of malignancies is still dominated by

radiotherapy, chemotherapy and surgery, but the 5-year survival rate

of patients is still very low (6). Along with the advancement of human

understanding of tumor immunity, immunotherapy has become

increasingly sophisticated and offers new hope for cancer treatment

(7–10). Immune checkpoint inhibitors, such as therapeutic

monoclonal antibodies targeting the programmed cell death protein

1/programmed cell death ligand 1 (PD-1/PD-L1) pathway, have been

approved as monotherapy or combination therapy for oncology

treatment (11). One of the main targets of immune checkpoint

inhibitors is the release of effector T cells. The positive correlation

between T-cell infiltration in the tumor stroma and prognosis, as well

as the clinical success of chimeric antigen receptor (CAR) T-cell

infusion in certain hematologic malignancies, suggest a critical role

for T cells in tumor immunity (12). These clinical successes have led

to a T-cell-centric view of tumor immunity. There is a strong link

between cancer and the immune system (13). Adaptive immunity, as

well as innate immunity, make up the immune system. However, the

effector function of T cells is not autonomous (14). The immune

system promotes or suppresses tumor growth by recognizing and

killing cancer cells. the initiation and maintenance of T cell responses

and the development of durable protective memory T cells are

dependent on the innate immune response (15). Innate immunity

involves various types of myeloid cells, including dendritic cells

(DCs), monocytes, macrophages, polymorphonuclear cells, mast

cells, and innate lymphocytes (ILCs), such as natural killer (NK)

cells (14). Innate immunity is the host’s first and fastest line of defense

against invading pathogens. Different pattern recognition receptors

(PRRs) are used to activate the innate immune response when host

cells recognize conserved pathogen patterns known as pathogen-

associated molecular patterns (PAMPs) and danger-associated

molecular patterns (DAMPs) (16). In eukaryotic cells, DNA is

usually present in the nucleus and mitochondria. The DNA present

in the cytoplasm is usually due to microbial infection or DNA

damage. Thus, cytoplasmic DNA is a red flag that triggers a strong

innate immune response (17). Recognition of cytoplasmic DNA is an

important host defense mechanism. Cyclic GMP-AMP synthase

(cGAS) is thought to be a key sensor mediating cytoplasmic

DNA recognition.

The STING pathway has emerged as a promising drug target for

the treatment of cancer (18). By triggering the cGAS-STING

pathway, the innate immune system can be activated, promoting

acquired immunity to fight cancer and thus improving survival

(19). In addition, autophagy, a tightly regulated mechanism of

cellular self-degradation, is essential for maintaining intracellular

homeostasis under stressful conditions (20). Autophagy is

extensively involved in the survival, development, and maturation
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of immune cells (21). It can contribute to the initiation or inhibition

of tumor growth by regulating the development of innate and

adaptive immunity (22). cGAS-STING pathway can trigger

autophagy in several ways, and autophagy can also regulate the

cGAS-STING pathway (23). Therefore, in this review, we

systematically discuss the interaction between the cGAS-STING

signaling pathway and autophagy in cancer immunity, hoping to

provide a direction for exploring new cancer immune mechanisms

and therapeutic approaches (Figure 1).
2 Overview of the cGAS-STING pathway

The immune system recognizes different pathogens to protect

the body and maintain homeostasis. Innate immunity functions as

the first line of defense against pathogenic microorganisms and as a

basis for adaptive immune responses. The host cells become aware

of a pathogen invasion through pattern recognition receptors,

which will initiate a series of signaling events. Many pattern

recognition receptors exist, such as Toll-like receptors, Nod-like

receptors, and Scavenger receptors. A recently discovered pathogen

recognition receptor, cyclic guanosine monophosphate-adenosine

monophosphate synthase (cGAS), can activate any sequence of

double-stranded DNA (dsDNA) (24) and participate in various

cellular processes, including proliferation, apoptosis, differentiation,

and invasion of cancer cells.

STING is a receptor protein located on the endoplasmic

reticulum (ER) that is critical for the response pathway in innate

immunity. It is usually observed in the resting state as a dimer. By

liquid-liquid phase separation, cGAS and dsDNA interact to form

micrometer-sized drops that activate cGAS. As the reactants

concentrate, these lipid droplets generate cyclic guanosine

monophosphate-adenosine monophosphate (cGAMP) which can

be catalyzed from ATP and GTP (25, 26). STING is activated by

cGAMP in the ER and becomes a tetramer by oligomerization (27).

Sulfated glycosaminoglycans induce STING to translocate into the

Golgi apparatus and perinuclear endosomes from the ER (28),

during which STING is palmitoylated in the Golgi apparatus and

caused to activate IRF3 by recruiting TBK1 kinase, which undergoes

transautophosphorylation, thus enhancing affinity for interferon

(IFN) regulatory factors. When IRF3 is activated, it enters the

nucleus, which works synergistically with NF-kB to promote the

transcription of type I IFN genes and related immunomodulatory

factors (29–31). STING is rapidly degraded by sorting into

lysosomes after signaling (32). In addition, STING can mediate

the activation of the NF-kB pathway downstream of DNA damage

signaling independently of cGAS, and the E3 ubiquitin ligase

TRAF6, P53, DNA damage kinase ataxia telangiectasia mutated,

enzyme poly(ADP-ribose) polymerase 1, and interferon-g-inducible
factor 16 combine to form a distinct STING signaling complex that

induces TRAF6-dependent NF-kB activation (33–37). However, the

exact mechanism of STING-dependent NF-kB pathway activation

remains unknown (Figure 2).
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3 cGAS-STING pathway in cancer

Many tissues have been found to express STING, such as the

heart, spleen, lung, ovary, and various antigen-presenting cells

(APCs). However, it was less expressed in tissues such as the

brain, liver, kidney, small intestine, and colon. According to The

Cancer Genome Atlas dataset, cGAS and STING gene expression

was detected in all types of cancer, but the expression varied

according to the stage and type of cancer (38). STING expression

is significantly increased in murine pancreatic cancer models and

human pancreatic tumors, as well as tongue squamous cell

carcinoma, while down-regulated in malignant melanoma (39,

40). In addition, patients with lung adenocarcinoma had lower

cGAS expression and longer survival (41). Based on the evidence

presented above, cGAS-STING is inextricably linked to cancer.

In further studies, cGAS-STING was found to have a tumor-

suppressive effect. By regulating the initiation of intestinal

inflammation, STING may hinder the progression of colon

cancer, and it may also regulate various signaling pathways such

as signal transducer and activator of transcription-3 and NF-kB
(42). However, tumors can develop when the cGAS-STING

pathway is overactivated. By activating STING, the carcinogen

7,12-dimethyl-Benz[a]anthracene can cause DNA breaks in mice,

resulting in skin tumors (43). In the same way, STING activation is

associated with Lewis lung cancer growth (44).

Furthermore, the cGAS-STING pathway is involved in cancer

metastasis. Cancer cells can transfer cGAMP to astrocytes via the

cancer-astrocyte gap junction channel, which activates STING in

astrocytes and subsequently produces inflammatory cytokines such

as IFN-a and TNF-a, which in turn activate signal transducers and

activator of transcription 1 (STAT1) and NF-kB signaling pathways

in the cancer cell, leading to brain metastasis (45). In metastatic

breast cancer, cGAS-STING signaling can activate atypical NF-kB
pathways, which can promote metastasis due to epithelial-
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mesenchymal transition (EMT) (46). Meanwhile, the elimination

of STING can inhibit breast cancer metastasis by reducing the

expression of the EMT gene (46).
4 cGAS-STING pathway in
cancer immunity

cGAS-STING participates in the remodeling of the tumor

microenvironment (TME) (47), which induces the production of

antitumor cytokines such as interleukin 10 and invariant surface

glycoprotein (ISG) that inhibit tumor growth (48). Macrophages

serve as powerful APCs by engulfing foreign pathogens and priming

host defenses (49). The cGAS-STING pathway could significantly

regulate macrophage polarization, which is considered an essential

part of innate immunity and may be adopted as a target for

immunotherapy-related diseases. Administration of liposome-

derived cGAMP nanoparticles (cGAMP-NP) to tumor cells can

activate STING in macrophages, repolarize M2-type macrophages

into M1-type macrophages, improve MHC-like molecules or

costimulatory molecules, and then induce differentiation of CD4+

and CD8+ T cells, thus producing a potent antitumor response (50).

In tumor cells, activating the cGAS-STING pass-through may

inhibit the development of early tumors by upregulating type I IFN

and other inflammatory genes. TME contains multiple proangiogenic

factors that stimulate the formation of new blood vessels during tumor

angiogenesis (51). Endothelial STING controls T-cell transendothelial

migration in association with IFN-I (52). Activating STING increases

the immune response to the TME and normalizes the tumor

vasculature. In addition, the cGAS-STING pathway affects CD8+ T

cell-mediated antitumor immunity by type I IFN. Downregulation of

the cGAS-STING pathway leads to a reduction in tumor-infiltrating

CD3+ CD8+ T cells by inhibiting type I IFN downstream genes,

including chemokine ligands 9 and 10 (53).
FIGURE 1

Schematic illustration of the crosstalk between the cGAS-STING pathway and autophagy in cancer immunity. The figure was created with BioRender
(https://biorender.com/).
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In the immune system, DCs also play an essential antitumor

immunity role. The STING protein in DCs amplifies signals from

cytoplasmic DNA sensors, enhancing the adaptive immune system of

the tumor. After being absorbed by tumor-infiltrating DCs, exosomal

DNA activates STING signaling (54). DCs respond to NARK

signaling by phagocytosing dead/damaged tumor cells, transferring

exosomes, and forming cGAMP gap junctions. After injecting type I

IFN, DCs drain lymph nodes and trigger tumor specific CD8+ T cells

to migrate to the tumor. Finally, these CD8+ T cells proliferate in

lymph nodes, killing the tumor cells (55). During TME, phagosomes

degrade mtDNA from tumor cells, causing the production of type I

IFN in the DC cytoplasm; inhibiting CD47 suppresses this

degradation, enhancing adaptive immunity against tumors (56). If

STING is deleted in DC, the ability to present antigens is abolished,

and tumor infiltrating lymphocyte abundance is decreased (57). A

similar effect was observed in colon tumors withMC38 after radiation

exposure by mobilizing myeloid-derived suppressor cells (MDSCs)

dependent on the host STING molecule (58).

In contrast, cGAS-STING signaling may promote tumor

growth and metastasis. Chronic activation may induce an

immunosuppressive TME (17). STING was associated with poor

prognosis in a subset of patients with colorectal cancer (38),

suggesting that STING may contribute to tumor growth and

immune evasion. Recent research found that STING agonists

activate cell stress in T cells and trigger cell death (59). Another

study found that constitutive activation of STING impaired T

lymphocyte proliferation, a process dependent on NF-kB and

triggered by STING relocalization to the Golgi apparatus (60).

These findings suggest that cGAS/STING, as an innate sensor,

also has the potential to impair the adaptive immune system.

Immune responses to DNA in the TME are influenced by tumor

antigenicity, which is underappreciated. Through the induction of

indoleamine 2,3-dioxygenase (IDO), the cGAS-STING pathway

promotes tumor progression with low antigenicity (44). However,

it remains unclear how cGAS-STING signaling stimulates cells to

express PD-L1, which is known tomediate immune evasion of cancer

cells (61). Mutations in the liver kinase B1 (LKB1) cause primary

resistance to immunotherapy in non-small cell lung cancer (NSCLC).

When LKB1 is lost, STING is inhibited, and cytoplasmic dsDNA is

not sensitive to detection. Cancers resistant to immune checkpoint

blockade may benefit from reactivating the LKB1 or STING pathways

(62). In tongue squamous cell carcinoma samples, STING expression

increased with tumor progression, with STING protein activation

seen in papillomavirus positive specimens. In contrast, STING gene

silencing does not affect cell viability or apoptosis but promotes IL-10,

IDO, and CCL22, thus enhancing immunosuppressive cytokines and

regulatory T-cell infiltration, suggesting that STING regulates the

TME and influencing tumor progression (63).
5 Overview of autophagy

Autophagy is a tightly regulated and stress-induced catabolic

process that regulates cancer in eukaryotes (64). Macroautophagy,

also known as canonical autophagy, can be divided into several stages

including initiation, nucleation, or phagophore formation, elongation
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of the phagophore membrane to form the autophagosome, fusion of

the autophagosome with the lysosomes, and degradation of the

contents of the autophagosome (65). Macroautophagy was initially

thought to be a massive degradation process activated by cellular

starvation. Nevertheless, new findings suggest that autophagy also

functions as a quality control mechanism for specific organelles and

proteins (66). Through lysosomal or endosomal invagination,

cytoplasmic cargo is engulfed during microautophagy (67).

During canonical autophagy, signaling pathways such as mTOR

and AMPK sense metabolic stress and thus activate the Unc-51-like

kinase 1 (ULK1 and ULK2) complex (68–70). In the initiation

phase, ULK1/2 activates VPS34 and the complexes of VPS34,

VPS15, autophagy-related gene (ATG)14, Beclin-1, and P150

catalyze the production of phosphoinositol-3-phosphate,

recruiting a further boost to the autophagic pathway (70–72). The

phosphoinositide 3-kinase (PI3K) complex is responsible for the

expansion and maturation of autophagic vesicles (73). Furthermore,

ATG5-ATG12-ATG16 and the LC3 ubiquitin-like system

contribute to the extension of autophagosome membranes (74).

In particular, ATG5-ATG12 non-covalently binds to interact with

ATG16 to form the ATG5-ATG12/ATG16 complex (75). ATG4,

ATG7, and ATG3 cleave the precursors of LC3-like proteins,

maturing and conjugating them with phosphatidylethanolamine

(PE) to form LC3-II, which drives the elongation and closure of cell

membranes and, ultimately, the formation of autophagosomes (76,

77). P62 via a LIR motif (LC3 interacting region) interacts with LC3.

P62 has also an ubiquitin binding domain (UBD) and can bind to

autophagy cargo (the ubiquitinated proteins). thus, P62 is an

adaptor protein, linking LC3 to its cargo (78). At the maturity

stage, LC3-II is digested and autophagosome forms that fuse with a

lysosome, causing cell cargo degradation (76) (Figure 3).

Although canonical and non-canonical autophagy pathways

share overlapping machinery, they differ in several important

ways (79, 80). Non-canonical autophagy processes include

microautophagy, chaperone-mediated autophagy (CMA), and

LC3-associated phagocytosis (LAP) (81). Microautophagy occurs

when lysosomes or vesicular endosomes directly engulf intracellular

material for degradation (82). CMA is the process of binding

intracytoplasmic proteins to molecular chaperones and

transferring them to the lysosomal lumen, where lysosomal

enzymes digest them (83). However, CMA is selective in

removing proteins and is a soluble protein (84). During

phagocytosis, pathogens engage extracellular receptors, such as

Toll-like receptors, to initiate LAP, a non-canonical form of

autophagy (85). Also, immune complexes and dying cells can

trigger LAP (86). Furthermore, LAP is an important mediator in

the response to immune tolerance, in addition to participating in

the degradation of engulfed pathogens (87). With increased

research on non-canonical autophagy, the concept of autophagy

has been better understood and appreciated.
6 Autophagy in cancer

Cells need to adapt to environmental disturbances to maintain

homeostasis in the body. In this process, autophagy serves as a
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recycling pathway that participates in the turnover of cellular

components (88). Also, autophagy is crucial for cancer cell

survival in conditions of nutrient and oxygen deprivation by

degrading protein and lipid bulks for nutrient recycling (89–91).

Tumor types and tumor models affect autophagy in cancer

progression (89, 90). Defects in autophagy in vivo have been

linked to an increased risk of tumor initiation (92). However, it is

still unclear how autophagy-deficient tumors sustain their growth.

Hepatocellular tumors are more likely to progress in autophagy-

deficient livers when the group box1 is released from autophagy-

deficient hepatocytes, which increases proliferation capacity (93). A

lack of autophagy inhibits the killing of triple-negative breast cancer

cells both in vitro and in vivo (94). Phosphorylation of Beclin1

controls autophagy and promotes or inhibits it (95). It is reported to

have increased Beclin1 expression in cancer tissues in 110 patients

with prostatic carcinoma, suggesting that autophagy could promote

tumorigenesis (96).

Malignant tumors are closely linked to autophagy, especially the

processes of recurrence, metastasis, and drug resistance (97).

Cancer progression has been characterized by metastasis.

Autophagy in metastasis is quite complex as a survival pathway

and quality control mechanism. During the early stages of

metastasis, autophagy serves primarily as a suppressor by

restricting necrosis and mediating autophagic cell death (98). On

the contrary, in the advanced stages of metastasis, autophagy as a

dynamic degradation and recycling system can help to cope with

intracellular and environmental stresses, such as hypoxia, nutrient

shortage, or cancer therapy, thus favoring tumor progression.

Moreover, Autophagy is upregulated in primary human

glioblastoma, melanoma, esophageal cancer, and hepatocellular

carcinoma upon progression to advanced metastatic disease, and

autophagy markers in these cancers are associated with poor
Frontiers in Immunology 05
prognosis (99–101), indicating its importance throughout the

metastatic cascade. Also, profilin 1 participates in cell

proliferation and enhances autophagy-induced drug resistance by

interacting with the Beclin1 complex in multiple myeloma (102).
7 Autophagy in cancer immunity

Autophagy influences tumorigenesis by modulating the

formation of TME, and this microenvironment causes changes in

autophagy signaling pathways in tumors, stroma, and innate

immune cells (103). Depending on the characteristics of the

tumor, autophagy can promote or suppress the immune response

of the TME. Autophagy of these cells can enhance antitumor

immune responses and immunotherapy. As a major innate

effector component of early immunity, NKs play a crucial role.

When NK cells develop, autophagy protects them by removing

damaged mitochondria and reactive oxygen species (ROS) (104). As

a result of its interaction with ATG7, phosphorylated Forkhead box

O (FoxO) 1 induces autophagy in iNKs (104). NK cell maturation

may be affected by autophagy when ATG7 and FoxO1 are disrupted

in the cytosol of immature NK cells (105). CCL5 overexpression was

associated with significantly improved long-term survival in

patients with melanoma. Targeting autophagy in a CCL5-

dependent manner improves NK cell infiltration and inhibits

melanoma growth (106). Therefore, autophagy can act as an

inhibitor of the expression of protumor and antitumor

chemokines, thus differentially influencing tumor progression.

Autophagy is involved in the processing and presentation of

major histocompatibility complex (MHC) molecular antigens and T

cell-mediated immune responses, which contribute to tumorigenesis

or antitumor immune responses. Pancreatic ductal adenocarcinoma
FIGURE 2

In this model, the cGAS interacts with the dsDNA via liquid-liquid phase separation, which activates the cGAS. STING is activated in the ER when
cGAMP is generated in response to the concentration of the reactants. As STING is transferred to the Golgi apparatus, TBK1 is recruited to activate
IRF3. When IRF3 is activated, it enters the nucleus and functions with NF-kB to produce type I IFN. The figure was created with BioRender (https://
biorender.com/).
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(PDAC) cells are targeted for selective degradation by the autophagy

cargo receptor neighbor of BRCA1, inhibiting antigen presentation

and killing T cells. On the other hand, inhibition of autophagy

restored MHC I surface levels, improved antigen presentation,

enhanced antitumor T cell responses, and reduced tumor growth

in syngeneic host mice (107). Unlike LAP and LANDO14, canonical

autophagy is required for the degradation of MHC I. This suggests

that tumor cells can evade immune surveillance through autophagy-

mediated degradation of MHC I. A significant component of tumor-

induced immunosuppression is MDSCs, which produce DCs,

macrophages, and neutrophils. Autophagy deficiency enhances the

immunogenic properties of tumor-derived tumor-infiltrating

autophagy-deficient monocytic MDSCs through impaired

lysosomal degradation of MHC II molecules (108). Consequently,

inhibition of autophagy in MDSCs may be beneficial in the

treatment of cancer; however, it remains challenging to target

specific myeloid subpopulations in TME. The ubiquitination of

MHC II in DC affects homeostasis, phenotype, cytokine

production, and Ag proteolysis by DC, affecting Ag presentation

and T-cell and Ab-mediated immunity (109). By interacting with

antigen-processing pathways in DCs, autophagy can effectively

modulate adaptive immunity. Through autophagy, organelles and

apoptotic proteins are degraded, promoting T-cell development and

survival. Furthermore, autophagy in DCs was shown to process

tumors intracellularly for the presentation of MHC II to CD4+ T

cells (110). Fusion of viral and tumor antigens into the LC3-II

protein of ATG8, which is located in autophagosomal membranes,

increases the presentation to CD4+ T cells (111). A CD4+ T helper

cell activates CD8+ T cells primed by DCs. An effector CD8+ T cell

lacking autophagy cannot establish long-term memory for effective

antiviral immunity (112). Mice lacking the autophagy genes Atg5,

Atg14, or Atg16L1 suffer from synthetic tumor growth impairment

(113). Also, Atg5-/- CD8+ T cells show enhanced glucose metabolism

which results in altered histone methylation and higher

transcription levels (113). In contrast, limiting glucose could

inhibit the Atg5-dependent enhancement effector, therefore

directly enhancing antitumor immunity via autophagy (113). In

addition, DC activity can be inhibited by autophagy and antigen

degradation. Through autophagy induction, the immune response is

activated, inhibiting T cell activation after EMT and ROS (114, 115),

affecting tumor killing. Inhibition of LAP in myeloid cells induces

tumor-associated macrophages (TAMs) to develop a

proinflammatory phenotype and increases phagocytosis of dying

tumor cells, suggesting that LAP can increase immunity (116).

Furthermore, TME galectin-1 (Gal-1) improves tumor cell

adhesion, invasiveness, angiogenesis, and immune evasion and

contributes to tumor progression (117, 118). Through TLR2-

activated secretory autophagy and MVB/Rab11/VAMP7-mediated

vesicle trafficking, Hepatocellular carcinoma (HCC) cells stimulate

TAMs to actively secrete Gal-1 (119). Autophagy-secreted Gal-1

promotes the growth of HCC in mice and is associated with a poor

prognosis in patients with HCC (120). HCC cells can inhibit

macrophage autophagy flux in vitro and stimulate the expression

of PD-L1 (121). Another report shows that autophagy blockade

drives PDAC to up-regulate and utilize the NRF2-induced

alternative macrophagocytosis nutrient procurement pathway,
Frontiers in Immunology 06
which allows tumor cells to extract nutrients from extracellular

sources and use them for energy production (122). As a result,

combined autophagy and macropinocytosis inhibition may

enhance cancer treatment.
8 Upstream pathway of cGAS-STING
and autophagy

As part of autophagy induction, the core complex Beclin-1-

PI3KC3 generates a PtdIns-3-P-rich membrane that recruits

autophagy proteins and forms autophagosomes (123). Rubicon

interacts with the Beclin-1-PI3KC3 core complex, negatively

regulating autophagy and PI3KC3 lipid kinase activity (124).

Rubicon competes with cGAS in conjunction with Beclin1.

Binding of the central NTase domain of cGAS to the central CCD

of Beclin 1 inhibits cGAMP synthesis and subsequent IFN

production, as well as stimulates Rubicon release from the Beclin

1 complex, which induces autophagy by activating PI3KC3, clearing

cytoplasmic dsDNA, inhibiting cGAS activation and sustained

immune stimulation (125). In conclusion, cGAS and Beclin-1

interact to coordinate the IFN and autophagic pathways and

thereby regulate the innate immune response.

cGAS contains five LC3-interacting regions (LIRs) that bind to

LC3 and induce noncanonical autophagy (126). In a recent study,

ATG7 and ATG14 were found to depend on the involvement of

cGAS to contribute constitutively to nucleus clearance, suggesting

that this pathway occurs through typical autophagy, in contrast to

STING1-mediated autophagy of the non-dependent ULK1 and

BECN1 pathways (127). cGAS has also been shown to bind to

dsDNA to form liquid-phase condensates (25). Interestingly, liquid-

like condensates can recruit autophagy-related molecules like ATG,

LC3, as well as P62 to form cytosomes and participate in the

mTOR-mediated autophagic pathway to facilitate cargo

degradation (128, 129).

In the immune system, cGAS may be a versatile sensor. Triplet

motif containing 14 (TRIM14), a mitochondrial articulator that

promotes innate immune signaling, is involved in various

tumorigenesis processes. Through the PRYSPRY domain and the

C terminus of cGAS, TRIM14 and cGAS interact (130). Researchers

demonstrated that TRIM14 inhibits autophagic degradation of

cGAS by preventing its entry into the autophagosome, which

promotes immune responses (130).
9 STING proteins and autophagy

In the drosophila model, previous research revealed that

inflammation-induced STING-dependent autophagy limits Zika

virus infection (131). In further experiments, it was found that

STING may evolve to destroy intracellular pathogens, suggesting

that cGAS/STING induces autophagy in an ancient and highly

conserved way (132). Nuclear warhead protease B has been found to

mediate genomic DNA damage and cell membrane DNA release,

activating STING-dependent autophagy and leading to ferrotoxic

death in human pancreatic cancer cells (133). This implies that
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STING-mediated autophagy is potentially promising for the

treatment of cancer.

When STING binds to cGAMP, it changes conformation. As

the oligomerized STING migrates from the ER to the Golgi

apparatus, it passes through the ER-Golgi intermediate

compartment (ERGIC). In ERGIC, STING plays an essential role

in the induction of autophagy. The STING translocation requires

both the COP-II complex and ARF GTPases. The STING-

containing ERGIC is capable of lipidating LC3 membranes and

thereby triggering the formation of autophagosomes (134). In

STING-induced autophagy, the transport of STING from ERGIC

to Golgi is unknown. After sensing c-di-AMP, STING disrupts ER

homeostasis, leading to the stress of the ER, mTOR inactivation,

and ER phagocytosis to coordinate autophagy, thus rescuing dead

cells. A recent study has demonstrated that activated STING can

undergo intercellular transfer and stimulate RAB22A-mediated

non-canonical autophagy derived from the ER, thereby

propagating antitumor immunity (135).

Additionally, STING activated the unfolded protein response

(UPR) (136). ER stress is induced by unfolded or misfolded

proteins, which trigger the UPR to relieve it and restore ER

homeostasis. The UPR signaling network activates transcription

factor 6, PKR-like ER kinase (PERK), and Inositol-Requiring

Protein-1 (137). UPR activation may affect autophagy (138). A

lack of PERK has been implicated in converting MDSCs into

antitumor CD8+ T cells and myeloid immune cells, leading to

STING-dependent production of type I IFN and antitumor

immunity (115).

By separating ULK1 from AMP-activated proteins, cGAMP

generated by cGAS promotes autophagy independent of STING.

Upon activation of ULK1, STING is phosphorylated at serine 366,

which is then degraded by autophagy and inhibits IRF3 activity

(139). In this regard, it is essential to note that, although cGAMP

stimulates STING function, it is followed by negative feedback that

inhibits the expression of pro-inflammatory molecules,

emphasizing the complexity of STING trafficking.

Autophagy proteins have alternative functions, such as LAP,

which is involved in phagosome maturation and subsequent

signaling mechanisms. Through its direct interaction with LC3,

STING mediates autophagy through its classical LIRs. However,

STING does not require TBK1 or IRF3 for autophagy to be induced

(140). Similarly, autophagy proteins of myeloid cells in the TME are

involved in the immunosuppression of T lymphocytes by affecting

LAP-induced oncogene expression and triggering the STING-

mediated TAM type I IFN response (116).

There is a potential connection between DNA sensing and

autophagy: cytosolic DNA inhibits STING-dependent delivery of

microbes to autophagosomes that destroy intracellular pathogens

(141). The ATG5-dependent autophagy machinery in the ER,

which is a key membrane source for autophagosome formation,

may regulate innate immune signaling through STING (140).

Cytosolic DNA accumulates in cells depleted of ATG5 and

ATG7, induced by the expression of STING, STAT1, and ISG15.

Activation of the STAT1-ISG15 axis leads to cell migration,

invasion, and proliferation, suggesting that inhibition of

autophagy can promote tumor-associated phenotypes by
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activating STING (142). Atg9a is the only multitransmembrane

protein identified as an ATG protein in mammals (143) that

delivers membranes to the trans-Golgi network (TGN) to form

autophagosomes between the plasma membrane and the TGN (144,

145). After dsDNA stimulation, STING colocalizes with the

autophagy-associated protein Atg9a and the microtubule-

associated protein LC3. When Atg9a is disrupted, the assembly of

STING and TBK1 dsDNA is promoted, leading to aberrant

activation of innate immunity (146, 147). Interestingly, STING

can activate autophagy without Beclin1, Ulk1, or Atg9a (140). A

lack of Atg9a led to enhanced STING signaling, suggesting that

Atg9a is independent of autophagy in the regulation of STING

signaling [118]. Furthermore, activated STING has been reported to

recruit ATG16L1 to lipidated LC3 for single membrane perinuclear

vesicles through its structural domain WD40, a process that

bypasses the requirement for canonical upstream autophagy

(148). STING-induced ERGIC or Golgi membrane damage

induces the V-ATPase (vacuolar-type H+-ATPase) to lapidate

LC3 on the Golgi membrane and participates in non-canonical

autophagy (85, 149). These findings suggest that STING can

interact with LC3 and participate in noncanonical autophagy.
10 Downstream of the cGAS-STING
and autophagy

Activating the cGAS-STING pathway can regulate intrinsic

cellular programs, such as inducing autophagy in tumor cells

(150). Increasing evidence suggests that cargo receptors provide

substrates for selective autophagy (151, 152). As a chaperone-like

protein, ubiquitously expressed prefoldin like chaperone was vital

for suppressing excessive activation of STING1-mediated type I IFN

signaling through autophagic degradation of STING1 through

sequestosome 1 (153). The Unc-93 homolog B1 attenuates the

cGAS-STING signaling pathway by targeting STING for

degradation in autophagy lysosomes (154). This provides new

insight into the function of STING in innate antiviral immunity,

which functions as a checker to prevent hyperactivation.

P62 has been implicated in tumor development as an autophagy

selective substrate (155, 156). In cancer cells, increased expression

of p62 is associated with defective autophagy, which promotes

tumor growth (157). Autophagy can be induced even in the

absence of p62 in the presence of ectopic expression of STING

(140), indicating that p62 is not necessary for STING-dependent

autophagy. The ubiquitination of STING promotes both activation

and negative regulation of STING during autophagosome

degradation (158). Microtubule-associated protein one LC3

promotes the recruitment of ubiquitinated carriers to the

autophagosome membrane through its ubiquitin-associated

structural domain. The interaction of LC3-p62 interaction and

autophagic degradation is regulated by the structural domain of

LIRs (78). By connecting to K63, STING is ubiquitinated and

recruited into p62 positive compartments. This results in TBK1

phosphorylating p62 in a manner that depends on IRF3 but not on

transcription, thus increasing the affinity of ubiquitin for it.

Therefore, p62-deficient cells do not degrade STING, resulting in
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elevated levels of type I IFN and ISG (159). STING and p62 interact

in autophagy and immune regulation, which requires

further research.

The mediator of IRF3 activation, a regulator of innate

immunity, regulates autophagy flux to promote cell death in

breast cancer cells (160). Autophagy may also regulate the

stability of IRF3. PSMD14/POH1 deubiquitinase prevents IRF3

autophagy by cleaving its K27-linked polyubiquitin chain in

lysine 313 to promote IRF3-mediated type I IFN activation (161).

STING also triggers non-canonical autophagy in response to

dsDNA, which is crucial for the activation of both IRF3/7 and

NF-kB (139). Consequently, selective autophagy-mediated

degradation of IRF3 causes immunosuppression by preventing

excessive IFN signaling. Nevertheless, IRF3 does not appear to

understand the molecular mechanisms that lead to STING

degradation. The future of precise immunosuppression may

involve activation of the IRF3 pathway, although autophagy may

be an important contributor to IRF3-dependent type I IFN

signaling (Figure 4).
11 Discussion and outlook

The cGAS-STING pathway has been identified as a significant

immune pathway to recognize cytosolic DNA. It has now made

great progress in multiple immune pathways. To support antitumor

effects, the host can activate the cGAS-STING pathway, but

excessive activation can also contribute to tumor progression.

STING activity can be precisely modulated to affect the immune

response, including terminating STING-mediated excessive

immune activation, which could lead to further investigation.

Autophagy exhibits similar dichotomous effects on tumor
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development. With the advancement of research, autophagy is

becoming a more prominent part of tumor immunity. Most of

them are focused on the field of canonical autophagy, and non-

canonical autophagy remains an area that needs to continue to be

explored in depth, which appears to be more comprehensive for

better control of mechanistic studies of autophagy in cancer

immunity (162).

This review explores the interactions between the upstream and

downstream regulators of cGAS-STING and autophagy-related

proteins and their relevant effects on cancer immunity. Future

research could focus on finding herbal medicine and ingredients

that can promote immune cells with antitumor effects. Herbal

medicine can be used in combination with chemotherapy or

targeted drugs, or immunotherapy represented by PD-1 and PD-

L1 inhibitors to have a selective synergistic effect, improving the

killing effect of cancer cells, while reducing the side effects of these

therapies on healthy ones. In clinical practice, this expectation is

consistent with what we have observed. The combination of herbal

medicine and various therapies can enhance tumor inhibition more

effectively than single drugs (163). Meanwhile, we found that herbal

medicine can enhance the cytotoxic effect of chemotherapy on

NSCLC by inhibiting cisplatin-induced protective autophagy (164).

This way, the application of synergistic treatment of tumors with

herbal medicine combined with chemotherapy or targeted drugs, or

immunotherapy will be appropriate. This fundamental study can

better facilitate the design and development of future antitumor-

targeting drugs. Based on the function of cGAS-STING, we will take

this pathway as the main means to test the anticancer effect of

herbal medicine.

Many interesting questions remain for future investigation and

interpretation, although cGAS-STING can trigger both canonical

and non-canonical autophagy through multiple pathways. First, in

different types of cancer, cGAS-STING inhibits the cell growth cycle
FIGURE 3

Several steps are involved in canonical autophagy: (1) initiation; (2) nucleation or phagosome extension; (3) maturation; (4) autophagosome
formation; (5) autophagosome and lysosome formation; (6) degradation. The figure was created with BioRender (https://biorender.com/).
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through cellular senescence, necrosis, and apoptosis (165–168).

What determines cell fate after cGAS-STING mediation? Does

the presence of cGAS without transmembrane domains and its

localization have an impact on this, including the onset of

autophagy? Furthermore, the degree of STING activity and the

intrinsic changes in the cancer cells themselves are also taken into

account. Second, we need to find other pathways to connect cGAS-

STING to autophagy more directly. At present, there is only a

preliminary linkage between the two, but there is no more

comprehensive systematic evidence to combine them and

coordinate a series of downstream pathways to improve tumor

immune efficiency in response to various foreign stimuli. Third, it is

worthwhile to think about how to more fully elucidate the specific

structures and modes of interaction between STING and some of

the factors associated with autophagy along with drug trials and

applications concerning each of them. Overall, combining cGAS-

STING with autophagy can help to deepen the understanding of the

intersection of innate and acquired immunity, which provides a

new avenue for studying antitumor immunity.
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FIGURE 4

The upstream and downstream of the cGAS-STING pathway, including STING proteins, trigger autophagy by the following roughly divided
mechanisms: cGAS binds to dsDNA to form liquid-phase condensates. (1) cGAS interacts with Beclin1 and triggers canonical autophagy; (2) cGAS
binds to LC3 to induce non-canonical autophagy; (3) cGAS binds to dsDNA and recruits ATG, LC3, and P62 to participate in canonical autophagy; (4)
STING leads to ER stress, mTOR inactivation, and coordinates autophagy; (5) STING stimulates RAB22A-mediated non-canonical autophagy derived
from the ER; (6) STING recruits ATG16L1 to lipidated LC3, induces non-canonical autophagy. The figure was created with BioRender (https://
biorender.com/).
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Glossary

PD-1/PD-
L1

programmed cell death protein 1/programmed cell death ligand 1

CAR-T cell chimeric antigen receptor T-cell

DCs dendritic cells

ILCs innate lymphocytes

NK natural killer

PRRs pattern recognition receptors

PAMPs pathogen-associated molecular patterns

DAMPs danger-associated molecular patterns

cGAS cyclic guanosine monophosphate-adenosine monophosphate
synthase

dsDNA double-stranded DNA

STING stimulator interferon gene

ER endoplasmic reticulum

cGAMP cyclic guanosine monophosphate-adenosine monophosphate

IFN interferon

APCs antigen-presenting cells

STAT1 signal transducer and activator of transcription 1

EMT epithelial-mesenchymal transition

TME tumor microenvironment

ISG invariant surface glycoprotein

cGAMP-
NP

cGAMP nanoparticles

MDSCs myeloid derived suppressor cells

IDO indolamine 2,3-dioxygenase

LKB1 liver kinase B1

NSCLC non-small cell lung cancer

CMA chaperone-mediated autophagy

ATG autophagy-related gene

PI3K phosphoinositide 3-kinase

PE phosphatidylethanolamine

PI3KC3 class III PI3K

ROS reactive oxygen species

FoxO Forkhead box O

UBD ubiquitin binding domain

MHC major histocompatibility complex

PDAC pancreatic ductal adenocarcinoma

LAP LC3-associated phagocytosis

TAMs tumor-associated macrophages

Gal-1 galectin-1
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HCC Hepatocellular carcinoma

LIRs LC3-interacting regions

TRIM14 triplet motif containing 14

ERGIC ER–Golgi intermediate compartment

UPR unfolded protein response

PERK PKR-like ER kinase

TGN trans-Golgi network
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