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A computer vision approach for
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trafficking dynamics on a
microvascular mimetic
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High-content imaging techniques in conjunction with in vitromicrophysiological

systems (MPS) allow for novel explorations of physiological phenomena with a

high degree of translational relevance due to the usage of human cell lines. MPS

featuring ultrathin and nanoporous silicon nitride membranes (µSiM) have been

utilized in the past to facilitate high magnification phase contrast microscopy

recordings of leukocyte trafficking events in a living mimetic of the human

vascular microenvironment. Notably, the imaging plane can be set directly at the

endothelial interface in a µSiM device, resulting in a high-resolution capture of an

endothelial cell (EC) and leukocyte coculture reacting to different stimulatory

conditions. The abundance of data generated from recording observations at this

interface can be used to elucidate disease mechanisms related to vascular barrier

dysfunction, such as sepsis. The appearance of leukocytes in these recordings is

dynamic, changing in character, location and time. Consequently, conventional

image processing techniques are incapable of extracting the spatiotemporal

profiles and bulk statistics of numerous leukocytes responding to a disease state,

necessitating labor-intensive manual processing, a significant limitation of this

approach. Here we describe a machine learning pipeline that uses a semantic

segmentation algorithm and classification script that, in combination, is capable

of automated and label-free leukocyte trafficking analysis in a coculture mimetic.

The developed computational toolset has demonstrable parity with manually

tabulated datasets when characterizing leukocyte spatiotemporal behavior, is

computationally efficient and capable of managing large imaging datasets in a

semi-automated manner.
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1 Introduction

Vascular barrier dysfunction is associated with multiple diseases

such as sepsis (1), Alzheimer’s disease (2), and multiple sclerosis (MS)

(3). Sepsis is prominent for being a leading cause of death in intensive

care units (4), widely prevalent (1.5 million cases in the US annually

(5)), and highly costly to healthcare systems (>$20 billion dollars

annually) (6). Additionally, Alzheimer’s disease and MS are both

prevalent (roughly 900k new cases per year (7) and 900k current

patients (8), respectively) and far more costly to the US healthcare

system (>$305 billion dollars (9) versus >$85 billion dollars,

respectively). Normal vascular endothelium is characterized by tight

barriers and low permeability (10), providing a host with homeostatic

fluid balance and selective immune cell trafficking (11). Under

excessive inflammation, however, vascular barriers experience

dysfunction, including higher vascular wall permeability (12), which

advances disease progression. Animal models have demonstrated

robust organ damage in areas of excessive leukocyte recruitment

(13–15), and survivors of severe sepsis often suffer from cognitive

impairments (16, 17) due to a variety of factors including blood brain

barrier (BBB) infiltration by blood-borne leukocytes that participate in

the escalating inflammatory response (18, 19). Importantly,

transmigration can also occur under non-inflammatory conditions in

the vasculature. For example, monocytes are known to routinely enter

the outer meningeal spaces to monitor cerebrospinal fluid for infection

(20) and subsets of CD4+ T-Cells preferentially cross the BBB (21) to

perform immune surveillance. Thus, dysregulated immune cell

trafficking is a characteristic of multiple pathological states yet

studying the dynamic interplay between vascular barriers and

leukocytes in vivo is difficult due to limited imaging techniques and a

lack of translational fidelity of animal models.

Recently, the emergence of microphysiological systems (MPS) for

in vitro tissue models has facilitated the exploration of vascular

physiology in a living mimetic of a tissue microenvironment (22, 23).

Notably, there is an increasing ability to recreate microscale vascular

structures (24) in these systems. This enables MPS as a useful platform

for directly investigating human mechanisms of vascular barrier

dysfunction for the development of future pharmaceutical

interventions (25) through the use of human cell lines. Studies

performed with MPS typically involve end-point assays such as

immunofluorescence or ELISA, and imaging on vascular MPS is

limited by the use of components that interfere with image quality,

including optically opaquemembranes (26). MostMPS systems are not

suitable for studying leukocyte trafficking dynamics as this requires

high quality live imaging of the blood/tissue interface.

In our lab, we have developed the µSiM platform (27) as a modular

microfluidic system that offers superior imaging quality for studying

neutrophil transmigration in blood vasculature models (Figure 1A).

The µSiM platform mitigates imaging issues found in conventional

MPS platforms as it features optically clear (<100 nm thick)

nanoporous silicon nitride (NPN) membranes separating apical and

basal compartments of a simple microfluidic device (Figure 1B). The

membrane enables multiple imaging modalities such as phase-contrast

(24), confocal (28), and electron microscopy (29, 30). The µSiM

platform facilitates visualization of the vascular wall and has
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successfully been used to provide high-quality real-time phase

contrast video data of polymorphonuclear leukocyte (PMN) or

neutrophil trafficking events in a vascular mimetic under

inflammatory stimuli (24) (Figures 1C–E). Furthermore, ultrathin

NPN membranes can be utilized to create cocultures on either side

of the membrane, which has been used in a human blood brain barrier

(BBB) coculture mimetic for assessing fluorescent particle translocation

via spinning disc confocal (SDC) microscopy (28). Despite this

advancement, analysis of imagery obtained from these studies is

typically limited to manual data processing. Given the large image

datasets that are generated (31), manual processing is laborious and

time-consuming and limits the practical size of data sets that can be

obtained. Implementation of automated image analysis will have

enormous practical value in terms of the size and completeness of

data sets that can be obtained and the avoidance of human bias in

data interpretation.

To address the need for automated analysis of high content

imagery, semantic segmentation via fully convolutional neural

networks (CNN) have been developed for pixel level classification

of biological images (32, 33). By individually clustering related

pixels together for object detection, such machine learning (ML)

algorithms can create high contrast maps delineating the

spatiotemporal behavior of dynamic leukocytes engaged in

trafficking in a µSiM device, which is difficult to do with

conventional algorithms (24). The data can then be managed in a

semi-automated manner through custom programs and be used to

analyze relevant details from an experiment. ML algorithms need to

be adapted on a case-by-case basis for any given imagery dataset.

They have been used successfully for in vivo label-free tracking and

imaging of leukocytes in retina (34), providing a basis for

automated analysis of large microscopy datasets. Here, we present

a computational toolset that leverages machine learning algorithms

to facilitate high accuracy monitoring of PMN trafficking and

tracking behavior in a vascular mimetic, ultimately minimizing

compound errors due to human bias and providing a key step in the

development of a high throughput assay.
2 Materials and methods

2.1 µSiM manufacture

Microphysiological systems featuring microfluidic channels and

highly permeable silicon nitride membranes (µSiM flow cells) were

manufactured in accordance to protocol as described elsewhere (30).

Briefly, 300 µm thick sheets of silicone gasket (Trelleborg Sealing

Solutions, Trelleborg, Sweden) and 130 µm thick sheets of pressure

sensitive adhesive (3M, Maplewood, MN) were precision cut and

assembled layer by layer into µSiM devices using an irreversible

bonding step via UV-ozone treatment (15 minutes) and thermal

incubation (70°C for 2 hours). The devices featured a layer

containing a nanoporous silicon nitride membrane (SiMPore Inc.,

West Henrietta, NY) that contains a freestanding window that is <100

nm thick, with an average pore diameter of 60 nm and overall porosity

of ~15%.
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2.2 Cell culture (HUVECs)

Human umbilical vein endothelial cells (HUVECs) were

purchased from a biological supply vendor (Vec Technologies

Inc, Rennselaer, NY) and expanded in plastic tissue culture flasks

(T25) containing MCDB-131 complete media (Vec Technologies

Inc., Rennselaer, NY). HUVECs were maintained in standard cell
Frontiers in Immunology 03
culture incubation settings (5% CO2, 37°C) and used for device

seeding between passages 2 and 6. Prior to seeding HUVECs, µSiM

devices were first autoclaved and subsequently exposed to UV in a

cell culture hood for 15 minutes. Post sterilization, the top channels

of the µSiM devices were coated with 5 µg/cm (2) fibronectin (FN-

1918, R&D Systems) for one hour at room temperature to facilitate

endothelial cell adhesion. HUVECs were seeded into the fibronectin
A B

D

E

C

FIGURE 1

An overview of the leukocyte adhesion cascade and how it is modelled via µSiM device. (A) To address inflammatory insults, leukocytes engage in an
adhesion cascade on the luminal surface of blood vessels that’s mediated through tissue generated chemokine gradients (e.g., IL-8) and surface
ligand expression via cytokine stimulation (e.g., LFA-1 on PMNs, ICAM-1 on ECs). Through this process, leukocytes are able to transmigrate through
endothelium into inflamed tissue where they can then act to clear out local infections. (B) To model this behavior and preserve the essential
physiology of vascular endothelium, we use microfluidic, silicon membrane-enabled microvascular mimetics (mSiM-MVMs). Layer by layer assembly
via established protocols results in devices featuring accessible top and bottom microfluidic channels that are separated by an ultra-thin, optically
transparent, and highly permeable membrane with nanoscale pores. Devices are built on top of a 24 by 40 mm glass cover slide. The golden
window indicates the active porous region of the membrane surface (1.4 mm2) which contains nanopores that are viewable via scanning electron
microscopy, as shown on the bottom right. (C) The presence of two channels enables the generation of chemokine gradients to which ECs and
leukocytes can respond. For the purposes of this study, devices were seeded with human umbilical vein endothelial cells (HUVECs) and human
polymorphonuclear leukocytes (PMNs) were induced to transmigrate with a 10 nM N-Formyl-methionyl-leucyl-phenylalanine (fMLP) gradient.
(D) Upon PMN introduction, PMNs appear morphologically rounded and “phase bright”, in contrast with the gray contrast of the background ECs.
Over the course of 30 minutes, multiple PMNs transmigrate and appear “phase dark”. (E) A diagram with nomenclature of PMN transmigration
behavior in relation to the microfluidic device. PMNs that are above the endothelium are on the luminal surface or “phase bright” while PMNs that
have transmigrated are abluminal or “phase dark”.
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coated top channels at 40,000 cells/cm (2) and maintained in a cell

culture incubator (5% CO2, 37°C) for 24 hours in static conditions

prior to experimentation. Experimental groups were split into

positive and negative control studies. In negative control studies

devices were maintained with MCDB-131 complete media, whereas

in positive control studies 10 nM of N-formyl-met-leu-phe (fMLP)

was added to the media in the bottom channel (abluminal side) of

the device to serve as a PMN chemoattractant.
2.3 PMN isolation

Human PMNs were isolated from whole blood obtained from

consenting donors following a protocol that has been approved by

the University of Rochester Institutional Review Board (IRB).

Briefly, whole blood was drawn into 10 mL sodium heparin

coated tubes (B.D., Franklin Lakes, NJ) from healthy donors and

cooled to room temperature over 20 minutes. Upon cooling, whole

blood was layered on top of a density gradient ‘1-Step Polymorphs’

solution (Accurate Chemical & Scientific Co., Westbury, NY) and

separated following manufacturer protocols (500g, 30 minutes, 20°

C). All layers except for the PMN rich layer were discarded. The

PMN rich layer was diluted and washed in a buffer consisting of

Hank’s balanced salt solution (calcium and magnesium free), 10

mM of 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid

(HEPES) sodium salt, and 5 mg/mL bovine serum albumin.

PMNs were pelleted (350g, 10 minutes, 20°C) and resuspended

twice in wash buffer before being depleted of red blood cells via

hypotonic lysis. Post lysis, the PMNs were suspended and washed

once before being deposited in a 1.5 mL Eppendorf conical filled

with 1 mL of wash buffer. Fully isolated PMNs were left on a

rotating stand to prevent settling and used for experiments within 3

hours post isolation to minimize changes in cell properties.
2.4 Microscope studies

Isolated PMNs were suspended in MCDB-131 complete media

and introduced into the top channel of sterile µSiM devices with

confluent HUVEC monolayers at a seeding density of 3 million

PMNs/mL, which matches healthy physiological PMN counts in the

human body (35). This density was also chosen to limit excessive

population counts in a field of view, ensuring a higher accuracy for

the automated workflow. In negative control studies, devices were

flushed with sterile media in both channels prior to PMN

introduction, while in positive control studies, fMLP rich media

was infused into the bottom channel of the device to serve as a

potent PMN chemoattractant. After introducing PMN’s via pipette

injection, devices were placed inside an incubation stage (37°C)

coupled with an inverted microscope (Nikon Ti2E, Nikon

Corporation, Tokyo, Japan) and recorded in a phase contrast

imaging modality (0.25 Hz) for 30 minutes via Zyla sCMOS

camera (Andor Technology, Belfast, UK) and 40x long working

distance lens (NA 0.55). The raw recorded videos were saved in

a.TIF image stack at a resolution of 2048x2048 pixels (16 bit),

resulting in a total video size of ~3.5 GB before processing.
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2.5 Video pre-processing

To facilitate both faster and more consistent analysis, all phase

contrast microscopy videos were pre-processed before being

introduced to the machine learning pipeline. First, recorded

videos were converted from 16-bit grayscale (2048x2048

resolution) to 8-bit grayscale and downsized to 1024x1024 via

bilinear interpolation to reduce effective file size from ~3.5 GB to

~0.5 GB, allowing for faster image processing. The condensed

videos were then histogram equalized to minimize brightness and

contrast perturbations across video samples and throughout the

duration of each video. The videos were then converted to 8-bit

RGB frames and multiple image ‘sub-stacks’ were created via script

such that each ‘sub-stack’ contained a number of frames that

roughly matched the number of CPU cores present in the

processing computer. Thus, for a 450 frame video being split

among 18 cores, each generated sub-stack contained 18 images

for a total of 25 sub-stacks. The ‘sub-stacks’ were subsequently

saved in a folder structure that served as the primary directory for

image input for the semantic segmentation process.
2.6 Machine learning models

The overall workflow for the computer vision process can be

seen in Figure 2. Two machine learning methods were utilized in

this workflow, a semantic segmentation algorithm via random

forest (Figure 2A) and classification algorithm via CNN

(Figure 2B). More specifically, the implemented semantic

segmentation algorithm uses a modified version of the random

forest classifier called FastRandomForest (FRF) (36) while the CNN

used is based off of LeNet-5 (37). Both were selected for speed and

low hardware commitments, as the FRF model was trained in ~25

minutes while the LeNet-5 CNN was trained in ~15 minutes on an

8-core central processing unit (CPU), allowing for rapid iterations.

Due to the speed of CPU training and the lack of available GPU

libraries, GPU acceleration was not utilized for this study.
2.7 Model training for state analysis
and validation

Following biological experimental data collection, additional

negative and positive control datasets were recorded and used

explicitly for training. Select images from both of the training

negative and positive control data sets underwent ground truth

labeling for the semantic segmentation approach via the “Trainable

WEKA Segmentation” plugin (33) in FIJI (38), which utilizes the

FRF algorithm. Images used for training were labeled with four cell

classes via masking: apical/luminal “static” PMNs, apical/luminal

“probing” PMNs, “basal/abluminal” transmigrated PMNs, and

endothelial cells. Each class corresponded to a different discrete

color in the masking layer, resulting in a 4-bin mask for the ground

truth label. Beanshell scripts for the WEKA plugin were adapted

from the ImageJ wiki and used alongside the ImageJ scripting

language for automation of the training and classification
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processes. Data augmentation was incorporated into the model in

order to increase PMN detection accuracy from variable recording

conditions (e.g., blurs, brightness variations, etc.). The risk of

overfitting with multiple features is noted to be low with random

forest algorithms (39). The random forest model was retrained as

needed until a satisfactory error rate was achieved (~2.68% via out-

of-bag error calculated from training data).

After training, the semantic segmentation model was applied to

n=3 (per condition, with or without fMLP) datasets that were not

used in the training process and highest probability pixel maps were

generated. The pixel maps were subsequently moved into another

analysis script where all PMN-related detected pixels were

extracted, morphologically linked via pixel association, and

assigned a centroid. Segmented neutrophils were selected by

searching for pixel clusters greater than 600 pixels in size, while

all smaller detections were discarded as noise. Delineation between

single neutrophils and clustered or multiple neutrophils is difficult

via size or shape alone due to neutrophils presenting variable area

and geometry depending on their state. To better count cells in a

video on a frame-by-frame basis, a secondary CNN based on the

LENet-5 architecture (40) was utilized. Briefly, select pixel

segmentation frames from videos used for model training were
Frontiers in Immunology 05
taken and all PMN related features extracted and individually

tabulated as either “single” or “multiple” neutrophils via ground

truth labels. PMN detections from the segmentation maps were

classified, and transformations (e.g., rotations, flips) were used to

increase the number of training samples. In total, ~1,600 labeled

samples were obtained for both classes for training. Training was

performed with an Adam optimizer with 25 epochs and repeated

with additional samples until a satisfactory error rate was achieved

(~1.25% via confusion matrix on validation data). After separation

into “single” and “multiple” categories, the precise number of PMNs

in clusters were counted via additional scripting logic by dividing

the pixel area of each cluster to the average pixel area of cells in the

“single” PMN group on a frame-by-frame basis.

Transmigration ratios were determined by comparing pixel

counts from the semantic segmentation map associated with the

abluminal transmigrated PMNs to the luminal PMNs in a bulk

manner post PMN detection and cleanup (i.e., the total number of

pixels attributed to the transmigrated class were compared to the

total number of pixels associated with luminal classes). Model

validation was performed by checking for counting accuracy

(<10% error with respect to manual counts) and transmigration

ratio accuracy (within statistical significance of manual counts).
A

B

FIGURE 2

The computational methods described in this paper are designed to process phase contrast microscopy videos of human neutrophils interacting
with vascular endothelial cell monolayers to extract bulk statistics such as neutrophil state and activity metrics. To achieve this, (A) select frames
from phase contrast videos were taken and labelled with ground truth masks delineating neutrophil activity. Following labelling, a model based on a
random forest algorithm was trained to provide pixel-level semantic segmentation of image datasets. (B) Segmentation maps were then taken and
analyzed in script to separate all neutrophils from the endothelial background. Following this, another model based on the LeNet-5 CNN was trained
to delineate single neutrophils from clustered ones. In conjunction with additional scripting, the CNN assists with counting, transmigration detection,
and spatiotemporal analysis. Centroids obtained from PMN/cluster detection were then used to generate frame-frame particle trajectories via
nearest-neighbor linking which, in conjunction with state information, allowed for spatiotemporal analysis of PMN behavior.
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Statistical significance for transmigration ratios were calculated by

taking ‘equilibrium regimes’ (steady state) regions of PMN activity.

Manual counting of PMNs was performed on the first frame of a

video, followed by frame 30, then every 30th frame (i.e., 1, 30, 60, 90,

…, 450) where both luminal and abluminal PMN populations were

tabulated. For transmigrated PMNs, only fully transmigrated PMNs

were counted for the purpose of comparison to the automated

workflow results as PMN transmigration is a rapid event (~5

frames, or 20 seconds).
2.8 PMN tracking and validation

The PMN transmigration studies recorded for the state analysis

were reanalyzed for tracking studies. Fifteen neutrophils were

randomly selected and manually tracked from the three negative

(-fMLP) and positive (+fMLP) control videos (n = 90 PMNs total)

from the state analysis study and compared against a tracking script

written in Mathematica. Frame-to-frame leukocyte trajectories were

created using the nearest neighbor method (41) of particle linking

by detecting PMN centroids from semantic segmentation data,

where the closest detections from one frame to another are

associated and subsequently linked as a trajectory. Centroid

detection was performed with feature extraction algorithms built

into Wolfram Mathematica that are also commonly available across

multiple platforms [e.g., image moments and invariants (42, 43)].

Additional scripts were written to mitigate tracking issues in

incidents when multiple PMNs overlap or cluster in a video

frame, correct errors attributed to the nearest-neighbor linking

algorithm via proximity thresholding, and assess population

subgroups such as transmigrated PMNs only and non-moving

PMNs. For clustered PMNs that localized in proximity either

luminally or abluminally, all trajectories associated with the PMN

“bulk body” were assigned a common centroid while PMNs

remained in close association with each other. A size threshold

was incorporated to ensure only large clusters of PMNs follow this

linking logic. Upon PMN overlap (luminal crawling over

abluminal), tracks were linked to a common centroid and

subsequently restarted upon the end of the PMN overlap event,

although individual PMN identity is not always preserved, and this

resulted in the generation of track fragments. To prevent tracks

from jumping across the video, the nearest-neighbor linking

approach incorporated mechanisms to stop linking by both

preventing the same centroid from being used in multiple tracks

(unless clustering occurred) and by limiting the search for new

trajectories by a threshold of 55 pixels radially over 5 frames (11

pixels added per future frame search). PMN motility was

characterized by calculating meandering index, defined as

displacement divided by total path length (44). Final data

generated included leukocyte spatial location, persistence, and

mean squared displacement based on fitting the Dunn equation

(45) with a time gap of 120 seconds using track fragments >100

frames in length. The 15 longest tracks for each condition, as well as

a random group of 15 tracks with track length greater than 100

frames were also used in curve fit calculations. Tracking validation
Frontiers in Immunology 06
was performed by comparing both speed and persistence values for

statistical agreement with manual tracks via a Students t-test.

Population subgroup analysis was facilitated by combining state

information from the semantic segmentation workflow and

tracking data. Trajectory fragments were combined with state

information to create a data structure that saw track fragments

reorganized into two groups. One representing tracks associated

with luminal PMNs/PMN clusters, and another associated with

abluminal PMNs/PMN clusters. A pixel ratio of greater than 50%

transmigrated class detections was used as the threshold for

counting a PMN/PMN cluster as an abluminal detection. Given

the dynamic state of leukocytes in these microfluidic devices,

additional track ‘sub fragments’ were generated to split

trajectories if PMNs transmigrated (luminal to abluminal). Curve

fitting and parameter extraction followed for the two groups of

tracks in a similar fashion to the rest of the tracking analysis. A

validation of this methodology (via comparison to manual

labelling) was performed by assessing the bulk state of a

trajectory fragment. The average error in state detection for a full

track fragment was 5.72%.
2.9 Statistical analysis

All cell culture experiments were performed with twelve

replicates (each in individual µSiM devices) for a total of n=6 for

both negative and positive control studies. Experiments were

performed on different days, using sequential passages of

HUVECs. Three datasets from both conditions were used in

ground truth labelling (by selecting a fraction of frames) while

another n=3 studies from both experimental groups were used for

model analysis and validation. For model validation, bulk

distributions were evaluated with a two sample Kolmogorov-

Smirnov (KS) test, individual replicates were assessed via

Student’s t-test, and multiple comparisons were done with a One-

Way ANOVA. All graphical results are reported as mean ± standard

error of mean (SEM). Statistical analysis was performed in Prism

(Graphpad Software Inc, San Diego, CA).
2.10 Computational resources
and scripting

All image processing and model deployment was performed on

an 18-Core/36-thread (Xeon W, Intel Corporation, Santa Clara,

CA) iMac Pro (Apple Inc., Cupertino, CA) with 64GB of RAM.

Scripting, coprocessing, and model training was performed on an 8-

core/8-thread Mac Mini (M1, Apple Inc., Cupertino, CA) with 8GB

of RAM. A key characteristic of this workflow is its lightweight

nature, as none of the ML processes utilized in this study

incorporated graphics processing units (GPUs) and were capable

of rapidly running on central processing units (CPUs) alone. For

the semantic segmentation approach, a random forest algorithm

was used for analyzing frames from experimental videos via the

WEKA module incorporated into FIJI known as ‘Trainable WEKA
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Segmentation’ (33). The WEKA module was controlled via

Beanshell (46) and ImageJ macro language scripting for both

training and classification. Ground truth labels were created with

a GUI interface built into FIJI. For post-hoc analysis of semantic

segmentation data via convolutional neural network and common

image analysis algorithms, additional scripts were written in

Mathematica (Wolfram Research, Champaign, IL). Specifically,

Mathematica was utilized to initialize, train, and deploy a custom

LeNet-5 (40) alongside common feature extraction algorithms to

facilitate the analysis of semantic segmentation data. For the LeNet-

5 model training, a typical 80/20 training/validation split was

utilized. Further, Mathematica was utilized for the creation of a

nearest-neighbor linking approach for particle tracking. Data

management and workflow was managed with bash scripting.
3 Results

3.1 Machine learning model training results

After training the machine learning models, the error for the

WEKA based FRF algorithm and secondary LENet-5 algorithm

were ~2.68% and ~1.25% respectively. Error for FRF is calculated

using the out-of-bag error rate while the secondary LENet-5 based

model calculated error from its associated confusion matrix. This

accuracy facilitates the secondary analysis, where the FRF algorithm

provided high contrast imaging information (Figure 2A, additional

examples in S1) and the LeNet-5 algorithm applied to segmentation

data was used to facilitate population counting, transmigration

ratios, and tracking analysis (Figure 2B). Finalized reports are

generated that contain spatio-temporal state information

associated with a PMN track.
3.2 Population assessment

After segmentation, a counting script provided an estimate of

the number of PMNs present in a video frame alongside centroid

markers for future tracking detection. When comparing the

population detections in frame from the model versus manual

counting, the bulk distributions of all analyzed frames were found

to be statistically similar (Figure 3A) with comparable clustering,

indicating that the model predictions are in line with manual

observations. Note, a negative and positive control were used for

all comparisons made in this study. For positive control studies, 10

nM fMLP was introduced into the bottom channel of the µSiM

device to create a chemokine gradient. When assessing each control

condition individually, we find that the model is capable of counting

PMNs with less than 10% error (Figure 3B) compared to manually

tabulated results. Notably, neutrophils in negative control studies

are more reliably counted with ~5% error versus positive control

studies at ~8% error. This can be attributed to the increased

difficulty in detecting activated neutrophils as they typically

present amorphous or irregular morphologies in comparison to

the rounded shapes presented by non-activated neutrophils.
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With our typical magnification (40x objective), only ~7.8% of

the available membrane surface area is imaged. This limited field of

view introduces the possibility of bias if PMNs leave a recording

boundary. A key characteristic of these experiments, however, is

that PMN populations on the membrane surface were found to be

stable for the 30-minute experimental duration (Figure 3C),

eliminating potential bias via population loss from the limited

recording field of view. In negative control studies, this can be

explained by the lack of stimulus and thus relatively inactive PMNs.

For positive control studies, the presence of a chemokine in the

bottom chamber activates neutrophils but the nanoporous

membrane prevents them from migrating into the bottom

channel containing the chemokine source. Thus the result is

again a steady number of migrating PMNs over time in the 30-

minute experiments. To complement this bulk analysis, individual

experimental replicates were analyzed for population counting

accuracy (Figure 3D). For each experimental replicate analyzed by

the machine learning workflow, the automated process depicted

both high accuracy in counting and tight population clustering,

which is indicative of population stability over time. Variability in

population seeding density between experiments was seen and

likely occurs due to inaccuracies in the small volumes (~20 µL)

injection of PMN-containing media into fluidic channels.
3.3 Transmigration analysis

The segmentation map generation procedure combined with the

counting algorithm facilitated transmigration analysis by providing

context on PMN state. Negative control studies (no stimulation)

displayed minimal PMN transmigration activity, where <5% of

PMNs were actively engaged in transmigratory behavior. In

contrast, positive control studies stimulated by a transmembrane

gradient of fMLP displayed robust PMN transmigration ranging from

~10-40% average ratios between three independent experiments.

Across all positive control studies, bulk PMN transmigration

displayed a typical behavior consisting of no activity upon PMN

introduction into the device, a sensing regime where PMNs begin to

rapidly transmigrate, and then a pseudo ‘steady’ regime where

transmigration behavior is maintained for a subset of the PMN

population (Figure 4A). For the purposes of analyzing this behavior,

all comparisons made for the positive control groups only account for

the subset of transmigration data generated during the steady state

regime. A typical example of multiple transmigrated PMNs (with

highly amorphous morphologies) co-existing with non-activated

PMNs (with rounded morphologies) on an endothelial surface is

shown in Figure 4B. For both conditions, the bulk distributions for all

analyzed frames are found to be statistically similar for both model

and manual counting (Figure 4C). As expected, positive control

studies solicited higher transmigration ratios than negative control

studies due to the potent nature of fMLP as a PMN chemoattractant

(Figure 4C). Notably, the high variability of transmigration ratios in

fMLP gradient devices, along with an apparent ceiling of ~40%

transmigration, indicates a heterogenous response to this

chemotactic factor within the PMN population. This becomes
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more evident when viewing results from individual replicates, where

manual counting agrees with both the mean model prediction and

the variation about the mean (Figure 4D). While negative control

studies typically presented low transmigration ratios, positive control

studies display experiment-to-experiment variability.
3.4 Counting and transmigration
error analysis

The automated workflow demonstrates statistical parity to

manual counting with low error rates for both negative and

positive control studies. To better understand error rates, analyses

were performed to assess under/over counting as well as time-

dependent error caused by increasing PMN morphological changes

and clustering. For population counting, comparisons were made
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by plotting residual plots in bulk and time associated data for both

experimental conditions (Figure 5A). In this context, a residual plot

displays the difference between computer and manual

measurements. Transmigration data was assessed similarly, with

‘difference from model’ used instead of discrete counts (Figure 5B).

Note, ‘difference from model’ refers to the difference of percent

transmigration values and is effectively comparing residuals. Also,

all transmigration data was considered for this study instead of

using the ‘steady state’ only (Figure 5A), as we are evaluating overall

model performance. For bulk counting and transmigration analysis,

the residuals are well dispersed and do not indicate any bias towards

under or over counting when comparing the automated process to

manual counting. Temporal data for both counting and

transmigration illustrates a similar conclusion, with less error in

both categories for negative control studies versus positive control

ones. As time increases, error increases in positive control studies
A B

D

C

FIGURE 3

Analysis of model counting capability. (A) Manually tabulated counts were compared against the model process via statistical testing (Two-Sample
KS Test) and were found to have similar underlying distributions. (B) When comparing control conditions individually, negative control studies
presented lower error rates in counting (5.02%) versus positive control studies (8.20%), which is likely due to the increase in amorphous morphology
seen in activated PMNs. (C) Example data showing temporal population detection (both manual and model based) for a positive control study. For
the 30-minute duration of each control study, no PMN population loss or gain was observed from the recording field of view, indicating that PMN
population distribution is homogenous. PMNs exposed to fMLP concentration gradients are unable to cross the NPN membrane. (D) Comparisons of
model counting capability for individual replicates. Each data point represents a successive frame in a video/experimental condition where
population counts were tabulated. In each replicate for both positive and negative control studies, the model shows statistically similar counts to
manual counting as well as a tight clustering for all the associated data points. Statistics: ns, not significant.
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which can be attributed to the increased difficulty in detecting

PMNs with irregular shapes. Regardless, the automated workflow

exhibits high accuracy counting and transmigration detection of

PMNs in µSiM devices.
3.5 Tracking analysis

One of the outputs from the automated counting process is

centroids for all detected cells and clusters. This data was used to

create neutrophil tracks via a nearest neighbor linking based tracking

algorithm. For this study, only bulk characteristics (average speed,

persistence, and meandering index) were assessed to obtain useful

information on the activity levels of the total PMN population. Speed is

a measure of displacement over time, persistence is a measure of time

spent before changing direction, and meandering index represents the

linearity of a trajectory. An example of a centroid overlay map from the

cell counting process can be seen in Figure 6A. After centroid

collection, tracks were linked based on criteria described in the
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methods section and can be displayed in an x-y coordinate map,

where each color corresponds to a different track fragment (Figure 6B).

To evaluate tracking performance, the generated track fragments were

then processed to calculate the mean-square displacement (MSD) over

time and fit to the Dunn equation to extract speed and persistence

assuming the trajectories are a semi-persistent random walk (47)

(Figure 6C). Analyzing the MSD over 120 seconds in each case, this

method produced amean speed and persistence for each trajectory. For

negative control studies, both speed and persistence were found to be

statistically similar between manual tracking and all assessed track

fragment groups created from the automated process (Figure 6D).

Similarly, positive control groups display statistical similarity between

manual and automated parameter measurements, however there is

noticeably more variability in the persistence measurements.

Automated persistence measurements appear to be inversely

correlated to track fragment length where longer tracks result in

lower persistence values, indicating a potential form of mathematical

bias. It is important to note however, that there is no statistical

difference between persistence measurements for the assessed track
A B

D

C

FIGURE 4

Transmigration analysis for assessing subgroups of PMNs that respond to a 10 nm fMLP chemical stimulus along a concentration gradient. (A) A
typical example of PMN transmigratory behavior in a positive control study. Upon introduction to a device, PMNs appear inert and slowly start to
acclimate to their new environment. Within a few minutes, escalating transmigration begins to occur, ultimately reaching a ‘steady state’ where a
portion of the PMN population maintains transmigratory behavior. For the purposes of comparing transmigration ratios, an average of the ‘steady
state’ regime was utilized. (B) An example figure from a positive control training set study depicting a ‘steady state’ segmentation map overlayed
onto a corresponding video frame. Despite the usage of fMLP, a potent neutrophil chemotactic agent, only a portion of the PMN population
responds to stimulus. (C) An analysis script calculated transmigration ratios for analyzed video frames from n=3 negative and positive control studies.
The final results were compared to manually tabulated results, where a PMN was considered transmigrated only if it was fully phase dark. For both
experimental groups, when comparing all analyzed frames, bulk distributions were found to be statistically similar via Two-Sample KS Testing. As
expected, positive control studies experienced higher transmigration ratios due to the usage of fMLP as a chemoattractant. (D) Comparison of the
average transmigration ratio from ‘steady state’ regimes from temporal data for individual replicates versus model counting. For each replicate,
statistical similarity is achieved between manual and model based counting. Statistics: ns, not significant.
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fragment groups, and the usage of random tracks in analysis appears to

resolve this phenomenon. All tracks from the automated process can be

organized into spider plots, where a universal origin is set (Figure 6E).

When comparing tracks in this manner, unstimulated PMNs

demonstrably crawl less on an endothelial surface versus those

exposed to an fMLP gradient in the positive control studies, which is

in line with physiological expectations. Unstimulated PMNs are slower

overall, less persistent, and have lower meandering indices than their

stimulated counterparts (Figure 6E). Note, meandering index

measurements measure path linearity on a scale from 0 to 1 and are

similar between manual and machine measurements (S2).
3.6 Subgroup analysis and summary

With validated state analysis and tracking capabilities, the

computational tools described in this study are capable of generating
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spatiotemporal data profiles on all PMN trajectories. One behavior

evident from observing PMNs in positive control studies is that a subset

of the population does not respond to fMLP stimulus. Using the

meandering index measurement (displacement over path length) and

setting a threshold of <0.1 as a “non-reactive” trajectory, ~25% of

trajectories mapped displayed little movement (similar to negative

control studies) in contrast to ~75% that displayed robust movement

across all positive control studies (Figure 7A).When assessing the effect

of directional localization on PMN speed and persistence, a few notable

behaviors were observed. First, fMLP stimulated PMNs have similar

speeds regardless of location with respect to the endothelium and are

significantly faster than non-stimulated PMNs (Figure 7B). The

location and stimulation status of a PMN greatly effects persistence,

noting that stimulated and luminally positioned PMNs are significantly

more persistent than stimulated and abluminally positioned ones

(Figure 7B). Both stimulated groups of PMNs are significantly more

persistent than unstimulated PMNs (Figure 7B). Further study of PMN
A

B

FIGURE 5

Error analysis for counting and transmigration detection for both bulk measurements (checking each analyzed frame) and temporally over the
course of multiple experiments. For the time associated graphs, n = 3 independent experiments utilizing individual devices are depicted. The dark
purple lines represent time-dependent mean, shaded regions represent standard error of mean, and light lines represent individual replicates.
(A) Residuals generated from the counting analysis are evenly dispersed, indicating that the automated workflow has no bias towards overcounting
or undercounting. Similarly, this behavior is maintained when looking at all experimental replicated in a time-dependent manner, with positive
control studies displaying more variability over time. (B) Bulk analysis for transmigration displays a lack of undercounting or overcounting bias when
compared to manually tabulated data. Time-dependent data continues to display this trend, with positive control studies again displaying higher
variability with experiment time. For both counting and transmigration, positive control studies see higher error with time due to increased PMN
amorphous morphology and clustering events.
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subgroups may help elucidate mechanisms attributed to PMN

heterogeneity. Lastly, as a summary, fMLP stimulated PMNs

transmigrated more, were faster, more persistent, and had higher
Frontiers in Immunology 11
meandering indices (Figures 7C–F). All of these results are expected

and correlate with literature on PMNs across both human and animal

models (48–51).
A B

D

E

C

FIGURE 6

Bulk tracking statistics can be extracted from semantic segmentation data utilizing a nearest neighbor linking tracking methodology. (A) PMN and
PMN cluster centroids are gathered from the automated cell counting process and organized into trajectory fragments, the subfigure depicted here
displays a visual representation of the generated centroids. Each red circle has a different size that corresponds to the equivalent disk radius of the
detected PMN or cluster. (B) A graphical example of track fragments plotted in an xy plane where each migration path is assigned a random color.
Tracking logic and constraints are detailed in the methods section. Combined with segmentation data, the track fragments can provide
spatiotemporal information on PMN behavior. (C) To better understand bulk PMN activity behavior in the µSiM device, track fragments were fit to the
Dunn equation using a time interval t=120 seconds, resulting in the extraction of both average speed and persistence. This subfigure shows a typical
example of a Dunn equation fit, where the blue dots represent individual data points and the orange line represents a curve fit. (D) Speed and
persistence were compared between n=15 manual tracks, track fragments with a length of 100 frames (400 seconds) or more, the n=15 longest
tracks, and n=15 random track fragment for both negative and positive control groups. For all parameters, statistical parity was achieved with
noticeably higher speeds and persistence values for the positive control group. Persistence measurements in the positive control study appear to be
inversely correlated to track length, however the use of random tracks seems to resolve this issue. (E) Spider plots using a universal origin depict the
contrast between low activity, unstimulated PMNs and high activity, stimulated ones. In general, PMNs exposed to fMLP are faster, more persistent,
and have higher meandering indices versus unstimulated ones. Statistics: ns, not significant.
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4 Discussion

MPS are increasingly being used to model vascular systems (22,

23), and they have facilitated the exploration of mechanisms of

human disease because of their ability to replicate vascular

physiology with human cells. The attention placed on essential

physiology, in conjunction with the ability to rapidly evaluate acute

vascular barrier dysfunction in a high-throughput format, enables

MPS to serve as platforms for discovering future pharmaceutical

interventions (25) with high physiological relevance. In our lab, we

have created the ‘µSiM’ platform (27) that complements endpoint

studies such as ELISA or immunofluorescence with the ability to

rapidly collect high-resolution temporal imaging data at the

endothelial interface. This is due to the incorporation of optically

transparent, highly porous nanomembrane materials that allow for

the monitoring of PMNs on the endothelial interface without the

incorporation of exogenous dyes. Manually analyzing high-content

imaging data is difficult however because of the size of the imaging

datasets (31) and may fail to capture the dynamism of PMNs
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transmigrating through vascular endothelium because of user bias.

Here we demonstrate that an automated process using machine

learning in conjunction with computer vision techniques is capable

of obtaining bulk metrics of PMN activity in response to a

chemokine gradient stimulus.

In this study, we used our µSiMmicrovascular mimetic to image

different PMN responses to chemical stimulus via incorporation of

fMLP gradients originating in the abluminal or ‘tissue

compartment’ of our device. Through the adaptation of two

machine learning algorithms, a semantic segmentation approach

via random forest and classification via CNN, we were able to

extract bulk metrics and data from the devices. Specifically, we were

able to accurately ascertain the number of PMNs present in a field

of view, assess bulk transmigration activity, and gather bulk activity

metrics based on a nearest-neighbor-linking tracking algorithm.

Our automated results are statistically indistinguishable from

results obtained with manual counting. The automated approach

is computationally efficient, accurate, and modular. Training the

models used in this study takes ~40 minutes on an 8-core processor,
A B

D E FC

FIGURE 7

The combination of PMN state detection and tracking ability allows for the creation of spatiotemporal data and subsequent analysis of PMN
population subgroups. (A) For positive control studies, all trajectory fragments were analyzed for relative movement via meandering index. Notably, a
small subgroup of ~30% analyzed track fragments had limited (<0.1 meandering index) movement in response to fMLP, compared to the 70% that
showed a more robust response. (B) When addressing PMN statistics for luminal vs abluminal groups, the presence of a chemotactic agent appears
to dictate overall speed. (Note: too few PMNs transmigrated in negative control studies, < 5% on average, for meaningful conclusions to be made).
Transmigrated PMNs in positive control devices (+fMLP) are less persistent than PMNs localized on the luminal surface of the endothelium. (C-F) As
a final summary, the automated workflow detects statistically significant differences between unstimulated and stimulated PMNs. In the studies that
incorporated fMLP, PMNs transmigrated more frequently, were faster, more persistent, and had higher meandering indices. All of these observations
are expected and correlate with literature. Statistics: *P < 0.05, **P < 0.005, ***P < 0.0005, ****P < 0.0001.
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and deployment to achieve a full report on a single experiment is

accomplished in ~2.5 hours on an 18-core processor. Because of the

CPU-centric nature of our analytical process, this workflow is

accessible for groups without extensive computational resources.

Importantly, GPUs are not necessary but are available as a resource

for accelerated computing via CLIJx for the WEKA based semantic

segmentation and cuDNN for the CNN based classification scheme.

In the future, such acceleration may be required to process higher

frame-rate videos.

There are some limitations on the level of detailed information

that can be obtained using the automated workflow we have

developed. Notably, our ability to detect intermediate PMN

transmigration phases is limited because of the rapid (~5 frames

or 20 seconds) nature of a transmigration event. While this may be

addressed with higher frame rate capture, additional computational

resources would be required to handle the increased amount of

imaging data. Secondly, the tracking methodology described in this

study is conservative and generates multiple track fragments instead

of a full trajectory that maintains PMN identity. While bulk

measurements of PMN speed, persistence, and meandering index

are not affected by this, the lack of tracking cell identity limits the

ability to detect events such as PMN reverse transmigration, which

is increasingly implicated in the pathophysiology of diseases such as

sepsis (52). While bulk measurements of the PMN transmigration

ratio can provide context for this event occurring inside of a device

(e.g., ratio trending downward after a local maximum), the loss of

additional tracking/identity information may also limit the ability to

observe additional phenomena such as hot spots for transmigration.

The incorporation of probabilistic techniques and global

optimization as recently described in Vladymyrov et al. (53) can

be utilized to overcome this limitation, but with additional

computational costs.

Despite these limitations, the computational tools established in

this study pave the way for automated or semi-automated

workflows that quantify immune cell dynamics in microvascular

mimetics. This tool could eventually be used with patient-specific

cells in clinical diagnostic assays or for following a patient’s

response to treatment (54). The workflow could also become part

of development pipelines for pharmaceutical products. One of our

research interests is characterizing the asymmetric EC response to

directional inflammatory stimulus and its consequences for

immune cell trafficking. Understanding the role of apicobasal

polarity in pathogenesis is imperative as there is an increasing

body of evidence that vascular barrier dysfunction and subsequent

immune cell transmigration is implicated in diseases such as sepsis

(1), Alzheimer’s disease (2), and MS (3). As an example, MS

disrupts BBB tight junctions, resulting in the relocation of

abluminal CXCL12 towards the luminal vasculature (55). This

loss in apicobasal polarity leads to increased leukocyte

recruitment, potentially contributing to neuro-injury as increased

recruitment of leukocytes to the CNS is associated with a host of

negative cognitive effects (56–58).

Prior studies in our lab have also demonstrated different EC

responses when stimulated via luminal or abluminal exposure to the
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cytokine TNF-a, modeling systemic vs. localized sources of

inflammation respectively (24). We found a that luminal

treatment of ECs in a µSiM vascular mimetic resulted in a biased

secretion of the chemokine IL-8 towards the luminal or ‘blood side’

of the device, while abluminal TNF-a exposure produced an

approximately uniform secretion into the blood and ‘tissue sides’

of the device. Both forms of stimulation resulted in luminally

oriented surface expression of the leukocyte adhesion molecule

ICAM-1. Interestingly, the abluminal TNF-a exposure resulted in

significantly higher PMN transmigration rates compared to

negative controls and luminal exposure. This suggests that

inflammatory signals arising from inflamed perivascular tissue

result in a stronger recruitment of immune cells than those

arriving through the circulation. These insights followed from

many hours of labor-intensive manual tracking of PMNs in 30-

minute time-lapse movies. Thus our motivation for the ML tools we

present here stems from first-hand experience that the rate of

biological discovery can be significantly accelerated by the use of

automated methods for the analysis of high content imaging data.

Another important application of the tools presented here is in

the analysis of functional heterogeneity in leukocyte populations.

Originally thought to be of a single type, there is an increasing

appreciation that PMNs are heterogenous in function and outcome

(59–61). This observation coincides with a growing number of

studies indicating that PMN dynamics such as polarization or

reverse transmigration are implicated in multiple disease

pathologies, including sepsis (13, 18, 62) and cancer (63, 64).

While the delineation of such PMN “subgroups” typically

involves genomic analysis (e.g., single cell RNA-seq) or flow

cytometry (65), we observed the presence of possible population

subgroups through trajectory analysis alone. Meandering index

measurements identified small populations of PMNs that failed to

respond to fMLP stimulus (Figure 7A) and differences in motility

parameters were observed for PMNs depending on their

localization with respect to the endothelium. These examples may

indicate intrinsic population heterogeneity and transmigration-

induced behavioral differences, respectively. We observed that

luminally localized PMNs stimulated with fMLP appeared to be

more persistent than their abluminal counterparts (Figure 7B). In

agreement with prior data analysis performed manually (24), PMN

speeds were found to be similar between luminally and abluminally

localized fMLP-stimulated PMNs, indicating that the differences in

migratory behavior relate to direction sensing rather than cell

movement. In the future, more experiments can be performed to

investigate PMN heterogeneity particularly in the presence of

inflammatory cytokines that simulate diseased endothelium, and/

or with the incorporation of other cell types (e.g., pericytes) in co-

cultures to better mimic in vivo physiology.
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