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Dietary a-ketoglutarate alleviates
glycinin and b-conglycinin
induced damage in the intestine
of mirror carp (Cyprinus carpio)
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Fernando Y. Yamamoto3,4, Yingying Du1,2, Xiaowen Lin1,2,
Jianhua Zhao1,2 and Qiyou Xu1,2*

1College of Life Science, Huzhou University, Huzhou, China, 2Nation Local Joint Engineering
Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of
Aquatic Bioresource Conservation and Development Technology, Huzhou, China, 3Thad Cochran
National Warmwater Aquaculture Center Agriculture and Forestry Experiment Station, Mississippi
State University, Starkville, MS, United States, 4Department of Wildlife, Fisheries and Aquaculture,
Mississippi State University, Starkville, MS, United States
This study investigated the glycinin and b-conglycinin induced intestinal damage

and a-ketoglutarate alleviating the damage of glycinin and b-conglycinin in

intestine. Carp were randomly divided into six dietary groups: containing fish

meal (FM) as the protein source, soybean meal (SM), glycinin (FMG), b-
conglycinin (FMc), glycinin+1.0% a-ketoglutarate (AKG) (FMGA), b-conglycinin
+1.0% AKG (FMcA). The intestines were collected on 7th, and the hepatopancreas

and intestines were collected on 56th. Fish treated with SM and FMc displayed

reduced weight gain, specific growth rate, and protein efficiency. On 56th day,

Fish fed on SM, FMG and FMc presented lower superoxide dismutase (SOD)

activities. FMGA and FMcA had higher SOD activity than those fed on the FMG

and FMc, respectively. In intestine, fish fed on the SM diets collected on 7th

presented upregulated the expression of transforming growth factor beta

(TGFb1), AMP-activated protein kinase beta (AMPKb), AMPKg, and acetyl-CoA

carboxylase (ACC). Fish fed FMG presented upregulated expression of tumor

necrosis factor alpha (TNF-a), caspase9, and AMPKg, while downregulated the

expression of claudin7 and AMPKa. FMc group presented upregulated

expression of TGFb1, caspase3, caspase8, and ACC. Fish fed FMGA showed

upregulated expression of TGFb1, claudin3c, claudin7, while downregulating the

expression of TNF-a and AMPKg when compared to fish fed FMG diet. FMcA

upregulated the expression of TGFb1, claudin3c than fed on the FMc. In intestine,

the villus height andmucosal thickness of the proximal intestine (PI) and the distal

intestine (DI) were decreased and crypt depth of the PI and mid intestine (MI)

were increased in SM, FMG and FMc. In addition, fish fed on SM, FMG and FMc

presented lower citrate synthase (CS), isocitrate dehydrogenase (ICD), a-
ketoglutarate dehydrogenase complex (a-KGDHC) Na+/K+-ATPase activity in

DI. FMGA had higher CS, ICD, a-KGDHC, and Na+/K+-ATPase activity in PI andMI

than those fed on the FMG. FMcA had higher Na+/K+-ATPase activity in MI. In

conclusion, dietary soybean meal destroys the intestine’s health, the adverse
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effects are related to the presence of b-conglycinin and glycinin, especially

glycinin. AKG may regulate intestinal energy via tricarboxylic acid cycle, thereby

alleviating the damage intestinal morphology caused by the dietary soybean

antigen proteins.
KEYWORDS
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1 Introduction

Given the increased demand and limited capture of forage fish,

fishmeal prices have reached all-time high, with limited supply (1).

As an alternative to fishmeal, soybean meal is a plant-based

ingredient with high levels of protein, balanced amino acid

profile, and other nutrients required by aquatic animals (2).

However, soybeanmeal cannot completely replace fishmeal

because of the antinutritional factors such as allergens, trypsin

inhibitor and saponins (3). High inclusion of soybean meal in fish

aquafeeds decreased growth performance in Japanese seabass

(Lateolabrax japonicus) (4), orange-spotted grouper, and

(Epinephelus coioides) (5). These adverse effects are often related

to the presence of anti-nutritional factors, especially b-conglycinin
and glycinin (6). These two antigenic proteins are considered the

major cause of reduced growth and increased intestinal

inflammation in aquatic animals (7). Previous studies have

showed that 4% to 8% b-conglycinin and/or glycinin can damage

the structural integrity of the intestine, reduce the immune function

and compromise the growth performance of juvenile golden

crucian carp (Carassius auratus) (8, 9) and grass carp

(Ctenopharyngodon idella) (10, 11).

In this context, supplementation of functional additives is an

important strategy to maintain the intestine health. a-ketoglutaric
acid (AKG) is an intermediate for the tricarboxylic acid (TCA) cycle

is involved in pleiotropic metabolic and regulatory pathways in the

cell, including energy production (12). AKG has the function of

improve intestinal immunity and inhibit apoptosis in response to

inflammatory stimuli (13), which can ultimately compensate the

energy consumption in the intestinal health. In addition, AKG has

alleviative effect on oxidative stress as a source of energy and an

antioxidant in mammalian cells (14). Similar results were also

observed on juvenile red drum (Sciaenops ocellatus) (15). Thus, it

is hypothesized that AKG could protect fish against glycinin and b-
conglycinin injury.

Nevertheless, the alleviating effects of a-ketoglutarate on the

damage of glycinin and b-conglycinin in intestinal mucosa of

Mirror carp have not been elucidated. Our research group

showed that the intestinal inflammation and tight junction

protein showed a trend of first serious and then recovery when

addition b-conglycinin and Glycinin was 4% to 16%, respectively

(16). Therefore, the objective of this study was to investigate the

effects of high-lever glycinin and b-conglycinin on growth
02
performance, antioxidant capacity, intestinal health and energy of

mirror carp (Cyprinus carpio), and evaluated whether AKG

supplementation had potential alleviating effects on the glycine

and b-conglycine induced injuries in the intestinal mucosa.
2 Materials and methods

2.1 Experimental diets

Glycinin (purity, 85%) and b-conglycinin (purity, 88%) were

provided by the China Agricultural University. a-ketoglutarate
(purity, 98%) was purchased from Sigma-Aldrich. For this study,

six experimental diets were formulated to be isonitrogenous (33%)

and isolipidic (6%). The ingredients and nutrient composition of all

diets are shown in Table 1. For the control group (FM), fish meal

was used as the main protein source, and the other five diets were

formulated with either 56.0% soybean meal (SM), 22.8% glycinin

(FMG), 22.0% b-conglycinin (FMc), 22.8% glycinin + 1.0% a-
ketoglutarate (FMGA), or 22.0% b-conglycinin + 1.0% a-
ketoglutarate (FMcA). Dietary ingredients were ground into fines

to pass through a 60 mesh sieve. Homogenized ingredients were

thoroughly mixed with fish oil, soybean oil, phospholipid, and

water, and mixtures were extruded (twin screw extruded F-26,

South China University of Technology, Guangzhou, China), using

a 1.5 mm die-plate. The diets were dried in a ventilated oven at 40 °

C, until reached a constant dry matter, and stored at -20 °C

until feeding.
2.2 Feeding management

The feeding trial was carried out at the College of Life Science,

Huzhou University. Prior commencement of the feeding trial, fish

were acclimated in the recirculating system for two weeks. A total of

450 carps of similar sizes (mean initial body weight 2.08 ± 0.06 g)

were randomly distributed into six treatments, 3 replicate tanks per

treatment, with 25 fish per tank (500 L water). Fish were fed to

apparent satiation thrice daily (08:00, 13:00, and 18:00) for 8 weeks;

and uneaten feed was collected after 45 min, dried and weighed to

record feed intake (17). During the experimental period, the carp

were cultured in a recirculating aquaculture system with continuous

aeration, with 1/3 of the water being changed every day. The water
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temperature ranged from 24.6 to 30.4°C, dissolved oxygen was no

less than 6.0 mg l-1, and the ammonia nitrogen concentrations was

less than 0.3 mg L-1.
2.3 Growth performance

At the beginning and end of the trial, fish in each tank were

group weighed and counted to calculate growth performance,

including Weight gain (WG %), Specific growth rate (SGR),

Survival rate (SR %), PE (Protein efficiency %), Feed conversion

ratio (FCR) (18). The production performance were calculated

as follows:

Weight gain (WG,   % )  =  (FBW − IBW)=IBW � 100;

Specific growth rate (SGR,   % =d) 

=  ½lnðFBWÞ − lnðIBWÞ� � 100 =d;
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Survival rate (SR,   % )  =  Nt=N0 � 100;

Protein efficiency (PE,   % )  =  (FBW − IBW)=(F � P)� 100;

Feed conversion ratio (FCR)  = F=(FBW  −  IBW);

Abbreviations: Number of initial fish, N0; number of final fish,

Nt; initial body weight, IBW; final body weight, FBW; Feeding days,

d; total diet intake, F; feed crude protein content, P.
2.4 Sample collection and analysis

Intestine samples collected on the 7th day were dissected quickly

on ice. 3 fish was pooled as one sample, and six samples per

treatment. The intestine samples were stored at -80°C to analyze the

relative gene expression during a short-term exposure to the

experimental feed.
TABLE 1 Formulation of the experimental diets fed to Mirror carp (Cyprinus carpio), and their analyzed nutrient composition.

Ingredients
Groups

FM SM FMG FMc FMGA FMcA

Fish meal 38.00 5.00 5.00 5.00 5.00 5.00

Soybean meal 0.00 56.00 0.00 0.00 0.00 0.00

Glycinin 0.00 0.00 22.80 0.00 22.80 0.00

b-conglycinin 0.00 0.00 0.00 22.00 0.00 22.00

a-ketoglutarate 0.00 0.00 0.00 0.00 1.00 1.00

Wheat middling 49.90 28.72 57.10 57.80 56.10 56.80

Cellulose 3.60 0.00 3.65 3.69 3.65 3.69

Fish oil 0.00 3.20 3.20 3.20 3.20 3.20

Soybean oil 3.10 0.30 1.40 1.40 1.40 1.40

Soybean lecithin oil 1.00 1.00 1.00 1.00 1.00 1.00

Vitamin premixa 0.50 0.50 0.50 0.50 0.50 0.50

Mineral premixb 0.20 0.20 0.20 0.20 0.20 0.20

Choline chloride 0.30 0.30 0.30 0.30 0.30 0.30

Ca(H2PO4)2 1.20 2.00 2.00 2.00 2.00 2.00

Carboxymethyl cellulose 2.00 2.00 2.00 2.00 2.00 2.00

Lysine 0.10 0.23 0.00 0.00 0.00 0.00

Methionine 0.10 0.51 0.65 0.65 0.65 0.65

L-Threonine 0.00 0.04 0.20 0.26 0.20 0.26

Proximate analysis (%)

Moisture 5.70 5.90 5.87 6.30 5.88 5.25

Crude protein 33.36 34.08 33.62 33.42 33.59 33.75

Crude lipid 6.50 6.35 6.48 6.42 6.40 6.34

Ash 11.52 7.41 4.54 4.73 4.66 4.61
aThe premix provided the following per kg of diets: A 8 000IU, VC 500mg, VD 3 000IU, VE 60mg, VK 35mg, VB1 15mg, VB2 30mg, VB6 15mg, VB12 0.5mg;
bThe premix provided the following per kg of diets:FeSO4•H2O 960 mg, CuSO4•5H2O 12 mg, MnSO4•H2O 33 mg, ZnSO4•H2O 70 mg, Na2SeO3 1.2 mg, Ca(IO3)2 1.4mg, CoCl2•6H2O 2.4 mg,
Zeolite meal 920 mg.
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On the 56th day, after weight and length were measured, three

fish from each tank (nine per treatment). The fish were then

dissected to obtain the hepatopancreas and intestine quickly on

ice. The hepatopancreas stored at -80°C for antioxidant capacity

analysis. The intestinal tract was immediately divided into proximal

intestine (PI), mid intestine (MI), and distal intestine (DI), stored at

-80°C for key enzymes in tricarboxylic acid cycle and Na+/K+-

ATPase analysis. An additional segment of PI, MI, and DI was fixed

using Bouin solution for histology.
2.5 Antioxidant status

Glutathione (GSH, Cat. No. A006-2-1), malondialdehyde

(MDA, Cat. No. A003-1) content; the activities of total

superoxide dismutase (SOD, Cat. No. A001-1), and catalase

(CAT, Cat. No.A007-1-1) were determined using the commercial

kits purchased from Nanjing Jiancheng Bioengineering Institute.
2.6 Gene expression analysis

The total RNA was extracted from the proximal intestine, mid

intestine, and distal intestine by Rapid Extraction Kit extracted total

RNA (RN28; Aidlab Bio Inc., Beijing, China). RNA concentration

and purity were measured by the spectrophotometry analysis

(A260:A280 nm ratio) within the ratio specified by the kit (1.8-

2.2). Subsequently, cDNA was synthesized by a MonScript™ RTIII

All-in-One Mix (MR05001M; Monad Bio Inc., Wuhang, China).

The MonAmp™ SYBR® Green qPCRMix (MQ10101S; Monad Bio

Inc., Wuhang, China) used mRNA level analysis by quantitative

real-time PCR on a CFX-96 Real-Time PCR Detection System (Bio-

Rad Laboratories, Inc., USA). The reactions were done in a volume

of 20 mL containing 0.4 mL of 10 mM each of reverse and forward

primers, 1 mL of diluted cDNA, 10 mL of MonAmp™ SYBR® Green

qPCR Mix, and 8.2 mL of Nuclease-Free Water. PCR conditions

were as follows: 95 °C for 5 min followed by 40 cycles of 95 °C for 10

s, 60°C for 10 s and 72 °C for 30 s. The online Primer3 (http://

primer3.ut.ee) software was used to design the primers. Target gene

mRNA relative expression levels were calculated using the 2-DDCt

method and corrected for the expression of the normalizing gene b-
actin, according to Luo et al. (19). The primers used for quantitative

fluorescence analysis are shown in Table 2.
2.7 Histology of the intestine

The 1 cm segments were cut from the PI, MI, and DI. The 1 cm

intestinal segments were processed, embedded, and stained

according by Hangzhou Haoke Biotechnology Co., Ltd. Randomly

selected fields were observed and pictures were taken by a camera

coupled with a light microscope (40×). The images were measured

and calculated for villus height, crypt depth, mucosal thickness

according to the method previously described by Lin et al. (20)

using the software Adobe Photoshop 2021. The average value was

calculated from the measurement results from each sample index.
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2.8 Key enzymes in tricarboxylic acid cycle
and Na+/K+-ATPase in the intestine

Citrate synthase (CS, Cat. No. MM-204201), Isocitrate

dehydrogenase (ICD, Cat. No. MM-3280701), a-ketoglutarate
dehydrogenase complex (a-KGDHC, Cat. No. MM-9176301),

and Na+/K+-ATPase (Cat. No. MM-166201), were determined by

the enzyme-linked immunosorbent assays (ELISA), following the

manufacturer’s procedures (Jiangsu Meimian Industrial Co.,

Ltd., China)
2.9 Statistical data analysis

All statistical analyses were performed using SPSS, version 26.0

software. The level of significance was set to P< 0.05. Data were

subjected to the one-way analysis of variance (ANOVA) followed

by Tukey’s test was performed for comparison of means, and data is

presented as means ± standard error (SE).
3 Results

3.1 Growth performance

The effect of soybean antigen proteins and a-ketoglutarate on

growth performance of mirror carp is shown in Figure 1. Compared

with the FM group, there were no significant differences in SR. The

WG, SGR, and PE were significantly reduced in SM and FMc group.

In addition, the FCR was significantly increased in SM. Feeding the

fish with the FMG diets did not affect significantly WG, SGR, SR,

PE, and FCR.

Feeding the fish with the FMGA diets did not affect significantly

WG, SGR, SR, PE, and FCR, when compared to the fish fed FMG

diets. Feeding the fish with the FMcA diets did not affect

significantly SR, PE, and FCR, but WG and SGR were

significantly decreased, when compared to the fish fed FMc diets.
3.2 Antioxidant capacity in
the hepatopancreas

The effect of soybean antigen proteins and a-ketoglutarate on

antioxidative ability in the hepatopancreas was given in Figure 2.

Compared with the FM group, there was no significant change in

MDA content, however, SOD activity were significantly decreased

in SM, FMG and FMc group; the CAT activity in FMG and FMc

g roup and th e GSH con t en t i n FMc g roup we r e

decreased significantly.

Compared with the FMG group, there were no significant

change in GSH content, MDA content, and CAT activity.

However, the SOD activity of FMGA group increased

significantly. Compared with the FMc group, there was no

significant change in MDA content, CAT activity. However, the

GSH content, SOD activity of FMcA group increased significantly.
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3.3 Relative expression levels of
inflammatory cytokines genes in
the intestine

The effect of soybean antigen proteins and a-ketoglutarate on

the mRNA levels of inflammatory cytokines genes in the intestines

are shown in Figure 3. Compared with the FM group, the mRNA

expression levels of TNF-a and IL-1b were not significantly

different, but the mRNA expression levels of TGFb1 was

significantly increased in SM and FMc group; the mRNA

expression levels of TGFb1, IL-1b were not significantly different,

but the mRNA expression levels of TNF-a was significantly

increased in FMG group.
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Compared with the FMG and FMc group respectively, the

mRNA level of IL-1b was not significantly different in FMGA and

FMcA group, but the mRNA expression levels of TGFb1 were

significantly increased in FMG and FMcA group, respectively.
3.4 Relative expression levels of junction
protein in the intestine

The effect of soybean antigen proteins and a-ketoglutarate on

the mRNA levels of junction protein in the intestines are shown in

Figure 4. Compared with the FM group, the mRNA expression

levels of claudin3c, claudin7, and occludin were not significantly

different in SM and FMc group; the mRNA expression levels of

claudin3c and occludin were not significantly different, but the

mRNA expression levels of claudin7 was significantly decreased in

FMG group.

Compared with the FMG group, the mRNA level of occludin

was not significantly different, but the mRNA expression levels of

claudin3c and claudin7 were significantly increased in FMGA

group. Compared with the FMc group, the mRNA level of

occludin and claudin7 were not significantly different, but the

mRNA expression levels of claudin3c was significantly increased

in FMcA group.
3.5 Relative expression levels of apoptosis
factors in the intestine

The effect of soybean antigen proteins and a-ketoglutarate on

the mRNA levels of apoptosis factors in the intestines was given in

Figure 5. Compared with the FM group, the mRNA expression

levels of caspase3, caspase8, and caspase9 were not significantly

different in SM group. In FMG group, the mRNA expression levels

of caspase3 and caspase8 were not significantly different, but the

mRNA expression levels of caspase9 was significantly increased; the

mRNA expression levels of caspase9 was not significantly different,

but the mRNA expression levels of caspase3 and caspase8 were

significantly increased in FMc group.

Compared with the FMG and FMc group, the mRNA

expression levels of caspase3, caspase8, and caspase9 were not

significantly different in FMGA and FMcA group.
3.6 Relative expression levels of AMPK/
ACC and TOR signaling pathway
in the intestine

The effect of soybean antigen proteins and a-ketoglutarate on

the mRNA levels of AMPK/ACC and TOR signaling pathway in the

intestines was given in Figure 6. Compared with the FM group, the

mRNA expression levels of AMPKa, target of rapamycin (TOR),

and eIF4E-binding protein (4E-BP) were not significantly different,

but the mRNA level of AMPKb, AMPKg, and acetyl-CoA

carboxylase (ACC) were significantly increased in SM group; the

mRNA expression levels of AMPKb, ACC, TOR, and 4E-BP were
TABLE 2 Primer sequences of target genes from mirror carp (Cyprinus
carpio), to measure the relative expression of the genes through
quantitative real-time PCR.

Target genes Primer sequence (5’-3’) Gene ID

TNF-aa AAGTCTCAGAACAATCAGGAA
TGCCTTGGAAGTGACATT

XM_019088899.2

TGFb1b
ACACGGTCACTTTGGTGTCA
CAATGTGGGTTGCAGAACAG

XM_019072371.2

IL-1bc
AACTTCACACTTGAGGAT

GACAGAACAATAACAACAAC
XM_019080073.2

claudin3c
GCACCAACTGTATCGAGGATG
GGTTGTAGAAGTCCCGAATGG

XM_042710912.1

claudin7
CTTCTATAACCCCTTCACACCAG
ACATGCCTCCACCCATTATG

XM_042732468.1

occludin
ATCGGTTCAGTACAATCAGG
GACAATGAAGCCCATAACAA

KF975606.1

caspase3
CTCTACGGCACCAGGTTACTACTC
GCCATCATTTCACAAAGGGACT

XM_019110173.2

caspase8
AAGCTCCTCATTGAAGAACCG
ATCGTCCTGAACCACAACCTC

XM_042759183.1

caspase9
GCAAGCCCAAACTGTTCTTCAT
CGTCCATCTGGTCATCTATCCC

XM_042750058.1

AMPKad GATGCCCTCTGGATGCTCTC
GATGTCGTATGGTTTGCTCTGG

XM_042777568.1

AMPKbe
AAACCTGAGGAACGCTTCAA
CATCACATGGTTGGGTTCTG

XM_042711618

AMPKgf
TGGGACAACAAACTGCAGAG
GCAAGGGAATGAAGGAAACA

XM_042716989.1

ACCg GTCACTGGCGTATGAGGATATT
TCCACCTGTATGGTTCTTTGG

XM_042724983.1

TORh ATCTACGGCAAGACGAGAGG
GTTGGTGGAGAGTGGGATCA

XM_042761449.1

4E-BPi
GGTGCTGATCAACGAGTCAA
CAGGACGTTCTTGCTTGTCA

XM_042737175.1
aTNF-a, tumor necrosis factor alfa;
bTGF-b1, transforming growth factor beta;
cIL-1b, interleukin-1 beta;
dAMPKa, AMP-activated protein kinase alfa;
eAMPKb, AMP-activated protein kinase beta;
fAMPKg, AMP-activated protein kinase gamma;
gACC, acetyl-CoA carboxylase;
hTOR, target of rapamycin;
i4E-BP, eIF4E-binding protein.
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not significantly different, but the mRNA level of AMPKg were

significantly increased and the mRNA level of AMPKa were

significantly decreased in FMG group; the mRNA expression

levels of AMPKa, AMPKb, AMPKg, TOR and 4E-BP were not

significantly different, but the mRNA level of ACC was significantly

increased in FMc group.

Compared with the FMG group, the mRNA expression levels of

AMPKa, AMPKb, ACC, TOR, and 4E-BP were not significantly

different, but the mRNA level of AMPKgwas significantly decreased
in FMGA group. Compared with the FMc group, the mRNA

expression levels of AMPKa, AMPKb, AMPKg, ACC, TOR and

4E-BP were not significantly different.
3.7 Morphology of the intestine

The effect of soybean antigen proteins and a-ketoglutarate on

morphology of the intestines was given in Figure 7. The fish fed on

the SM diet, there were no significant change in crypt depth in DI;

but the crypt depth were significantly increased in PI and MI. The

villus height and mucosal thickness were significantly decreased in

PI, MI, and DI. The fish fed on the SM diet, there were no significant

change in villus height (MI) and crypt depth (DI); but the villus

height (PI and DI) and mucosal thickness (PI, MI, and DI) were
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significantly decreased and crypt depth (PI and MI) were

significantly increased. The fish fed on the FMc diet, the villus

height and mucosal thickness were significantly decreased and crypt

depth were significantly increased in PI, MI, and DI.

Compared with the FMG group, there were no significant

change in villus height, crypt depth (MI and DI), mucosal

thickness (PI and MI), but crypt depth (PI) was significantly

decreased and villus height (PI), mucosal thickness (DI) was

significantly increased in FMGA group. Compared with the FMc

group, there were no significant change in villus height (PI, MI and

DI), crypt depth (MI), mucosal thickness (PI and MI), but crypt

depth (PI and DI) was significantly decreased and mucosal

thickness (DI) was significantly increased.
3.8 Key enzymes in tricarboxylic acid cycle
and Na+/K+-ATPase in the intestine

The effect of soybean antigen proteins and a-ketoglutarate on

key enzymes in tricarboxylic acid cycle and Na+/K+-ATPase in the

intestines was given in Figure 8. Compared with the FM group,

there were no significant change in CS, ICD, and a-KGDHC (PI

and MI) activity, but Na+/K+-ATPase (PI) was significantly

increased and a-KGDHC, ICD, CS (DI), and Na+/K+-ATPase
D
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C

FIGURE 1

Growth performance of mirror carp at different treatments fed with dies containing fishmeal (FM), soybean meal (SM), glycinin (FMG), B-conglycinin
(FMc), AKG+glycinin (FMGA), AKG+B-conglycinin (FMcA) after eight weeks. (A) WG, weight gain (%); (B) SGR, specific growth rate (%/day); (C) SR,
survival rate (%); (D) PE, protein effiency (%); (E) FCR, feed conversion ratio; Data are presented as mean + SE, (n = 3). a, b, c Mean values with
different letters were significantly different (P<0.05).
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(MI and DI) activity were significantly decreased in SM group; there

were no significant change in CS, Na+/K+-ATPase (PI), ICD (MI),

and a-KGDHC (PI and MI) activity, but CS, Na+/K+-ATPase (MI

and DI), ICD (PI and DI), a-KGDHC (DI) were significantly

decreased in FMG group; there were no significant change in

ICD, a-KGDHC (PI and MI), and Na+/K+-ATPase (PI) activity,

but CS (PI, MI and DI), a-KGDHC, ICD (DI), Na+/K+-ATPase (MI

and DI) were significantly decreased in FMc group.

Compared with the FMG group, there were no significant

change in CS, ICD, a-KGDHC and Na+/K+-ATPase (DI) activity,

but CS, a-KGDHC, ICD and Na+/K+-ATPase (PI and MI)activity

were significantly increased in FMGA group. Compared with the
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FMc group, there were no significant change in CS (PI and MI),

ICD, a-KGDHC (PI, MI, and DI), and Na+/K+-ATPase (PI and DI)

activity, but Na+/K+-ATPase (MI) activity were significantly

increased and CS (DI) activity was significantly decreased in

FMcA group.
4 Discussion

In the present study, carp fed diets with soybean meal presented

lower WG, SGR, and PE than in the control, which is corroborated

by the findings of other studies investigating dietary soybean meal
D
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FIGURE 2

Antioxidative ability in the hepatopancreas of mirror carp at different treatment fed with diets containing fishmeal (FM), soybean meal (SM), glycinin
(FMG), B-conglycinin (FMc), AKG+B-conglycinin (FMcA) after eight weeks. (A) T-SOD, total superoxide dismute (U/mg prot); (B) MDA,
malondialdehyde (mmol/mg prot). (C) CAT, catalase (U/mg prot); (D) GSH, glutathione (umol/gprot); Data are presented as mean +SE, (n = 6) a, b, c

Mean values with different letters were significantly different (P<0.05).
FIGURE 3

Relative expression levels of inflammatory cytokins in the intestine
of mirror carp at different treatments fed with diets containing
fishmeal (FM), soybeans meal (SM), glycinin (FMG), B-conglycinin
(FMc), AKG+B-conglycinin (FMcA) after eight weeks. TNF-a, tumor
necrosis factor alfa; TGF-B1, transforming growth factor beta; IL-1B,
interleukin-1 beta. Data are presented as means + SE, (n = 3). a, b, c

Mean values with different letters were significantly different
(P<0.05).
FIGURE 4

Relative expression levels of junction protein in the intestine of
mirror carp at different treatment fed with the diets containing
fishmeal (FM), soybean meal (SM), glycinin (FMG), B-conglycinin
(FMcA)< AKG+B-conglycinin (FMGA), AKG+B-conglycinin (FMcA)
after eight weeks. Data are presented as means + SE, (n = 3). a, b, c

Mean values with different letters were significantly different
(P<0.05).
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(21, 22). Dietary soybean meal increased the FCR, implying that the

growth inhibition can be partly attributed to low feed efficiency by

adding soybean meal (23). Glycinin and b-conglycinin are the main

anti-nutritional factors in soybean meal, which can also adversely

affect the growth performance of aquatic animals (3). In this study,

dietary b-conglycinin reduced growth performance. This finding is

consistent with studies in golden crucian carp (8). b-conglycinin
cannot be digested and broken down into small molecules, and it is

known to cause allergic reaction in intestinal tract, destruction of

intestinal integrity, dysfunction of digestion and absorption of

nutrients, inflammation, and oxidative damage, and finally

suppressed fish growth performance (24). It was surprising to

observe that growth performance was not influenced by the

dietary Glycinin. These striking differences in growth

performance between these two anti-nutrients may happen due to

their functional properties. Glycinin has a higher content of sulfur-

containing amino acids than b-conglycinin (25). The composition

of essential amino acids is more balanced, so it can better meet the

body ‘s intake of essential amino acids. After adding the same dose

of soybean antigen proteins, b-conglycinin could reduce the growth

performance of carp (26), while glycinin did not affect the growth
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performance of turbot (27). Moreover, in this study fish were fed to

apparent satiation (~9% of their body weight/day), and this high

feed intake may have met the requirement of the growth

performance of carps, which can be observed on the

growth performance. Dietary AKG supplementation can promote

growth performance by enhancing the activities of the antioxidant

defense system (28). The supplementation of 1.0% AKG diet has

also presented positive effects on growth performance of juvenile

hybrid sturgeon (Acipenser schrenckii ♀ × A. baerii ♂). However, in

this study, 1.0% AKG diet has not positive on the WG and SGR of

carp, similar results were also observed in juvenile red drum (15).

This lack of production performance may have been caused by the

physiological differences among these fish species, breeding

environments, growth phases, and dietary nutrient levels.

It is widely accepted that inflammation and oxidative stress

usually occur simultaneously (29).Various stress factors may cause

an imbalance between pro-oxidant and antioxidant systems, which

will lead to oxidative stress. MDA, SOD and CAT were used as

oxidative stress biomarkers (30). The concentration find in their

tissues can reflect their antioxidant capacity (31) The oxidative

stress induced by soybean antigen proteins, as evidenced by the

depressed levels of SOD and CAT, indicates that glycinin and b-
conglycinin can cause SBM-induced oxidative stress in carp. These

deleterious effects may be caused by the strong immunogenicity

induced by soybean antigen proteins (32). Our results on the

elevated activity of SOD suggest that AKG may suppress

oxidative damage by glycinin and b-conglycinin. Besides these set
of enzymes, GSH is one of the main non-enzymatic antioxidants

that protect cells against oxidative damage (33), and it is protects

many kinds of cells in body (34). AKG can be converted into

glutamine by glutamate dehydrogenase and glutamine synthetase,

which can be a marker of antioxidative function (14). It is evident

that AKG can improve antioxidative capacity by increasing

available glutamine and aiding antioxidative systems (14). Fish

fed AKG supplemented feed presented an improvement of

antioxidant enzyme levels, including GSH and SOD, indicating its

protective efficacy (35). It has also been reported that AKG can

positively alleviate the oxidative stress damage in cells, ultimately

contributing to cell redox homeostasis (14), and also serve as an

energy donor and antioxidant agent via the TCA cycle (36).The

prooxidant effect of AKG seems to be due to the altered intensity of

the TCA cycle in which AKG is preferentially metabolized (37).

These data demonstrate that 1.0% AKG administration can alleviate

the oxidative stress caused by the dietary soybean antigen proteins

via the TCA cycle.

After feeding, soybean antigenic protein enters the intestine,

destroying the structural stability of the intestine, activating the

immune system and causing intestinal inflammation (38). TNF-a
plays an essential role in mediating the inflammatory, regulating

immune function and other pathophysiological reactions (39). IL-

1b is a pleiotropic inflammatory cytokine and plays an important

role in the inflammatory process (40). Both TNF-a and IL-1b are

important pro-inflammatory factors (41). Intestinal inflammation

is related to elevated pro-inflammatory cytokines (42). Enteritis is

aggravated by up-regulating pro-inflammatory cytokines (43). In

the present study, the expression of pro-inflammatory factor (TNF-
FIGURE 5

Relative expression levels of apoptosis factors in the intestine of
mirror carp at different treatments fed with diets containing fishmeal
(FM), soybean meal (SM), glycinin (FMG), B-conglycinin (FMc), AKG+
glycinin (FMGA), AKG+B-conglycinin (FMcA) after eight weeks. Data
are presented as means + SE, (n = 3). a, b, c Mean values with
different letters were significantly different (P<0.05).
FIGURE 6

Relative expression levels of AMPK/ACC and TOR signaling pathways
in the intestine of mirror carp at different treatments fed with diets
containing fishmeal (FM), soybean meal (SM), glycinin (FMG), B-
conglycinin (FMc), AKG+ glycinin (FMGA), AKG+B-conglycinin
(FMcA) after eight weeks. AMPKa, AMP-activated protein kinase
gamma; ACC, acetyl-CoA carboxylase; TOR, target of rapamycin;
4E-BP, eIF4E-binding protein. Data are presented as means + SE, (n
= 3). a, b, c Mean values with different letters were significantly
different (P<0.05).
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a) was upregulated by dietary FMG group, which revealed the

occurrence of glycinin-induced enteritis. Similarly, the

phenomenon of glycinin-induced enteritis has also been observed

in juvenile Rhynchocypris lagowskii (44). In addition, the mRNA

level of TNF-a was decreased by dietary FMGA group. AKG can

improve intestinal immunity and promotes intestinal health (45).

Previously, Zhang et al. (34) found that glutamine suppressed TNF-

a concentration. It is further confirmed by our study that AKG as a

precursor for the biosynthesis of glutamine, increasing intestinal

immunity. TGF-b is considered to be important anti-inflammatory

cytokines that can inhibit inflammation (46). TGF-b has also played
an important role in gut wound repair by promoting epithelial

reconstitution through up-regulation of epidermal growth factor

(47). Compared with the FMG/FMc group, the mRNA level of

TGF-b1 was increased by dietary AKG. These data demonstrate

that 1.0% AKG administration can alleviate the intestinal

inflammation caused by the dietary soybean antigen proteins.

The intestinal epithelial barrier is the first line of defense against

pathogenic microorganisms and toxins in the intestines (48). The

connection between intestinal epithelial cells mainly relies on the TJ

(49), and mainly composed of occludin, claudins, and others (50),

which forms a highly selective barrier and protect animal health. In

our study, we found that the mRNA levels of claudin7 was
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suppressed by glycinin. Claudins are the major barrier-forming

proteins of tight junction structure (51). Decreased gene expression

of TJ usually represents the weakened intestinal barrier function

(52). Similarly, Zhao et al. (53) reported that changes in TJ

expression induced by soybean antigen protein lead to intestinal

epithelial barrier dysfunction. It demonstrates that glycinin increase

intestinal paracellular permeability, decrease tight junction

proteins’ expressions, suggesting that glycinin induce intestinal

tight junction barrier dysfunction. The result in this study is

supported by the findings in carp (54). This might be due to the

fact that glycinin, as a foreign antigen, caused immune injury and

inflammation, and then inflammatory factors destroyed intestinal

epithelial tissue proteins (32). A lot of studies have proved that the

impaired intestinal barrier is directly related to the intestinal

inflammation (55, 56) and attenuate gut injury through an anti-

inflammatory role (57). In the study, the down-regulation of

claudin3c, claudin7 observed after dietary soybean antigen

protein was abolished by AKG. These observations were partly

attributed to AKG supplementation improving glutamine synthesis

activity and concentrations of glutamine and glutamic acid in the

intestines (58). Dietary alanyl-glutamine in soy protein diets

elevated the expression of TJ proteins (59). A number of studies

have were reported that dietary glutamine enhance gut
A B

C

FIGURE 7

Morphology of the intestines of mirror carp at different treatments fed with diets containing fishmeal (FM), soybean meal (SM)m glycinin (FMG), B-
conglycinin (FMc), AKG+ glycinin (FMGA), AKG+B-conglycinin (FMcA) after eight weeks. PI, proximal intestine; MI, mid intestine; DI, distal instestine.
(A) villus height (um); (B) crypt depth (um); (C) mucosal thickness (um). Data are presented as means + SE, (n = 3). a, b, c Mean values with different
letters were significantly different (P<0.05).
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development and regulate intestinal barrier function in multiple

animal models (60). In this study, for the first time, demonstrate

that 1.0% AKG administration can alleviate the damage of the

epithelial barrier caused by the dietary soybean antigen proteins.

Apoptosis is a physiological programmed cell death through the

activation of cell intrinsic suicide machinery (61). Apoptosis is a

cascade amplifying reaction regulated by a cysteine family of

proteases (62). It is well accepted that caspase family proteins is

the central regulator of apoptosis (63). We found that the

expressions of caspase3 and caspase8 were significantly elevated

with FMc group. The expressions of caspase9 was significantly

elevated with FMG group, consistent with the results of Peng et al.

(64), who showed that soybean antigen protein increased the levels

of caspase3 activity and induced piglet intestinal cell apoptosis.

Additionally, glycinin or b-conglycinin accelerates enterocyte

proliferation, apoptosis and migration for piglets (65). Hence this

suggesting that soybean antigen protein causes intestinal damage.

However, AKG administration could not alleviate the intestinal

apoptosis caused by the dietary soybean antigen proteins in one

week. Maybe the longer experimental period might have showed

some positive on intestinal apoptosis.

AMPK, a sensor of the availability of intracellular energy, is

activated at low energy levels and regulates cellular processes

accordingly (66). AMPK is a heterotrimeric Ser/Thr kinase

composed of an a, b and g subunit (67). AMPK is activated by

phosphorylation of Thr172 within the activation segment of the KD

of the a subunit (68). The b subunits contains a region termed the

carbohydrate binding module (68) and allows AMPK to interact

with glycogen particles (69). AMPK preserves the level of ATP via

stimulation of energy producing pathways and suppression of

energy-consuming metabolisms (70). Under lowered intracellular
Frontiers in Immunology 10
ATP levels, AMP or ADP can directly bind to the g regulatory

subunits of AMPK, leading to a conformational change that

promotes facilitates the phosphorylation of AMPKa and the

activation of AMPK (71). In the current study, the mRNA

expression of AMPKg was significantly elevated and AMPKa was

decreased with glycinin. This might be attributed to the fact that

soybean antigen protein destroyed the structural stability of the

intestine through pro-inflammatory and TJ proteins (54), which

required more energy for maintenance, thus increased AMPKg gene
expression. Maintaining the intestinal barrier is energy-consuming,

and impairing mitochondria function is associated with intestinal

inflammation (72). In addition, AMPK phosphorylation are

reported to be involved in promote apoptosis (73). A similar

phenomenon was also observed in the study that the expressions

of TNF-a, caspase8, and AMPKg were significantly elevated and

claudin7 was significantly decreased in FMG. It indicates that

glycinin-induced injure intestine was partially related to the

activate of AMPK signaling. In addition, the mRNA level of

AMPKg was decreased in FMGA group. AKG as a source of

energy (14), the oxidation of AKG through the tricarboxylic acid

cycle can provide large amounts of ATP. AKG stimulates AMPK

phosphorylation and oxidation of energy substrates in the intestinal

mucosa, thereby enhancing ATP supply and supporting cell

function (20). This suggested that AKG increased the intestinal

ATP supply partly by down-regulating AMPKg mRNA expression.

It indicates that AKG increases intestinal ATP supply by down-

regulating AMPKg gene expression, but the change of AMP/ATP is

not enough to affect AMPK phosphorylation.

AMPK stimulates fatty acid oxidation as a way to increase

energy levels. ACC is one of the first proteins identified as a target of

AMPK (74). The mRNA level of ACC was increased with the
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FIGURE 8

Key enzymes in the tricarboxylic acid cycle and Na+/K+-ATPase in the intestine fed with diets containing fishmeal (FM), soybean meal (SM), glycinin
(FMG). B-conglycinin (FMc), AKG+ glycinin (FMGA) AKG+B-conglycinin (FMcA) after eight weeks. PI, proximal intestine; MI, mid intestine; DI, distal
intestine. (A) CS, Citrate synthase; (B) ICD, Isocitarte dehydrogenase; (pg/mL) (C) a-KGDHC, a-ketaglutarte dehydrogenase complex (pg/mL);
(D) Na+/K+-ATPase (umol/L). Data are presented as means +SE, (n = 3). a, b, c Mean values with different letters were significantly different (P<0.05).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1140012
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2023.1140012
soybean meal and b-conglycinin in this study. ACC is a critical

enzyme of the lipogenic pathway (75); simultaneously, it is

regulated by AMPK (76). This may indicate that dietary soybean

meal and b-conglycinin could increase lipogenesis. In addition, the

mTOR, it is also one of the target proteins of the downstream

signaling pathway after AMPK (77). It is a limiting step in animal

protein synthesis (78). And 4E-BP is one of the mTOR-regulated

target sites. In this study, the mRNA level of TOR and 4E-BP were

not significantly different with the SM, FMG and FMc for one week.

However, studies have showed that b-conglycinin and/or glycinin

could decrease the P-TOR protein expression for seven weeks in

grass carp (24, 42). The mainly reason is unknown presently, maybe

the longer experimental period might have showed some effect of

the mTOR signaling pathway.

The fish growth highly depends on the healthy development of

the intestine, which can be reflected by the villus height and

mucosal thickness (9). Soybean allergy usually induces intestinal

inflammatory diseases, characterized by the atrophy and

proliferation of crypt villi, which accelerate the apoptosis and

migration of intestinal cells (29). In this study, the VH and MT

of the proximal intestine, mid intestine, and the distal intestine

(except for the FMG group in MI) were decreased and crypt depth

of the PI, MI, and DI (except for the SM, FMG group in DI) were

increased in SM, FMG and FMc, indicates varying degrees of

damage and inflammation. Similar results were also observed in

turbot (8) and grass carp (79). Stimulation of antigen-active

macromolecules can prompt an immune response that causes

atrophy of the intestinal villi, thus damaging the intestinal

morphology (9). In addition, dietary AKG has been reported to

improve mucosal morphology and function of the intestine (57). In

this study, the VH (PI) and MT (DI) were increased and crypt depth

(PI) was decreased in FMGA group. The MT (DI) was increased

and crypt depth (PI and DI) was decreased in FMcA, which was

consistent with studies in piglets (80). In summary, soybean meal,

glycinin and b-conglycinin damage the intestinal morphology and

AKG improving intestinal morphology

Soybean antigen protein destroys the structural stability of the

intestine and causes digestive and absorption disorders (54).

Maintaining the intestinal barrier is energy-consuming, and

impairing mitochondria function is associated with gut

inflammation (72). Under stress, the body’s energy metabolism

disorders, ATP content decreased significantly, cell dysfunction or

death, leading to damage to intestinal structure and function (81).

Citrate synthase, isocitrate dehydrogenase and a-ketoglutarate
dehydrogenase are the three rate-limiting enzymes of TCA cycle,

which regulate the energy metabolism and biosynthesis of

organisms. Citrate synthase can determine the rate of acetyl-CoA

into TCA cycle, which is an important indicator of energy

metabolism (82). Isocitrate dehydrogenase exists in mitochondria

and cytoplasm and catalyzes isocitrate to produce a-ketoglutarate
(83). The a-ketoglutarate dehydrogenase system exists in the

mitochondrial matrix and catalyzes the oxidative decarboxylation

of a-ketoglutarate to produce succinyl coenzyme A and reduced

coenzyme I (NADH) (84). Na+/K+-ATPase mainly exists in the

basement membrane of intestinal absorptive cells (85). It produces

energy by decomposing ATP to maintain the reverse concentration
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gradient of sodium and potassium. Its activity can indirectly reflect

the absorptive capacity of intestinal mucosa (86). In this study,

soybean meal, glycinin and b-conglycinin significantly decreased a-
KGDHC, ICD, CS and Na+/K+-ATPase in DI, indicates that

tricarboxylic acid cycle is inhibited and energy production is

reduced. The AKG is an important intermediate product in the

tricarboxylic acid cycle of organisms, and is also a biosynthetic

precursor of glutamic acid, glutamine and arginine in organisms. In

addition, glutamine and arginine play an important role in

promoting the repair of damaged intestine (87). The AMPKg, VH
(PI), MT (DI), a-KGDHC, ICD, CS, and Na+/K+-ATPase (PI and

MI) were increased in FMGA. The Na+/K+-ATPase (MI) and MT

(DI) were increased in FMcA. These data demonstrate that AKG in

enterocytes may beneficially regulate the intracellular endogenous

amino acid concentrations via TCA cycle (88) and then influence

various signaling pathways (89), thereby alleviating the damage

intestinal morphology caused by the dietary soybean antigen

proteins. In addition, study has shown that AKG can be used as a

substrate for intestinal energy metabolism (90). AKG could produce

plenty of ATP in the TCA cycle and provide energy for intestinal

cell processes (14). Dietary supplementation of AKG can improve

the energy metabolism of intestine after soybean antigen

protein stimulation.

5 Conclusions

In conclusion, dietary soybean meal can compromise the

intestine health, and the adverse effects are related to the presence

of b-conglycinin and glycinin, especially glycinin. 1.0% AKG may

regulate intestinal energy via TCA cycle, thereby alleviating the

damage intestinal morphology caused by the dietary soybean

antigen proteins. Moreover, it is recommended the dietary

supplementation of AKG when high levels of soybean meal are

used in carp aquafeeds.
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