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Host responses to vaccines are complex but important to investigate. To

facilitate the study, we have developed a tool called Vaccine Induced Gene

Expression Analysis Tool (VIGET), with the aim to provide an interactive online

tool for users to efficiently and robustly analyze the host immune response gene

expression data collected in the ImmPort/GEO databases. VIGET allows users to

select vaccines, choose ImmPort studies, set up analysis models by choosing

confounding variables and two groups of samples having different vaccination

times, and then perform differential expression analysis to select genes for

pathway enrichment analysis and functional interaction network construction

using the Reactome’s web services. VIGET provides features for users to

compare results from two analyses, facilitating comparative response analysis

across different demographic groups. VIGET uses the Vaccine Ontology (VO) to

classify various types of vaccines such as live or inactivated flu vaccines, yellow

fever vaccines, etc. To showcase the utilities of VIGET, we conducted a

longitudinal analysis of immune responses to yellow fever vaccines and found

an intriguing complex activity response pattern of pathways in the immune

system annotated in Reactome, demonstrating that VIGET is a valuable web

portal that supports effective vaccine response studies using Reactome pathways

and ImmPort data.

KEYWORDS

vaccination response, yellow fever vaccines, biological pathways, reactome, pathway
analysis, differential gene expression, data visualization, web application
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1 Introduction
As one of the most significant inventions in modern medicine,

vaccination has been used to dramatically protect humans against

many infectious diseases and improve human health. However, our

efforts to develop vaccines to protect against many diseases have not

always been successful. Future success of effective vaccine

development relies on a deep understanding of the molecular

mechanisms of vaccine-induced host responses including host

molecular interactions and pathways, and must be based on more

powerful tools to support rational vaccine design.

Biological pathways are concepts annotated for specific functions

carried out by the series of biochemical reactions involving multiple

molecules, each of which plays roles as inputs, outputs, catalysts,

activators, or inhibitors in reactions. Pathway-based approaches are

commonly used for large scale omics data analysis for researchers to

learn the functional context and molecular mechanisms underlying

the biological problems. One complexity with pathway-based

functional analysis is pathway crosstalk because many proteins may

have significant roles in multiple pathways. To mitigate this

complexity, cellular level networks are frequently constructed to

place significant entities in a single holistic view to avoid defining

pathway boundaries and reveal crosstalks among overlapped

pathways. Reactome (http://www.reactome.org) (1) is the most

comprehensive open source, manually curated biological pathway

knowledgebase, widely used in the community for pathway-based

data analysis and visualization. Many vaccine-related pathways have

been annotated in Reactome, including pathways in Immune System

(https://reactome.org/PathwayBrowser/#/R-HSA-168256), infectious

diseases (https://reactome.org/PathwayBrowser/#/R-HSA-5663205),

and diseases of immune system (https://reactome.org/

PathwayBrowser/#/R-HSA-5260271), among many other signaling

pathways and biological processes. For genome-scale network-based

data analysis and holistic visualization, Reactome provides a highly

reliable functional interaction network, called “Reactome FI

network”, covering over 60% of total human protein-coding genes,

by extracting interactions from manually curated pathways and

predicting interactions based on a machine learning technique (2).

ImmPort (the Immunology Database and Analysis Portal;

https://www.immport.org) is the world’s largest repository of

public-domain, de-identified clinical trial data related to

immunology (3, 4). All data derived from clinical trials funded by

the Division of Allergy, Immunology and Transplantation (DAIT)

of the National Institute of Allergy and Infectious Diseases (NIAID)

are required to be published on the ImmPort portal. ImmPort

includes complete clinical and mechanistic study data, all of which

are publicly available for downloading in a de-identified form. To

support data integration, ontologies have been used for

representation of various data types in ImmPort. For example,

the Vaccine Ontology (VO) (5) has been used for representation of

vaccines reported in ImmPort. Very recently ImmPort has

integrated a suite of analysis and visualization tools for users to

perform data analysis directly on the web site. However, in order to

use these tools more efficiently, some familiarity with R or Python

programming is required.
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In this paper, we describe a web-based data analysis portal for

vaccine response studies called “VIGET” for Vaccine Induced Gene
Expression Analysis Tool. The portal collected all vaccination

studies hosted at ImmPort, pre-processed gene expression data

after downloading them from Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/), and offers a suite of

streamlined JavaScript-based user interfaces. Users of the portal

can conduct differential gene expression analysis on the fly, perform

pathway enrichment analysis and build a functional interaction

network via a seamless integration with the Reactome’s web

application, facilitating the understanding of the molecular

mechanisms of vaccine response for patients with a variant of

demographic background via comparison analysis.
2 Methods

2.1 Collection and annotation of vaccine
response data

We downloaded the ImmPort MySQL database from the

ImmPort’s download site (Version available in September, 2020) and

used an in-house developed workflow (Figure 1) to generate a meta file

for vaccine response data collected in ImmPort via scripting and

manual checking and annotation. Briefly, we queried the downloaded

ImmPort MySQL database via a Hibernate API (https://hibernate.org,

version 5.2.11) to collect all ExpSample objects (https://

www.immport.org/shared/dataModel) and their related information

focusing on subjects having information of immune exposure with

gene expression (output in ImmpuneExposureGeneExpression_1). To

focus our data on vaccination study, we removed rows having

pathogens as exposure materials, which do not have VO annotated

vaccine identifier records (ImmuneExposureGeneExpression_2).

Further, we removed rows for DNA sequencing data

(ImmuneExposureGeneExpression_3) and kept only samples having

GSM accession numbers (ImmuneExposureGeneExpression_4). After

these three filtering processes, we gathered 5,817 samples out of 11,692

originally collected at the ImmPort database. To collect gene expression

data directly from GEO, we mapped GSM accession numbers to GSE

and GPL using the GEOmetadb.sqlite database embedded in R package,

GEOmetadb (6) (version 1.48.0) (ImmuneExposureGeneExpression_5).

Some GSM records may be referred to by more than one GSE record.

To avoid duplication, we removed redundant GSE accessions by

following the two rules after conducting a pairwise overlapping

analys is (ImmuneExposureGeneExpress ion_6) : ( i ) In

ImmuneExposureGeneExpression_5, if both GSE accessions

contained the same number of GSM accession numbers, we kept the

GSE accession having the smaller number (e.g., GSE13486 and

GSE13485 both contain 87 GSM accessions. We kept GSE13485 to

minimize the number of samples in the downloaded gene expression

matrix file); (ii) If one GSE accession covers all GSM accessions

contained in another GSE accession, the second GSE accession was

removed. Our current analysis platform supports gene expression data

generated by microarray platforms only, therefore we removed data

generated from two platforms (ImmuneExposureGeneExpression_7):

GPL16791 (RNA-seq) and GPL16497 (peptide array). GSE41080 does
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not contain gene expression data in the matrix format, so we removed

all samples in this dataset (ImmuneExposureGeneExpression_8).

Based on GSE accessions in ImmuneExposureGeneExpression_8,

we wrote an R script (processor.R, https://github.com/VIOLINet/

immport-ws/blob/master/src/main/resources/data_eng/processor.R) to

download the pre-processed gene expression data in the matrix files

from GEO, conducted a PCA analysis for batch effect inspection for

individual GSE datasets, and then annotated each dataset manually based

on the batch effect analysis results (Table S1 in SupplementalMaterial) by

adding a new batch column to the ImmuneExposureGeneExpression file

(ImmuneExposureGeneExpression_9). Since the focus of our platform is

for differential expression analysis, we removed GSE accessions having

only one vaccination time point. Also, we found a batch effect in

GSE65440 that could not be explained based on the metadata

provided in GEO and ImmPort. Therefore, we removed GSE65440

(ImmuneExposureGeneExpression_10). Based on the PCA analysis and

manual inspection, we found the data in GSE22121 is too sparse with

missing values for many genes and samples and thus removed it

(ImmuneExposureGeneExpression_11). To integrate the metadata file

seamlessly with the Vuejs-based web frontend app, we further

normalized the headers and converted hours to days

(ImmuneExposureGeneExpression_12). In total, the final file

(ImmuneExposureGeneExpression_020922.csv) covers 28 studies,

4,859 GSM accessions collected from 24 GSE records and generated

from 12 GPL platforms for 20 vaccines based on VO identifiers.

To generate a single file for gene expression covering all samples

annotated in the above ImmuneExposureGeneExpression file, we

mapped probe sets to gene symbols based on the “GENE SYMBOL”

or “SYMBOL” column in the GPL annotation files downloaded

from GEO. For GPL annotation files have neither of these two

columns, we used an UniGene file (Hs.data.gz, generated on April
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25, 2013) downloaded from https://ftp.ncbi.nlm.nih.gov/repository/

UniGene/Homo_sapiens/, and extracted three fields, UniGene,

GENE_ID (i.e. LOCUSLINK) and Gene Symbol to map UniGene

(GPL7567), GENE_ID (GPL10647), or LOCUSLINK (GPL9700

and GPL10465) to gene symbols. We dropped probe sets that

could be mapped to more than one gene symbol and used the

median values if multiple probe sets could be mapped to one single

gene symbol. After mapping probe sets to gene symbols for

individual expression matrix files, we merged all data together

into one single CSV file using the DataFrame’s join function in

pandas, a Python package (https://pandas.pydata.org). To

normalize all gene symbols to the latest officially approved human

gene symbols, we generated a mapping file via https://

www.genenames.org/download/custom/ after selecting the

following fields: HGNC ID, Approved symbol, Approved name,

Status, Previous symbols, Alias symbols, Chromosome, Accession

numbers, RefSeq IDs, NCBI Gene ID (downloaded in May, 2021)

and mapped all outdated symbols and synonyms to the current

official gene symbols. We used the median value if an official gene

symbol could be mapped to more than one row. Our final gene

expression matrix file covers 22,343 genes and 4,859 GSM

accession numbers.

2.2 Implementation of VIGET
To implement VIGET, we adopted a two-tiered software

architecture composed of three components (Figure 2). The web

frontend tier was implemented using Vuejs (version 2, https://

vuejs.org) supported by several Vuejs plugins, including vuetify.js

(https://vuetifyjs.com) for user interfaces, vue-cytoscape (https://

rcarcasses.github.io/vue-cytoscape/), a vuejs wrapper for

cytoscape.js (7) for functional interaction network view, and vue-
FIGURE 1

Flowchart of the workflow on collecting vaccination metadata from ImmPort and manual checking and annotation.
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plotly (https://github.com/David-Desmaisons/vue-plotly), a

wrapper for plotly.js (https://plotly.com) for JavaScript-based

volcano plot and pathway analysis result scatter plot. The server-

side application was implemented as two components: a Java-based

RESTful API component implemented based on the Spring web

module-view-controller (MVC) framework (https://spring.io,

version 4.3.10) and an R-based analysis component based on the

Limma package (8) (version 3.50.1) for differential gene expression

analysis. The R component was wrapped by plumber (https://

www.rplumber.io, version 1.1.0) to provide a RESTful API and

controlled by the Java component to start and stop. To increase the

performance, the gene expression matrix was cached in the R

component after the first analysis was invoked by a user. The

three components communicate via RESTful APIs: axios (https://

axios-http.com) is used between the Vuejs app and the Java

component, and commons-httpclient (https://hc.apache.org/

index.html, version 3.1) between the Java component and the R

component. The two server-side components are hosted at a virtual

server powered by RedHat 7.9 with 15.5GB RAM and 4 CPUs.

To support pathway enrichment analysis and network

visualization of differentially expressed genes, we integrated

Reactome’s RESTful API based web services into VIGET via the

Java component (Figure 2). We integrated the analysis service

(https://reactome.org/AnalysisService/) (9) for pathway

enrichment analysis, the content service (https://reactome.org/

ContentService/) (10) to plot the analysis results, and the

functional interaction service (https://reactome.org/tools/

reactome-fiviz) (11) to construct the FI network for genes. The

Reactome analysis service uses the Binomial test for pathway

enrichment analysis and corrects the p-values via the Benjamini-

Hochberg false discovery rate (FDR) procedure (9).
2.3 Ontological representation of vaccines
and variables

ImmPort provided the raw metadata for 28 studies we collected.

Each of the vaccines that were used in these studies was mapped to
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the corresponding Vaccine Ontology (VO) term. Once done, each

of the VO terms was extracted from VO to construct two

hierarchies based on prior annotations: one based on vaccine

target and the other by vaccine type. The vaccine target is based

on NCBITaxon clades (https://www.ebi.ac.uk/ols/ontologies/

ncbitaxon) for the target pathogen. The vaccine type was

determined using ‘has vaccine role’ relation and the listed vaccine

role to determine the hierarchy. These two hierarchies were then

merged into one single hierarchical view to list vaccines at VIGET.
2.4 Application of VIGET for a longitudinal
analysis of immune responses to yellow
fever vaccines

To demonstrate the utilities of VIGET for vaccine response

studies, we conducted a longitudinal analysis of the immune

responses to the yellow fever vaccines. For this analysis, we

checked the following parameters to select samples for analysis in

VIGET (Figure 3A): Yellow Fever Virus Vaccine (VO_0000123) in

the Vaccine panel, “Select All” in ImmPort Studies, Platform

Description, Gender, Age, Race, and Cell Type. For the

differential gene expression analysis, we checked vaccine, age,

gender and race to adjust the limma model. Further, we also

checked platform and batch for correction, and used paired

samples by checking “Paired” (Figure 3B) to ensure only subjects

having expression data in both groups contribute to the final

analysis results. We analyzed samples collected at three time

points post vaccination: 7 days (one week), 14 days (two weeks),

and 28 days (4 weeks). To learn the immune responses at each time

point, we conducted differential gene expression analysis for three

pairs of time points: 7 vs 0 (days), 14 vs 0, and 28 vs 0 post

vaccination. To learn the temporal responses during these time

points, we also conducted the differential expression analyses for

two more consecutive time pairs: 14 vs 7 and 28 vs 14 (days) post

vaccination. For pathway enrichment analysis, we chose genes

having log2 fold changes greater than 0.2 or less than -0.2. Some

genes submitted to pathway enrichment analysis may have adjusted
FIGURE 2

The software architecture of VIGET is composed of two tiers and three components that communicate via RESTful APIs.
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p-values greater than 0.05. We selected genes for pathway analysis

based on log2 fold change only in order to increase the analysis

sensitivity based on the hits of the immune response pathways.
3 Results

3.1 A comprehensive set of vaccine
response gene expression data

To support the systematic analysis of vaccine responses for a

variety of vaccines across different demographic categories, we

developed a comprehensive script-based workflow and collected a

large set of gene expression data from GEO based on manually

annotated studies in ImmPort. The final dataset covers 21 vaccines

based on vaccine names (20 based on VO term ids), 28 ImmPort

studies, and 4,859 biosamples (i.e. GSM samples) that were

collected in 24 GSE datasets and conducted using 12 GPL

platforms. The samples in the dataset were annotated for 7 races,

4 cell types and 184 cell subtypes with ages ranging from 0 to 90

years and vaccination days from -7 days to 84 days (Table 1).

Though we have not collected any RNA-seq based dataset yet,

overall, we believe this is a comprehensive large dataset for studying

vaccine response in a systematic way.
Frontiers in Immunology 05
Those 21 vaccines can be classified into the following categories

according to the annotation in the ImmPort studies (Table S2 in

Supplemental Material): influenza virus vaccine including
FIGURE 3

Setup parameters and the analysis model to conduct the longitudinal analysis of immune responses to yellow fever vaccines using VIGET. (A) Select
vaccines and other parameters to select samples for the analysis. (B) Choose time points and select confounding variables for differential gene
expression analysis.
TABLE 1 Statistics of the vaccine response gene expression data
collected based on ImmPort studies.

Object/Variable Number/Value

Vaccine 21 (by names) or 20 (by VO ids)

ImmPort Study 28

Race 7

Min_Age 0

Max_Age 90

Min_Day -7

Max_Day 84

Cell Type 4

Cell Subtype 184

Biosample (GSM) 4859

GSE 24

GPL Platforms 12
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inactivated influenza vaccine and live attenuated influenza vaccine,

yellow fever virus vaccine, Neisseria meningitidis vaccine, and other

vaccines such as HIV virus vaccine, Mycobacterium tuberculosis

vaccine, Streptococcus pneumoniae vaccine and Varicella-Zoster

virus vaccine. Because of the wide use of influenza vaccine, it is

not unexpected that we see the dominant majority of studies are for

influenza virus vaccines: 3,317 GSM samples (68% of 4,859 samples

in total) annotated in 16 ImmPort studies (57% of 28 studies).

Yellow fever virus vaccines, including Stamaril, YF-VAX and

Yellow fever 17D vaccine, have the second largest samples: 482

GSM samples annotated in 4 studies.

Since the gene expression data was collected from multiple

studies and conducted by multiple platforms, batch effect was

expected and observed as shown in the UMAP (Uniform

Manifold Approximation and Projection) plot (12) (Figure 4A).

We tried a batch correction algorithm used in single cell RNA-seq

data analysis called BBKNN (13) to correct batch effects for GPL

(Figure 4B) or GSE (Figure 4C). As shown in Figure 4, BBKNN

removed batch effects quite efficiently though some batch effects still

exist. For example, the majority of samples analyzed using platform

GPL10558, which is Illumina HumanHT-12 V4.0 expression

beadchip (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GPL10558), are distributed separately from other samples

even after being corrected for GPL (Figure 4B). For our web-

based application, therefore, we annotated the gene expression
Frontiers in Immunology 06
data with batch information based on GSE and batch analysis

(Methods), allowing users to use the original data by integrating the

batch annotation directly in the limma model (8).

We also checked the distribution of gene expression values for

individual vaccines and found that the majority of vaccines

collected in our dataset have similar distributions, where

expression values between 25 percentile and 75 percentile have

fallen in the range between 3 and 9 (Figure 5A). However, two

influenza vaccines, 2011-2012 trivalent inactivated vaccine (A/

California/7/09 (H1N1), A/Perth/16/2009 (H3N2), and B/

Brisbane/60/2008) and live attenuated influenza vaccine, have

similar distributions but much wider than other vaccines: the

interquartile range (IQR) is between 3 and 130 with many

outliers having high expression values (Figure 5B).
3.2 A JavaScript based web application for
users to conduct vaccine response analysis

During the past two decades, the community has conducted

tens of studies to learn vaccine responses using high throughput

gene expression approaches for patients covering a variety of

demographic variables with multiple platforms and data analysis

models. To ease the systematic analysis of vaccine response based

on these large-scale gene expression data, we developed a web-based
A

B

C

FIGURE 4

UMAP plot of all samples, colored based on vaccines, platforms, and GSEs. GSE-based batch effect is observed clearly (A), and batch correction was
performed using BBKNN for GPL (B) or GSE (C). Full vaccine names for abbreviations in the legend of the right column: 2008-2009 tr: 2008-2009
trivalent influenza vaccine; 2011?2012 tr: 2011?2012 trivalent inactivated vaccine (A/California/7/09 (H1N1), A/Perth/16/2009 (H3N2), and B/Brisbane/
60/2008); Influenza vi: Influenza virus vaccine; Meningococca: Meningococcal Polysaccharide Vaccine, Groups A & C, Menomune A/C; MRKAd5
HIV-1, MRKAd5 HIV-1 gag/pol/nef; Plasmodium f, Plasmodium falciparum vaccine; Pneumovax 23, Pneumovax 23 (USA); Trivalent in, Trivalent
inactivated influenza; Yellow fever, Yellow fever 17D vaccine vector; live attenua, live attenuated influenza vaccine.
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application, called “VIGET”, by leveraging the modern JavaScript

framework for users to set up analysis based on a pre-selected set of

variables. This web application provides a simple two-step workflow

(Figure 6) via intuitive user interfaces. Step 1 (Figure 6A) is

designed for users to select patient samples. Users can select

samples based on vaccine (A.1), ImmPort studies (A.2), platform

used for microarray screenings (A.3), day 0 definition as annotated

in ImmPort (A.4), gender (A.5), age (A.6), races (A.7) and cell types

and subtypes (A.8). Vaccines are organized based on VO and linked

to Ontobee (14) for users to browse the detailed description about

listed vaccines. Similarly, ImmPort studies are listed for the selected

vaccines and linked to the original study page at the ImmPort

website for users to learn detailed information about each study.

Step 2 (Figure 6B) is designed for users to choose two groups of

samples for differential gene expression analysis. Users can also

select confounding variables to feed into the limma model for

differential expression analysis.

To help users visualize analysis results, VIGET provides

multiple JavaScript powered interactive user interfaces (Figure 7).

The first JavaScript widget is to show differential gene expression

analysis results (Figure 7A), which is composed of two views: the

volcano plot of logFC (log2 fold change) and -Log10(pValue) and

the table view showing detailed analysis results for individual genes,

where positive values of Log2FC indicate up-regulated gene

expression in Group 2 vs Group 1 (Figure 6B). The volcano plot

is provided for users to visualize all genes in a single view. Users

may zoom in or out, select a specific region, or choose a specific set

of genes (e.g., significantly differentially expressed genes based on

chosen threshold values). In the table view, users may search for

specific genes, set up thresholds based on Log2FC, pValue or

Adjusted pValue. Based on the selected genes that are shown in

the table and plotted in blue in the volcano plot, users may perform

pathway analysis by clicking the “PATHWAY ANALYSIS” button

or build a functional interaction network (15) by clicking the

“NETWORK ANALYSIS” button.

Reactome is the most comprehensive, open source, open access

biological pathway knowledgebase (1). We leverage the pathway

analysis feature of Reactome by directly submitting the selected
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genes via its RESTful API (https://reactome.org/AnalysisService/).

The pathway analysis results are displayed in the “Pathway

Enrichment Analysis’’ widget (Figure 7B). Similar to the gene

expression analysis widget, the pathway widget provides two

views: the scatter plot view and the table view. The scatter plot

shows Reactome pathways at the x-axis and -log10(pvalue) at the y-

axis. To facilitate the comparison between different analyses, we fix

the order of the Reactome pathways at the x-axis according to the

pathway hierarchical organization in Reactome. Pathways are

colored based on their top-level pathway assignments as

annotated in Reactome. Users can choose one or more specific

top-level pathways, such as “Immune System” and “Signal

Transduction”, for zoomed-in view. The table view displays the

detailed analysis results returned from the Reactome analysis web

service, where users can search for pathways, and filter displayed

pathways based on pValue or FDR (False Discovery Rate). The

pathway widget also provides a link, “OPEN IN REACTOME”, for

users to browse the analysis results directly inside the Reactome’s

website via its Voronoi map (16) (Figure 7D), a detailed holistic

view of all Reactome pathways. Users may click the pathway links in

the table to view the analysis results at Reactome for

individual pathways.

Proteins or genes are organized in pathways for better

understanding their biological functions. However, because of the

difficulty of setting the pathway boundaries and learning the

crosstalk between pathways, network-based approaches are

preferred to learn functional relationships among genes or

proteins. VIGET uses the Reactome functional interactions (FIs)

to construct a FI network for the selected significant genes. The FI

network widget (Figure 7C) offers users to study potential

functional relationships, where users can select genes for display

based on logFC and adjPValue (adjusted p-value) or total number

of genes in the network. The user may perform network clustering

to better know the organization among genes in the network (11).

Understanding the temporal response of vaccination and the

differential immune response of patients from different

demographic groups are imperative to better understanding the

vaccination molecular mechanisms and design better vaccines.
A B

FIGURE 5

Boxplot of expression values of individual vaccines. (A) Zoomed-in view of the boxplot for all vaccines in the dataset. (B) Zoomed-in view for two
vaccines having much wider distributions.
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These needs can be addressed based on comparison analyses.

VIGET provides a simple user interface for users to conduct a

comparison study between two analyses, such as response between

3 days vs 0 days and 7 days vs 3 days (Figure 8A) and then visualize

comparison results in the enhanced differential expression widget,

pathway widget, and network widget. For example, Figure 8B shows

the enhanced pathway widget displaying the comparison results

between 3 days vs 0 days (a) and 7 days vs 3 days (b) zoomed into

pathways annotated under “Immune System” in Reactome. This

comparison analysis results implied that around 7 days the

interferon signaling pathway activity has a significant change

while earlier days (i.e., 3 days) the signaling by interleukins

pathway activity does so.
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3.3 Application of VIGET to vaccine
response study

To showcase the utilities of VIGET for vaccine response studies,

we conducted a longitudinal analysis of immune responses to

yellow fever vaccines. As noted above, VIGET collected multiple

longitudinal data for a variety of vaccines, providing researchers a

great opportunity to study temporal immune response via adjusting

parameters interactively and then conducting differential gene

expression analysis on the fly. In Reactome, pathways in immune

systems are divided into three categories: adaptive immune system,

innate immune system and cytokine signaling in immune system

(https://reactome.org/PathwayBrowser/#/R-HSA-168256).
A

B

FIGURE 6

Two-step protocol to set up a differential gene expression analysis for vaccine response using VIGET. Step 1 (A) Select samples based on vaccine
(A.1), ImmPort studies (A.2), platform used for microarray screenings (A.3), day 0 definition as annotated in ImmPort (A.4), gender (A.5), age (A.6),
races (A.7) and cell types and subtypes (A.8). Step 2 (B) create two groups based on vaccination times listed in B.1 via dragging and dropping into B.2.
The user can further adjust the analysis model by including confounding variables, correcting the results for platforms and choosing the paired data.
Finally, the user can specify a name for the analysis results.
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Utilizing the data collected in VIGET, we conducted a longitudinal

study of immune responses to yellow fever vaccines by investigating

significant pathways in these three categories and other related

pathways in Reactome. For yellow fever vaccines, VIGET imported

4 ImmPort studies, covering three types of yellow fever virus

vacc ines , inc luding YF-Vax (VO_0000121) , Stamari l

(VO_0003139), and Yellow fever 17D vaccine vector

(VO_0000122), for 482 subject samples collected from either

whole blood or PBMCs (peripheral blood mononuclear cells).

These subjects ranged from 18 years old to 65 years old,

including Asian and African American, and males and females.

These samples covered post vaccination time from day 0 to day 84,

providing a comprehensive dataset to study longitudinal

vaccination responses.

In this use case study, we focused on changes of immune

pathways in the first 4 weeks (Figure 9; Tables S3-S10 in

Supplemental Material). The longitudinal analysis results show

complicated behavior of pathways across 3 categories of immune

systems in Reactome during the first 4 weeks post vaccination of

yellow fever vaccines and reveal an order in which pathways are

regulated. After one week post vaccination, interferon signaling

(https://reactome.org/PathwayBrowser/#/R-HSA-913531),

including both Interferon alpha/beta and Interferon gamma

signaling pathways, were activated (Figures 9B, C), presumably

responsible for the up-regulated activity of the Immune System top
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pathway (Figures 9A, C). During the first week the activity of Innate

Immune System was also upregulated modestly, most likely

resulting from Neutrophil degranulation (Figures 9A, C), which is

annotated as a sub-pathway of Innate Immune System (https://

reactome.org/PathwayBrowser/#/R-HSA-6798695). After two

weeks, intriguingly, activities of all major immune response

pathways were reduced compared to the first week (Figures 9A,

B, NegGenes). However, interestingly, we saw the activity of the Cell

Cycle pathway (FDR = 3.62E-14) and other related pathways (e.g.

Cell Cycle, Mitotic with FDR = 3.62E-14 and Unfolded Protein

Response (UPR) with FDR = 3.50E-05) were up-regulated

compared to week 0 (Figure 9C; Table S6 in Supplemental

Material), implying a step of cellular preparation for the next

wave of immune responses. Indeed, from two weeks to four

weeks, a variety of immune response pathways increased their

activities (Figures 9A, B, PosGenes; Table S9 in Supplemental

Material): Neutrophil degranulation (FDR = 1.80E-14) in Innate

Immune System (FDR = 1.80E-14), Interferon alpha/beta signaling

(FDR=1.80E-14) in Interferon Signaling (FDR = 1.80E-14),

Interleukin-10 signaling (FDR = 1.80E-14) in Signaling by

Interleukins (FDR = 8.89E-12), and Cytokine Signaling in

Immune system (FDR = 1.80E-12), resulting in an overall strong

Immune System (FDR = 1.80E-12) response. Interestingly, the Cell

Cycle pathway (FDR = 2.38E-7) and other related pathways (e.g.

Cell Cycle, Mitotic with FDR = 4.19E-9 and Unfolded Protein
A

B

D

C

FIGURE 7

Visualization of the analysis results in VIGET. (A) Gene-wise differential expression analysis results widget to visualize the analysis results in a
JavaScript-based volcano plot together with a table to show results for all genes. (B) Pathway-wise analysis results generated by Reactome’s
pathway enrichment analysis for significant genes selected in A (genes plotted in blue in A). (C) Reactome functional interaction view of selected
significant genes in (A). (D) The pathway enrichment analysis can also be viewed directly inside the Reactome website by clicking the “OPEN IN
REACTOME” button in B.
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FIGURE 8

Comparison of analysis results in VIGET. A comparison analysis was set up in VIGET for two analyses in (A) between vaccine response on day 3 and
day 7 post vaccination by Fluarix (an influenza vaccine) collected in study SDY269. The user can compare results in a collective view such as the
pathway plot view shown in (B) where only pathways annotated in “Immune System” are shown for simplicity. As we can see in this pathway
comparison, the first three days have stronger responses in the “Signaling by Interleukin” pathways as shown in the bottom table. However, after
three days, the “Interferon Signaling” pathways become stronger as marked in the plot. The user can also compare results directly in the volcano
plot and the network view (not shown here).
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Response (UPR) with FDR = 3.11E-08) were reduced during the

same time period (Figure 9A, NegGenes; Table S10 in Supplemental

Material) to the baseline at week 0 (Figure 9C; Table S5 in

Supplemental Materials, FourWeek_AllGenes_Pathways).
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4 Discussion

We describe our development of the web-based VIGET tool for

users to systematically analyze vaccine-induced gene expression
A B

C

FIGURE 9

Longitudinal analysis of immune responses to yellow fever vaccines at one, two and four weeks post vaccination. (A) Temporal changes of major
immune response pathways and cell cycle; (B) Temporal changes of cytokine signaling pathways during the first four weeks post vaccination;
(C) Immune response pathways enriched for genes significantly differentially expressed at one, two and four weeks post vaccination. In (A, B) the
differential gene expression analysis was conducted between two consecutive time points (e.g. between one week and two weeks), while in C the
analysis conducted between the indicated week vs 0 week post vaccination. All analyses were conducted three times for all differentially expressed
genes, up-regulated genes and down-regulated genes, respectively, to infer directions (i.e. up or down) of pathway activity changes.
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profiles, pathways and networks on the fly with the ImmPort data

and Reactome pathways. We also demonstrate the utilities of

VIGET by describing a longitudinal analysis of the immune

responses to yellow fever vaccines using the Reactome pathways

annotated for the immune system. Our analysis unraveled the

dynamic pattern of immune responses to yellow fever vaccines,

showing ups and downs of some immune response pathways (e.g.,

cytokine signaling pathways, Figure 8) during the first one month

post vaccination.

There are other community resources dedicated to vaccination

responses. VaximmutorDB (17) is a web-based database system

composed of manually curated vaccine immune factors (called

“vaximmutors”), mainly genes or proteins reported in peer-reviewed

articles based on differential gene expression analysis or other similar

experiments. VaximmutorDB provides a comprehensive list of

experiment-validated genes or proteins that are potentially

underlying vaccination responses. However, the results there are

pre-generated by different groups using a variety of experiments and

analysis models with potentially different parameters and thresholds.

Similar to VaximmutorDB, the HIPC (Human Immunology project

Consortium) Dashboard (http://www.hipc-dashboard.org/) collects

immune signatures from literature for the community to access and

query via a web-enabled application (18). Contrary to VIGET, users of

VaximmutorDB and the HIPC Dashboard are not able to re-analyze

the original data by trying different analysis models with different

parameters. Very recently, HIPC released a new web-based app called

“AnalyteExplorer” (https://www.immunespace.org/project/

AnalyteExplorer/begin.view) as a module at ImmuneSpace, allowing

users to visualize temporal expression of a query gene in response to a

set of pre-collected vaccines and pathogens and conduct enrichment

analysis of the blood transcription modules (BTM) (19) for each

individual study. However, AnalyteExplorer cannot combine studies

or perform network-based analyses. Furthermore, the BTM modules

used in AnalyteExploer are network-based modules and are not

updated regularly while Reactome pathways used in VIGET are

based on manually curated temporal and causal relationships

among biochemical reactions and are updated periodically (every

three months).

While VIGET offers a rich set of features for vaccination data

visualization and analysis, it still has some limitations. The greatest

issue results from the gene expression data we collected. The data

was gathered from multiple studies for many vaccines, generated by

a variety of microarray platforms, covering various demographic

variables (e.g., gender, age, and race), and collected from a great

number of cell types or subtypes. Though extreme effort has been

used to normalize the data and VIGET also provides interfaces for

users to control these confounding variables in the limma model for

robust differential gene expression analyses, care should still be

taken to check the analysis results (e.g., p-values and FDRs) to

ensure the results make sense statistically and biologically.

Furthermore, the inconsistent time points collected from different

studies limit longitudinal and comparison analyses for many
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vaccines. While most studies have measurements at days 3, 7, or

14 post vaccination, other time periods are inconsistent. Studies can

have their final time measurement at 4 weeks (28 days), 1 month (30

days), or after 10 weeks (70 days) post vaccination. This would

introduce an additional confounding variable when attempting to

combine multiple days that are next to each other. Another major

limitation comes from using age ranges to annotate studies in

ImmPort. The effect of age on immune response provides a

hurdle for analysis due to the overlapping ranges in the studies,

which, however, may be mitigated with more detailed annotation to

ImmPort studies that have been loaded into VIGET.

To perform pathway enrichment analysis, VIGET requires

users to choose certain thresholds (e.g., log2 fold change, p-value

or adjusted p-value) to select a list of genes to upload to the

Reactome pathway analysis service. Usually, genes having

adjusted p-value < 0.05 should be chosen. In practice, to increase

the analysis performance, users may choose different threshold

values (e.g., log2 fold change > 0.2 or < -0.2 as we did in our

yellow fever vaccine longitudinal use case study), which requires

some trial and error. To avoid this, we plan to integrate the GSEA

approach in the future updates of VIGET as we demonstrated

previously (20).

In summary, we have developed a web-based tool for users to

conduct vaccination response studies on the fly. With the semi-

automatic workflow we have developed to aggregate vaccine

immune response gene expression data collected at ImmPort and

GEO databases, we may update our backend dataset periodically.

With the framework and the powerful web-based data analysis and

visualization features in place, expansion of VIGET to include new

data types such as bulk and single cell RNA-seq data, and new

studies such as COVID-19 vaccine studies in ImmPort and other

data repositories (e.g., GEO), represents a great opportunity to

better understand patterns in vaccine immune response.
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