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Integrating bulk and single-cell
RNA sequencing data reveals the
relationship between intratumor
microbiome signature and host
metabolic heterogeneity in
breast cancer

Fangyue Chen1†, Jun Yang2†, Youxiang Guo2†, Dongwei Su1,
Yuan Sheng1* and Yanmei Wu1*

1Department of General Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China,
2Department of General Surgery, 63650 Military Hospital, Urumqi, China
Introduction: Nowadays, it has been recognized that gut microbiome can

indirectly modulate cancer susceptibility or progression. However, whether

intratumor microbes are parasitic, symbiotic, or merely bystanders in breast

cancer is not fully understood. Microbial metabolite plays a pivotal role in the

interaction of host andmicrobe via regulatingmitochondrial and other metabolic

pathways. And the relationship between tumor-resident microbiota and cancer

metabolism remains an open question.

Methods: 1085 breast cancer patients with normalized intratumor microbial

abundance data and 32 single-cell RNA sequencing samples were retrieved from

public datasets. We used the gene set variation analysis to evaluate the various

metabolic activities of breast cancer samples. Furthermore, we applied Scissor

method to identify microbe-associated cell subpopulations from single-cell

data. Then, we conducted comprehensive bioinformatic analyses to explore

the association between host and microbe in breast cancer.

Results: Here, we found that the metabolic status of breast cancer cells was

highly plastic, and some microbial genera were significantly correlated with

cancer metabolic activity. We identified two distinct clusters based on microbial

abundance and tumor metabolism data. And dysregulation of the metabolic

pathway was observed among different cell types. Metabolism-related microbial

scores were calculated to predict overall survival in patients with breast cancer.

Furthermore, the microbial abundance of the specific genus was associated with

gene mutation due to possible microbe-mediated mutagenesis. The infiltrating

immune cell compositions, including regulatory T cells and activated NK cells,

were significantly associated with the metabolism-related intratumor microbes,

as indicated in the Mantel test analysis. Moreover, the mammary metabolism-
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related microbes were related to T cell exclusion and response to

immunotherapy.

Conclusions:Overall, the exploratory study shed light on the potential role of the

metabolism-related microbiome in breast cancer patients. And the novel

treatment will be realized by further investigating the metabolic disturbance in

host and intratumor microbial cells.
KEYWORDS

intratumoral microbiome, breast cancer, metabolic heterogeneity, tumor
microenvironment, immune cell
1 Introduction

Vertebrates co-evolve with microbes, and humans are hosts to

diverse microbial symbionts (1–3). Microbiota is a non-negligible

part of the human body and exerts significant effects on host

metabolism, immune system, and disease progression (4, 5). The

role of the microbiome in tumor initiation, prognosis, and response

to therapy has been discussed for a long time. In the last few years,

the relationship between cancer and microbe was mainly focused on

gastrointestinal microbiota dysbiosis; however, cumulative evidence

supports the concept that intratumoral microbiota is an integral

component of the extra-intestinal tumor as well (6, 7).

Human breast tissue is not as sterile as previously thought, and

it contains a distinct microbiota community compared with other

tissues in the human body (8, 9). The breast microbiome mainly

originates from the gastrointestinal tract or skin via nipple-areolar

orifices (10). Cultivable bacteria with broad microbial viability have

been found in mammary tumor tissues, and depletion of intratumor

bacteria reduces breast cancer metastasis (11–13). Moreover, the

complex interaction of microbiota and steroid hormone has a

influence on bone metastasis of breast cancer (14).

In order to sustain rapid proliferation, cancer cells compete for

more nutrients and sense metabolite alteration to coordinate

biological behavior (15). Recent studies have revealed that extra- or

intracellular communities of microbes are metabolically active and

immunoreactive (16). And metabolic microenvironment of cancer

may be regulated and reshaped by the gut or intratumor microbiome

(17–19). For example, nicotinamide adenine dinucleotide (NAD)

metabolism and estrogen metabolism of breast cancer are modulated

by host-microbe metabolic interaction (20, 21). And the change in

dietary pattern has an influence on gut microbial metabolites in

breast cancer patients (22, 23). Furthermore, the co-metabolism of

host-microbe changes the chemotherapeutic agent efficacy in patients

(24). Collectively, the previous studies raised the possible importance

of the pairwise interaction of intratumor microbes and cancer

metabolism. However, the relationship between them is less

described and remains to be elucidated furtherly.

Here, we investigated the relationship between intratumor

microbe and cancer metabolism in silico analysis. And

metabolism-related microbial signature was constructed to
02
explore the potential prognostic value. Subsequently, we analyzed

the association of breast microbiome with gene mutation and

immune microenvironment. Furthermore, the response to

immunotherapy and chemotherapeutics was evaluated based on

microbial abundance. These findings revealed a relatively

comprehensive map of intratumor metabolism-related microbes,

with insight into novel breast cancer treatment. However, the

available results were merely correlative in silico analysis, and

experiments on isolated intratumor microbes were needed to

validate these findings.
2 Materials and methods

2.1 Microbiome, bulk, and scRNA-seq data
source and processing

We obtained 1085 breast cancer (BRCA) samples with

normalized intratumor microbial abundance (measured in 1406

genera) from The Cancer Genome Atlas (TCGA) database. Poore

et al. (25) re-examined whole genome and transcriptome sequencing

studies in TCGA for microbial reads. The intratumor microbial

abundance data file, Kraken-TCGA-Voom-SNM with all putative

contaminants removed, was used for analysis in our study. The

microbial abundance and metadata files were downloaded from the

on l ine data repos i tory (ht tp : / / f tp .microb io .me/pub/

cancer_microbiome_analysis/). The matched clinical data, mutation

information, and transcription matrix were acquired from TCGA

datasets using TCGAbiolink package (26). The samples without

complete clinical information were excluded. And the analysis of

the microbe-host mutation relationship was performed based on

maftools package. The matched metabolite profiling of the TCGA-

BRCA cohort was acquired from previous research (27). Human

breast single-cell RNA (scRNA) sequencing data was downloaded

from GSE161529 dataset (28) in the Gene Expression Omnibus

(GEO) database. A total of 32 scRNA-seq samples were selected for

the study, including 8 triple-negative breast cancer (TNBC) and 24

non-TNBC (ER+ and HER2+) cases. Seurat (v.4.3.0) was used for

data processing and quality control. The cells with unique molecular

identifier count < 300 and mitochondrial content > 10% were defined
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as low-quality cells and excluded subsequently. Finally, a total of

154,179 single cells passed quality control. Harmony package (29) was

used to integrate the scRNA-seq samples and control batch effects.

Major cell types were annotated preliminarily based on gene sets from

CellMarker 2.0 (30): epithelial cells (EPCAM, KRT19); myeloid cells

(CD68, CD163); fibroblasts (COL1A1,PDGFRB, ACTA2); T and NK

cells (CD3D, CD4, NKG7); plasma cells (JCHAIN, IGHG1, MZB1);

endothelial cells (PECAM1, VWF); B cells (CD79A, MS4A1).
2.2 Metabolic activity evaluation and
metabolism-related microbe clusters

Metabolism-related pathway gene sets were downloaded from

Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The

various metabolic activities of TCGA-BRCA samples were

estimated by the gene set variation analysis (GSVA) (31). Then,

we used spearman correlation coefficient to evaluate the association

between intratumor microbiota and metabolic activity in paired

TCGA samples. The scMetabolism package (32) and SCPA package

(33) were used to quantify and visualize the metabolic features and

other pathway characteristics of breast cancer cells at single-cell

resolution. Program iClusterPlus package (version 1.34.3) was

developed for integrative analysis of multi-type genomic data, and

we used it to generate an integrated cluster assignment based on

microbial abundance and the metabolism of cancer cells.
2.3 Functional enrichment analysis and
weighted correlation network analysis

The differentially expressed genes between the two clusters were

identified using limma package. Subsequently, the Gene Ontology

(GO) and the Gene Set Enrichment Analysis (GSEA) were used to

investigate the potential biological function. The clusterProfiler

package (34) was used for the above analysis. Weighted correlation

network analysis (WGCNA) (35) was performed with default

parameters. The module eigengene (ME) was used to describe the

expression pattern of the modules. We screened the microbe-related

modules by evaluating the correlation between WGCNA modules

and microbial abundance. The module membership (MM) was used

to describe the reliability of genes in modules. The hub genes were

selected based on modular connectivity.
2.4 Using scissor algorithm to identify
microbe-associated single cells

Scissor (Single-cell identification of subpopulations with bulk

sample phenotype correlation) method (36) was used to identify

bulk phenotype-associated cell subpopulations. Scissor cells

exhibited distinct molecular properties relevant to the biological

processes of the given phenotypes. In our study, the input data of

Scissor pipeline consisted of GSE161529 scRNA-seq data, TCGA-

BRCA expression matrix, and matched TCGAmicrobial abundance
Frontiers in Immunology 03
data. The abundance of the microbial genus was regarded as the

phenotypical features of matched TCGA samples. Then, the

correlation matrix was constructed to quantify the similarity

between the GSE161529 single-cell data and TCGA-BRCA bulk

data. Based on the signs of the estimated regression coefficients, the

single cells were classified into Scissor positive (Scissor+) and

negative (Scissor-) cells, which were positively and negatively

associated with the matched microbial abundance, respectively. In

the above processing, we set the parameter a equal to 0.8. Finally,

the metabolic activities of Scissor-selected cells were further

characterized in downstream analyses.
2.5 Construction and validation of
metabolism-related microbe signature

Multivariate cox proportional hazard model was applied to assess

the relative risk for metabolism-related microbial abundance. The risk

scores were calculated with the formula: risk score =on
k=1 abundance

(Microbe k) × coefficient (Microbe k). Then, the patients were divided

into high- and low-risk group according to the median value of scores.

In order to validate the function and predictive value of the microbial

signature model, TCGA-BRCA patients were randomized into

training and validation sets. The concordance index (C-index) and

area under the receiver operating characteristic (ROC) curve were

used to estimate the predictive accuracy of the model. A nomogram

that integrated microbial scores and clinical characteristics was

developed to predict the overall survival rate. And calibration curve

was performed to validate the predictive performance of

the nomogram.
2.6 Inferring aberrant pathway and analysis
of immune microenvironment

PROGENy (37) algorithm was used to infer 14 signaling and

regulatory pathways of breast cancer: androgen, EGFR, estrogen,

hypoxia, JAK-STAT, MAPK, NF-kB, p53, PI3K, TGF-b, TNF-a,

Trail, VEGF, and WNT. We used CIBERSORT (38) algorithm to

analyze differences in the proportion level of immune cells within

breast cancer tissues. We applied Mantel test to explore the

correlation between metabolism-related microbiota at the phylum

level and immune cell infiltration of tumor. Repressed immune

resistance (RIR) is a malignant cell program associated with T cell

exclusion (39). We used EaSIeR (40) package to calculate RIR scores

(resF_down, resF_up, resF), and the immune checkpoint inhibitor

resistance was predicted according to the obtained data.
2.7 Predicting response to
chemotherapeutic agents

The OncoPredict (41) package was used to evaluate the semi-

inhibitory concentration (IC50) of drugs in GDSC database based on

bulk gene expression data. Then, we investigated the relationship

between metabolism-related microbial abundance and drug sensitivity.
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2.8 Statistical analysis

All graphical representations and statistical analyses were

performed based on R software (version 4.2.0), and all methods

mentioned in the study were available as R packages. Overall

survival (OS) rates were calculated by Kaplan-Meier method,

and difference in survival rates was assessed by log-rank test.

Nonparametric comparisons in the study were performed using

Wilcoxon test.
Frontiers in Immunology 04
3 Results

3.1 Relationship between intratumor
microbial abundance and
metabolic activity

Firstly, we calculated GSVA scores to evaluate the activities of

various metabolic pathways in TCGA-BRCA samples. Then, the

relationship between intratumor microbiota and metabolic activity
A B

D

E

C

FIGURE 1

Relationship between intratumor microbe and metabolic pathway in breast cancer patients. (A) Spearman correlation between metabolism activity
and microbial abundance in TCGA-BRCA dataset (red: positive relevant; blue: negative relevant). (B) Volcano plot displaying microbial abundance
difference between breast normal and tumor tissue. (C) Forest plot of prognosis value of metabolism-related microbes from TCGA-BRCA dataset.
(D) Integration of microbe and metabolism data defined two clusters using iClusterPlus package. (E) The heatmap showing significant differential
metabolites between the two clusters.
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was analyzed. The microbes, whose correlation coefficient (|r|) > 0.3

and P < 0.001, were regarded as metabolism-related. Under this

criterion, 19 genera of microbes, including Lawsonia, Bulleidia,

Campylobacter, and so on, were significantly correlated with the

activities of 8 major metabolic pathways (Figure 1A). Additionally,

a volcano plot showed that the microbiota present in tumor

tissue was different from mammary tissue (Figure 1B). Univariate

survival analysis of metabolism-related microbes showed that

Campylobacter, Saccharibacter, Paludibacter, Lawsonia, and

Bulleidia were prognostic factors in breast cancer patients

(Figure 1C). Then, TCGA-BCRA patients were divided into two

clusters (C1 and C2) using iClusterPlus method based on

intratumor microbial abundance and activity of metabolic

pathways. The differences in microbial abundance and

heterogeneous metabolic activity between the two clusters are
Frontiers in Immunology 05
depicted in Figure 1D. The distribution of metabolites between

cluster 1 and cluster 2 was analyzed using matched metabolomics

data from the previous study. And the metabolites whose P values

less than 0.05 are demonstrated in the heatmap (Figure 1E).

Kaplan-Meier survival curve plot showed that cluster 2 patients

had lower survival probability (Figure 2A). The chi-squared test

showed that the two clusters exhibited different status of PR, HER2,

and molecular subtype (Figure 2C).
3.2 Biological function enrichment analysis
and WGCNA

The GSEA results demonstrated that C2 patients with relatively

high microbial abundance had suppressed defense response to
A B

D

E

C

FIGURE 2

Survival analysis and microbe-related mutation landscape. (A) Kaplan-Meier overall survival plots between the two clusters based on microbial
abundance and metabolic activity (P = 0.007). (B) Kaplan-Meier overall survival plots of breast cancer patients separated into four groups by
Campylobacter abundance and inositol phosphate metabolism (IPM) activity (P = 0.0107). (C) Pie charts showing the Chi-squared test of
clinicopathologic factors between the two clusters in TCGA-BRCA samples. (D) Forest plot of different genes mutation between low and high
Campylobacter abundance group. (E) The waterfall plot illustrating the top 30 most common somatic mutant genes in the two clusters.
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symbiont. On the other hand, cell adhesion and ligand-gated ion

channel activity were activated in C2 patients (Figure 3A).

Moreover, the GO analysis further revealed that the cluster-

related signal pathways included regulation of cell adhesion,

inositol phosphate metabolism, T cell differentiation, etc.

(Figure 3B). Subsequently, we constructed a co-expression

network in TCGA-BRCA samples by weighted gene co-expression

network analysis (WGCNA). In the analysis, we treated the

abundance of metabolism-related microbes as the phenotype of

the samples. The minimum module size for module detection was

set to 50, and 16 modules were obtained fromWGCNA. The figures

that emerged from WGCNA analysis are presented in Figure S1.

Then, black and turquoise modules, which were most relevant to

microbial abundance, were selected for the subsequent analysis

(Figure 3C). In order to explore biological function, pathway

enrichment analysis of genes in two modules was performed

based on KEGG database. The biological categories and top

enriched pathways, including inositol phosphate metabolism,

nucleotide metabolism, pathogenic Escherichia coli infection,

and drug resistance, are demonstrated in Figure 3D. Given the

high degree of correlation between intratumor Campylobacter

abundance and inositol phosphate metabolism, their prognostic

values were explored in breast cancer patients. Survival analysis

revealed that patients with both high Campylobacter abundance and

inositol phosphate metabolic activity had the worst survival

probability (Figure 2B).
Frontiers in Immunology 06
3.3 Association between
mutation landscape and
metabolism-related microbe

We collected the matched somatic mutation data to investigate the

mechanism of metabolism-related microbe in breast cancer. Strikingly,

the results indicated that specific microbial abundance might play a

key role in tumorigenesis or tumor progression. We found that

MAP3K1 and PIK3CA were more frequently mutated in samples

with higher intratumoral Campylobacter abundance (Figure 2D). The

mutation genes between the two clusters are depicted in Figure 2E.

And there was no significant difference between the two clusters in the

ratio of non-synonymous and synonymous mutation.
3.4 Quantifying metabolic activity at
single-cell resolution

We used the standard Seurat pipeline to analyze single-cell RNA

(scRNA) sequencing data. Following dimension reduction, cell

clustering, and annotation of cell type, the cells were grouped into 7

types, including 35,940 T and NK cells, 4,120 B cells, 15,291 myeloid

cells, 76,147 epithelial cells, 2,088 endothelial cells, 7,703 plasma cells,

and 12,890 fibroblasts (Figures 4A–C, S2). Considering the high

degree of relevance between Campylobacter and WGCNA module

eigengene (ME), the abundance of this genus in TCGA-BRCA was
A B

DC

FIGURE 3

WGCNA and biological function analysis. (A) Gene set enrichment analysis (GSEA) and normalized enrichment scores (NES) between the two
clusters. (B) Biological process function enrichment from Gene Ontology (GO) analysis of the two clusters. (C) WGCNA of breast cancer samples
showing module eigengenes (ME) that were correlated with metabolism-related microbial abundance. (D) Results of KEGG pathway enrichment
analysis for the genes in WGCNA black and turquoise modules.
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typically selected as the phenotype to identify the most highly

associated cell subpopulations from scRNA-seq data. Then, 4,621

Scissor+ cells and 5,082 Scissor- cells were classified by the microbial

phenotype of bulk samples (Figure 4D). Proportion of cell types

showed that proportional fractions of T/NK and B cells in Scissor+

group were higher than Scissor- group (Figures 4F, H). We plotted the

heatmaps of the qvals to demonstrate broad patterns (Hallmark,

Reactome, and GO pathways) between Scissor+/- cell

subpopulations. And we highlighted metabolic pathways, including

glycolysis, fatty acid metabolism, and xenobiotic metabolism, in

Figure 4E. Besides, the dysregulation of pathways, including

response to bacterium, antimicrobial humoral response, interferon,

and interleukins signaling, were observed in Scissor+/- cells, suggesting

the identified cells were associated with tumor-resident microbes

(Figure 4G). Furthermore, metabolic analysis of scissor-selected cells

among different cell types was performed using scMetabolismmethod.

And activities of the metabolic pathways in Scissor+/- cells were

assessed as depicted in Figure 4I. We found that metabolic

differences in single cells were similarly compared with bulk samples.
3.5 Establishment and validation of
metabolism-related microbial model

We randomly split the TCGA-BRCA patients into two groups,

training and validation sets. We evaluated risk factors using the
Frontiers in Immunology 07
multivariate Cox proportional hazard model based on metabolism-

related microbial abundance. The risk score = (Campylobacter×0.328) +

(Paludibacter×0.285) + (Marichromatium×-0.194). The patients were

divided into low- and high-risk groups using the median cutoff value of

risk scores.With regard to overall survival, patients with high-risk scores

had a significantly poorer prognosis in the training, validation, and full

data sets (Figures 5A–C). The concordance index is demonstrated in

Figure 5D. The 10-year AUC value of the model was 0.662, indicating

accurate predictive performance in long-term outcome (Figure 5E). A

nomogram was established to predict the overall survival probability

based on microbial scores and other pathological features (Figure 5F).

The calibration plot of the nomogram showed high consistency between

prediction and actual observation (Figure 5G).
3.6 Aberrant pathway signaling and
immune microenvironment associated with
metabolism-related microbiome

PROGENy analysis showed that microbial scores were

associated with pathway perturbation, including EGFR, estrogen,

androgen, hypoxia, and so forth (Figure 6A). Repressed immune

resistance (RIR) is a predictive biomarker for immune checkpoint

inhibitors response. The Campylobacter abundance and microbial

scores were negatively associated with resF_up and resF score,

suggesting the metabolism-related microbes were involved in
A B

D E

F G

I

H

C

FIGURE 4

Results of Scissor algorithm and metabolic activity at single cell resolution. (A, B) UMAP visualization of cell clusters and cell-type-specific annotation in
scRNA-seq dataset. (C) Visualization of gene expression using dot plot. (D) UMAP visualization of Scissor+ and Scissor- cells. The red and blue dots were
the cells associated with selected microbial phenotype. (E) Ranking of Qvals of Hallmark pathway in Scissor+/- cells. (F) Proportional fractions of identified
cell types across Scissor+/- condition. (G) Ranking of Qvals of Hallmark, Reactome and GO pathway in Scissor+/- cells with various cell types. (H) UMAP
representations of identified cell types across Scissor cells. (I) The metabolic pathway activity in different cell types in breast cancer scRNA-seq dataset.
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immunotherapy resistance (Figure 6B). In order to determine

whether microbes were related to the breast immune

microenvironment, we evaluated the association between microbial

scores and 22 types of immune cells. The results of Mantel test

showed the metabolism-related microbes at the phylum level were

significantly correlated with memory B cells, resting memory CD4+

T cells, T follicular helper cells, regulatory T cells, and activated NK

cells (Figure 6D). These results suggested that intratumoral

microbiota was linked with the heterogeneity of the host

immune microenvironment.
3.7 Microbe-related drug
sensitivity prediction

OncoPredict package was utilized to predict the potential

response to chemotherapy based on microbial abundance. The

absolute value of the drug-microbe correlation coefficient greater
Frontiers in Immunology 08
than 0.4 is demonstrated in Figure 6C. Metabolism-related

microbial genera, notably Campylobacter, Nitrosopelagicus, and

Simplexvirus, were associated with drug sensitivity of Zoledronate,

Alpelisib, Fulvestrant, Nelarabine, etc.
4 Discussion

Intratumor microbiome is an emerging field of cancer research,

and it has been studied over the past few years. Numerous species and

strains of microbes with unique patterns have been identified in

certain tumor types (17). For instance, changed saliva carriage of

microbe, such as Bulleidia, is a reliable indicator of clinical disease

progression in patients with esophageal cancer (42). And pancreatic

cancer tissue had an altered intratumoral microbiome profile with

decreased Bacteroidales and increased Campylobacterales (43).

Moreover, increased Campylobacter abundance in gut microbiota is

a risk factor for the occurrence of breast cancer (14). Microbiota and
A B

D E

F G

C

FIGURE 5

Establishment and validation of microbial risk model and nomogram. (A–C) Kaplan-Meier survival plots of the microbial risk groups in the training,
validation and full data sets. (D) Distributions of concordance index (c-index) values of TCGA-BRCA microbial risk model. (E) The 5-, 10- and 15-year
ROC curves of breast cancer patients with low or high microbial risk scores. (F) Nomogram with microbial risk scores and clinicopathologic
characteristics for predicting overall survival of breast cancer patients in TCGA cohort. (G) Calibration curve of overall survival nomogram model.
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host interact bidirectionally in many ways. The extra- and

intracellular microbes have effects on tumorigenesis and cancer

progression in the aspects of genome, transcriptome, and

metabolome (44, 45). It is worth mentioning that increasing

nutrient within the area of tumor necrosis is conducive to bacteria

survival. Furthermore, microbial metabolites modulate the biological

behavior of breast cancer and reshape the tumor microenvironment

(46, 47).

The relationship between intratumor microbe and metabolism

was depicted comprehensively in our study. A total of 19 microbial

genera were significantly correlated with multiple major metabolic

signals. The patients with breast cancer were divided into two

clusters with different survival conditions based on the tumor

microbe and metabolism data. Besides, the differential analysis

of matched metabolite concentration showed that intratumor

microbes were closely relevant to metabolite disorder. The GSEA

analysis supported the biological significance that the defense

response to symbiont was different between the two clusters.

Then, KEGG and GO enrichment analyses were performed to

investigate the biological processes involved in the microbe

existence. The most significant pathways consisted of

environment information processing, genetic information
Frontiers in Immunology 09
processing, and metabolism. It was noteworthy that inositol

phosphate metabolism was enriched remarkably in both KEGG

and GO analysis. Furthermore, Kaplan-Meier survival analysis

showed that patients with both high Campylobacter abundance

and inositol phosphate metabolic activity had the worst prognosis.

The previous mass spectrometry analyses indicated that inositol

phosphate metabolism was one of the most impacted metabolic

pathways in early breast cancer patients (48). And a recent study

showed that microbiota-derived inositol trisphosphate could

promote epithelial reparation by activating mammalian histone

deacetylase (49), which reflected biological significance.

The intratumor microbes were distributed heterogeneously across

tumors at the microscopic level (50). We used Scissor algorithm to

make the bulk data with matched microbial abundance mapped into

the scRNA-seq dataset. Given the highest correlation between

Campylobacter and tumor metabolism, this bacterial genus was

chosen as the phenotype to identify the associated cell

subpopulations. The metabolic abnormality and heterogeneity were

quantified at single-cell resolution by using scMetabolism package to

evaluate scissor+/- cells. Overall, the results of bulk and scRNA-seq

data demonstrated that intratumor microbes were associated with

host intracellular metabolic reprogramming.
A B

DC

FIGURE 6

Tumor immune microenvironment and correlation between drug sensitivity and microbial abundance. (A) Correlation between pathway activity
estimated by PROGENy algorithm and metabolism-related microbial scores. (B) Correlations between microbiome and repressed immune resistance
(RIR) scores (Blue color represents the negative correlation; the red represents the positive correlation). (C) Analysis of drug sensitivity associated
with host metabolism-related microbiome (correlation coefficient (|r|) > 0.4). (D) Mantel test on the metabolism-related microbes at phylum level
and CIBERSORT immune cell fractions in matched samples. *p < 0.05, **p < 0.01, ***p < 0.001.
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Analysis of gene mutation showed that patients with high

intratumor Campylobacter abundance were characterized by the

increased mutation frequency of MAP3K1 and PIK3CA. The

possible mechanism may be the microbe-mediated failure of

double-strand DNA break repair and consequent genomic

instability (51). And it has been found that microbes could cause

genotoxin-mediated mutagenesis in colorectal and urinary tract

cancers (52, 53). Taken together, the breast metabolism-related

intratumor microbial pattern may have influence on host specific

genetic alterations. The bacteria invading host mammary cells

turned on various aberrant signals in the host, such as TNF

signaling pathway, NF-kB signaling pathway, and the cytokine

chemokine related pathway (13). And aberrant pathway signaling

was also observed in our study. These aberrant signals may promote

or initiate the development of breast cancer.

In addition to host metabolism, microbes had profound effects

on the modulation of the tumor immune microenvironment (54–

56). We performed Mantel test to investigate the extensive crosstalk

between infiltrating immune cells and metabolism-related microbes

at the phylum level. Among all infiltrating immune cells, regulatory

T cells and activated NK cells were mostly correlated with microbial

abundance. Previous studies revealed that local microbiota

provoked lung adenocarcinoma-associated inflammation by

activating lung-resident T cells (57). And Lactococcus activated

natural killer T cell to promote cellular immunity in breast cancer

(58). Besides, bacteria activated anti-tumor immune response

through specific antigens. For example, Bacillus Calmette-Guerin

(BCG) was used as immunotherapy in bladder cancer (59). In

recent years, immunotherapy attracted a great deal of attention for

its success in treating solid tumors. The alternation of human

commensal microbiota, such as Bifidobacteria and Bacteroides

fragilis, induced anti-tumor immunity and potentiated efficacy of

anti-PD-L1 or CTLA-4 blockade (60, 61). The repressed immune

resistance (RIR) scores were negatively associated with microbial

abundance and risk scores in our study. In this regard, the

mammary intra tumor microbes may be involved in

immunotherapy resistance. Although the observations above

depicted the intratumor microbial immune landscape, an exact

causal relationship was not unambiguously established and

remained elusive.

As for chemotherapy, a study revealed that dysbiosis of

intratumor bacteria might contribute to gemcitabine resistance in

ductal adenocarcinoma (45). We used oncoPredict package to

predict the TCGA-BRCA patients’ response to a large number of

drugs screened in GDSC database. Metabolism-related microbial

abundance was highly correlated with drug sensitivity of Alpelisib

(PI3K inhibitor), Fulvestrant (selective ER down-regulator),

Nelarabine (DNA synthesis inhibitor), etc. And the potential

therapeutic agents may be selected when the IC50 value was

lowest among distinct clusters.

In general, our study revealed the correlation between the

metabolic activity of cancer cells and the alteration of intratumor

microbiota. Our analysis of metabolism-related microbes indicated

their potential roles in the prognosis value and tumor immune

microenvironment. Besides, microbial functions that enabled or
Frontiers in Immunology 10
abolished chemo- and immune therapy highlighted the potential

value of correcting microbial dysbiosis in cancer treatment.

However, the causal relationship is yet to be clarified in our

study, and the robustness of the predictive model is limiting due

to its retrospective nature. Further studies are awaited to explore

how the intratumor microbes interact with the host metabolism and

immune system.
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