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Transcription factors bind promoter or regulatory sequences of a gene to

regulate its rate of transcription. However, they are also detected in

anucleated platelets. The transcription factors RUNX1, GATA1, STAT3, NFkB,
and PPAR have been widely reported to play key roles in the pathophysiology

of platelet hyper-reactivity, thrombosis, and atherosclerosis. These non-

transcriptional activities are independent of gene transcription or protein

synthesis but their underlying mechanisms of action remain poorly defined.

Genetic and acquired defects in these transcription factors are associated with

the production of platelet microvesicles that are known to initiate and propagate

coagulation and to promote thrombosis. In this review, we summarize recent

developments in the study of transcription factors in platelet generation,

reactivity, and production of microvesicles, with a focus on non-transcriptional

activities of selected transcription factors.

KEYWORDS

transcription factor, platelet reactivity, platelet-microparticles, thrombosis, non-
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1 Introduction

Transcription factors (TFs) are a group of mediators that bind the promoter or

regulatory sequence of a gene to control its rate of transcribing genetic information from

DNA to messenger RNA (1). This transcription control is key to ensuring an adequate level

of expression of a given protein in targeted cells at a particular developmental stage. It not

only directs the processes of proliferation, growth, and death of a cell, but also controls the

rate of cell migration and organizational development during embryonic development, as

well as regulating cellular response to the extracellular matrices. Thus far, more than 1600

transcription factors have so far been identified (2, 3), and they work in a coordinated

fashion to down- as well as up-regulate target genes. The activation of a given gene can be

regulated by multiple transcriptional factors and one transcription factor can regulate

multiple genes. Such a multivalent activity is possible because of the modular structure of a

transcriptional factor, which typically includes a DNA-binding domain, signal-sensing

domain that contains binding sites for transcription co-regulators, and an optional
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transactivation domain, which senses external signals and transmits

them to the rest of the transcription complex (4, 5). Because of their

roles in regulating gene transcription, the activation and

suppression of transcription factors is extensively reported in

cancer development (6).

Paradoxically, multiple transcription factors have been

reported to express and be active in platelets (Table 1), the

anucleated offspring of megakaryocytes with a very limited

capacity for protein synthesis (7). An obvious question is

whether these transcription factors are merely leftover from

parental megakaryocytes or have unique activities in platelets.

Reports from studies on platelet transcription factors have been

scarce in the literature, but increasing evidence suggests that

transcription factors in platelets have unique activities of their

own independent of their transcriptional activities (8–10).

However, past research on transcription factors in platelets is

often limited to reporting their presence and activation status,

without further investigation of their activities in regulating

platelet functions and, more importantly the underlying

mechanism of their regulatory activities.

Platelets circulate along the vessel wall and act to stop bleeding

at sites of vessel injury. This hemostatic process requires multiple

ligand-receptor interactions to tether, activate, and aggregate

platelets. The tightly controlled platelet activation and aggregation

that occurs at the site of vascular injury during hemostasis can

become dysregulated in pathological conditions, promoting

thrombosis and inflammation. For example, platelets promote

arterial thrombosis or thromboembolism when activated either on

the surface of a ruptured atherosclerotic plaque or by pathological

levels of high fluid shear stress in the area of arterial stenosis,

leading to acute thrombotic events such as ischemic stroke and

myocardial infarction (11). Emerging evidence further suggests that

platelets also act as a cellular mediator in a variety of

pathophysiological conditions such as cancer, rheumatoid

arthritis, atherosclerosis, trauma, and immune response (12–14).

How transcription factors regulate platelet production from

megakaryocytes has been extensively reported, but their non-

transcriptional activities (i.e., activity independent of gene

regulations) have only begun to be recognized. Here, we discuss

several transcription factors that have been reported to regulate

platelet production and function.
Frontiers in Immunology 02
2 Transcription factors in
platelet production

2.1 Runt-related transcription factor 1

In 1969, Weiss, et al. identified a family with an autosomal

dominant inherited thrombocytopenia, caused primarily by

decreased dense granule contents (15). A heterozygous Y260X

mutation in the RUNX1 gene was subsequently shown to be the

genetic basis of this inherited platelet defect (15, 16). To date, more

than 200 families with RUNX1 variants have been reported (17).

RUNX1/AML1 (also known as CBFA2 and PEBP2aB) is a member

of the Runt family, which has three known transcription factors

(RUNX1, RUNX2, and RUNX3), which share the Runt homology

domain near the N-terminus. This domain interacts with CBFb to

bind specific sequences of DNA to regulate its transcription (18).

RUNX1 regulates several genes that control platelet production,

structure, function, and intracellular signaling. One report found

that 22 patients in a family with autosomal dominant

thrombocytopenia had mutations in the RUNX1 gene (19) and 6

of them developed hematologic malignancies (20). RUNX1-

deficient mice die in uterus due to defective hematopoiesis and

resultant severe bleeding (21, 22). Mice with the conditional

knockout survive but have an impaired megakaryocyte

maturation with a significant reduction in megakaryocyte

polyploidization (23). Variations in the RUNX1 gene often result

in bleeding diathesis, primarily because of defective platelet

granules (15, 16), which reduce platelet activation and

aggregation (24). For example, mice carrying the RUNX1

p.Leu43Ser variant (equivalent to human p.Leu56Ser) exhibit a

prolonged bleeding time because of defective a-granule secretion

and platelet spreading (25).RUNX1 deficiency can result in pallidin

dysregulation and deficient dense granules in platelets (26) as well

as the Ras-related protein RAB31-mediated early endosomal

trafficking of von Willebrand factor (VWF) and epidermal growth

factor receptor (EGFR) in megakaryocytes (27). RUNX1 regulates

the development of platelet granules through interaction with genes

involved in the biogenesis of platelet granules such as the nuclear

factor erythroid 2 (NF-E2).

In addition, RUNX1 can also regulate genes related to platelet

functions. For example, it regulates the transcription of the non-
TABLE 1 Roles of transcription factors in platelets.

Transcription factor Roles under activation or mutation Associated hematologic abnormalities

RUNX1 Platelet granule development, platelet activation MDS/AML

GATA1 Inhibit aggregation Dyserythropoiesis

STAT3
Increase aggregation, P-selectin,
thrombosis

Coronary artery diseases

NFkB
Increase aggregation, spreading, clot
retraction, GPIBa shedding

Cardiovascular diseases

PPAR Inhibition of platelet function Cardiovascular diseases
AML, acute myeloid leukemia; MDS, myelodysplastic syndrome.
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muscle myosin IIA (MYH9) and IIB (MYH10) genes, which encode

non-muscle myosin II heavy chains; RUNX1 mutations are

associated with dysregulated expression of MYH10 in platelets

(28); and the expression level of non-muscle myosin is used as a

marker for changes in transcriptional activity of RUNX1 as well as

friend leukemia integration 1 transcription factor (FLI1) (29).

RUNX1 also regulates the expression of the arachidonate 12-

lipoxygenase gene (ALOX12) (30), which encodes the enzyme

that acts on polyunsaturated fatty acid substrates to generate

bioactive lipid mediators to regulate platelet function (30). PCTP

(phosphatidylcholine transfer protein) regulates the intermembrane

transfer of phosphatidylcholine and its upregulation by RUNX1

sensitizes platelet response to thrombin through protease-activated

receptor 4 (31). RUNX1 also regulates the expression of platelet

factor 4 through coordination with transcription factors in the ETS

family that share a conserved winged helix-turn-helix DNA binding

domain that recognizes unique DNA sequences containing

GGAA/T (32). Platelet factor 4 belongs to the CXC chemokine

family and is released from a-granules of activated platelets to

promote coagulation and to participate in heparin-induced

thrombocytopenia (33, 34). A recent report shows that RUNX-1

haploinsufficiency inhibits the differentiation of hematopoietic

progenitor cells (HPCs) into megakaryocytes (35).
2.2 GATA-binding protein 1

GATA-binding protein 1 (GATA1) is a transcription factor that

contains two zinc finger domains: a C-terminal zinc finger that

binds the (T/A) GATA(A/G) motif of DNA and an N-terminal zinc

finger that is required for stabilizing the C-terminal structure and

also interacts with a nuclear co-factor protein called friend for

GATA1 (FOG1), which stabilizes GATA1 binding (36, 37). GATA

plays a pivotal role in hematopoietic development and is found in

megakaryocytes (38). GATA1-deficient mice die before birth at

approximately embryonic day 10, primarily because of severe

anemia (39). However, mutations in the N-terminal zinc finger

domain, which reduces the transcriptional activation of GATA1

(36, 40), are found in patients with myeloproliferative disorders and

acute megakaryoblastic leukemia (41), suggesting that GATA1-

FOG1 interaction is essential for the development and maturation

of megakaryocytes, the parental cells of platelets. Decreased GATA-

1 expression has also been reported in patients with myelodysplastic

syndrome (42).

Embryonic stem cells from GATA1-deficient mice are smaller

and show low expression of megakaryocytic markers, but have a

high rate of proliferation (43). Complementation of these cells with

a wild-type GATA1 gene allows megakaryocytes and erythrocytes

to develop in response to a variety of cytokines. Additionally, cell

division is attenuated in the megakaryocytic progenitor G1ME

cells that overexpress GATA1. A recent report further shows that

impaired MYH10 silencing causes GATA1-related polyploidization

defect during megakaryocyte differentiation (44).

Furthermore, platelet aggregation induced by collagen is

inhibited in GATA1-deficient mice (45), primarily due to reduced

expression of the collagen receptor GPVI. Platelet adhesion and
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aggregation induced by shear stress are also reduced in GATA1-

deficient mice (45). How a GATA1 deficiency causes these changes in

platelet reactivity remains unknown, but these phenotypic changes in

the mice provide the first indication that transcription factors could

perform non-transcriptional activities in anucleated platelets.
3 Non-transcriptional
activity in platelets

3.1 Signal transducer and activator of
transcription 3

STAT includes a family of transcription factors critical for

inflammatory and acute-phase reactions (46, 47). They also play

vital roles in cancer development and hematopoiesis (48). The

homologous STAT1, STAT3, and STAT5 are expressed in human

platelets and are reported to regulate platelet reactivity through

residual or mitochondrial transcriptional activity in platelets. For

example, STAT3 affects mitochondrial transcription by binding to

the regulatory D-loop region of mitochondrial DNA upon platelet

activation (49).

However, STAT3 can also be activated (phosphorylated) and

dimerized in platelets stimulated with thrombopoietin (49, 50),

suggesting that STAT3 can also regulate platelet reactivity through

non-transcriptional means. We have shown that STAT3 is activated

and dimerized in collagen-stimulated platelets to serve as a protein

scaffold that facilitates the catalytic interaction between spleen

tyrosine kinase (Syk) and its substrate, PLCg to enhance collagen-

induced calcium mobilization and platelet activation (8). More

importantly, STAT3 is activated to form dimers by a complex of

IL-6 with its soluble receptor IL-6Ra, which activates JAK2 (51).

The pharmacological inhibition of platelet STAT3 reduces collagen-

induced platelet aggregation and thrombus formation on the

collagen matrix (8, 52). Platelets from STAT3-deficient mice or

mice infused with a STAT3 inhibitor have reduced collagen-

induced aggregation. This non-transcriptional activity of STAT3

may be critical for the development of platelet hyper-reactivity,

which has been widely associated with inflammation, especially that

related to the activity of the proinflammatory cytokine IL-6 (8). We

have also shown that the piper longum derivative piperlongumine

(PL) blocks collagen-induced platelet reactivity in a dose-dependent

manner by targeting STAT3 (53). Consistent with our observations,

the small molecular STAT3 inhibitor SC99 has been shown to

reduce platelet activation and aggregation induced by collagen and

thrombin (54). These findings offer a new pathway for reducing

platelet hyper-reactivity in conditions of inflammation and in

prothrombotic states associated with trauma, cancer, autoimmune

diseases, and severe infection.
3.2 Nuclear factor kappa b

Nuclear factor kappa b (NFkB) is a well-defined redox-sensitive

transcription factor that regulates the immune response and

inflammation by controlling the expression of multiple genes
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activated by inflammatory mediators (55–57). Blocking NFkB can

therefore improve outcomes of inflammatory diseases (58). NFkB is

composed of p50 and p65 subunits, normally as an inactive

cytoplasmic complex. The inhibitory proteins of the IkB family

tightly bind the subunits of NFkB (59). Upon activation, the IkK
complex phosphorylates IkBa, thus activating NFkB by detaching it

from IkBa (60–62). Three IkK family members, a, b, and g, are
expressed in platelets, with b being the most abundant, and are

reported to regulate platelet reactivity through non-transcriptional

activity (9, 10, 63). For example, the pharmacological inhibition of

IkKb leads to reduced agonist-induced platelet activation, increased

bleeding time, and prolonged thrombus formation in a mouse model

(64). NF-kB has also been reported to be partially involved in the

regulation of SERCA activity to regulate calcium homeostasis in

platelets (65). IkKb-deficient platelets lose the ability to shed the

ectodomain of GP Iba in response to ADP or collagen stimulations

(66) but preserve thrombin-induced GP Iba shedding (67). Collagen-

induced p65 and IkKb phosphorylation is blocked by inhibition of

MAP kinase, but not by inhibition of ERK in platelets (68). The

thrombin-induced GP Iba shedding requires p38 mitogen-activated

protein kinase (MAPK) and extracellular signal-regulated kinase

(ERK) as its upstream and downstream molecules (68, 69).
3.3 Peroxisome proliferator-activated
receptors

The peroxisome proliferator-activated receptors (PPARs) are

ligand-activated receptors in the nuclear hormone receptor family.

They contain three subtypes (PPARa, PPARb/d, and PPARg),
which are essential in the regulation of cell differentiation,

development, and metabolism (70–72). All PPARs heterodimerize

with retinoid X receptor (RXR) and subsequently bind to a specific

region of target genes called a peroxisome proliferator response

element (PPRE) (73). PPARg plays a transcription factor role in

regulating platelet production from megakaryocytes, but the PPARg
ligand thiazolidinedione inhibits platelet aggregation induced by

ADP under hydrostatic pressure and in diabetic mice (74–76).

Similarly, activating PPARb/d also reduces platelet reactivity to

ADP, thrombin, and collagen (77, 78). However, PPARa is also

required for platelet activation and thrombus formation, in which it

regulates the dense granule secretion of platelets in hyperlipidemic

mice (79). The reason for this apparent contradiction remains to be

further investigated. PPARg is recruited and phosphorylated by Syk

to promote the recruitment of the protein called Linker for the

Activation of T cells (LAT), which is necessary for collagen-induced

platelet activation through glycoprotein VI (80).

While transcription factors are critically involved in

megakaryocyte development and platelet production, they may

also regulate platelet reactivity to conventional and specific

platelet agonists (Figure 1). The latter is independent of

transcriptional activity, for which it is present but at a residual

level. This non-transcriptional activity remains poorly understood

and requires further investigation because it helps understanding

how platelets are activated either by conventional agonists for

hemostasis or as complications found in patients treated with
Frontiers in Immunology 04
drugs that block transcriptional activity of cells (e.g., cancer

treatments). Such research will also play an important role in

developing new therapeutics targeting these transcription factors

to enhance or reduce platelet reactivity.
4 Transcription factors in extracellular
vesicles released from platelets

Extracellular vesicles (EVs) are shed membrane fragments,

intracellular organelles, and nuclear components from cells

undergoing active microvesiculation (81–84) or apoptosis (85–87).

The former is triggered by the activation of the cysteine protease

calpain, which disrupts the membrane-cytoskeleton association (88–

91). Platelets are the primary source of EVs circulating in blood,

accounting for approximately 80% of total EVs (92–94). The

subcellular size of EVs allows them to travel to areas where

parental cells are unable to go. In additional to inherent functions

from their parental cells, EVs also perform unique activities of their

own because of molecules expressed on their surface and carried by

them, the latter of which include transcription factors such as STAT3,

STAT5, and PPARg (95) as well as regulators of transcription factors

(96, 97). This EV-derived transcriptional activity has been scarcely

reported but hold greats potential for influencing biological activities

of target cells. For example, PPARg in platelet EVs is taken up by

monocytic THP-1 cells, where it induces the expression of fatty acid-

binding protein-4 (FABP4). Monocytes receiving PPARg-containing
platelet EVs produce less inflammatory mediators and become more

adherent through increased fibronectin production (95). Although

reports on platelet-derived transcription factors remain very limited,

a large body of evidence in the literature shows that platelet-derived
A

B

C

FIGURE 1

Transcription factors regulate platelet aggregation through non-
transcriptional activities. (A) PPARg is recruited and phosphorylated
by Syk to promote the recruitment of LAT and enhance platelet
aggregation;(B) NFkB is activated by upstream p38 mitogen-
activated protein kinase (MAPK) and promotes platelet aggregation
by regulating downstream extracellular signal-regulated kinase
(ERK);(C) A complex of IL-6 with its soluble receptor IL-6R activates
JAK2 to phosphorylate and dimerize STAT3, then the activated
STAT3 serves as a protein scaffold to facilitate the catalytic
interaction between the spleen tyrosine kinase (Syk) and its substrate
PLCg2 to promote platelet aggregation.
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EVs, especially EV-carried microRNAs, can change transcriptional

activities, thus regulating the function of target cells. Platelet EV-

carried NLR family pyrin domain containing 3 (NLRP3) stimulates

endothelial cells to undergo pyroptosis through the NLRP3/nuclear

factor (NF)-kB pathway (98). EVs from platelets stimulated with

bacteria provoke proinflammatory activity of monocytes through the

TRAF6/NFkB pathway (99). MicroRNA-142-3p carried by platelet-

derived EVs promotes the proliferation of endothelial cells (100),

whereas microRNA-126-3p-carrying platelet EVs can be internalized

by macrophages to dose-dependently downregulate expression of

target mRNA (101). These observations mostly pertain to phenotypic

characterization with less information regarding the underlying

pathways involved. Systemic studies of EV-carrying transcription

factors and related mediators are therefore urgently needed.
5 Conclusion

Platelets lack a nucleus and de novo transcription, but a number

of transcription factors are found in platelets and may have non-

transcriptional activities that regulate platelet function.

Transferring transcription factors between platelets and target

cells through platelet EVs could also be a novel regulatory

mechanism of cell-cell communications and a potential

therapeutic target for a variety of pathologies.
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