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Mesenchymal stem cells in the
treatment of spinal cord injury:
Mechanisms, current advances
and future challenges
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Spinal cord injury (SCI) has considerable impact on patient physical, mental, and

financial health. Secondary SCI is associated with inflammation, vascular

destruction, and subsequent permanent damage to the nervous system.

Mesenchymal stem cells (MSCs) have anti-inflammatory properties, promoting

vascular regeneration and the release neuro-nutrients, and are a promising

strategy for the treatment of SCI. Preclinical studies have shown that MSCs

promote sensory and motor function recovery in rats. In clinical trials, MSCs have

been reported to improve the American Spinal Injury Association (ASIA) sensory

and motor scores. However, the effectiveness of MSCs in treating patients with

SCI remains controversial. MSCs promote tumorigenesis and ensuring the

survival of MSCs in the hostile environment of SCI is challenging. In this article

we examine the evidence on the pathophysiological changes occurring after SCI.

We then review the underlying mechanisms of MSCs in the treatment of SCI and

summarize the potential application of MSCs in clinical practice. Finally, we

highlight the challenges surrounding the use of MSCs in the treatment of SCI and

discuss future applications.

KEYWORDS
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1 Introduction

Spinal cord injury (SCI) is the most serious complication of spinal injury and usually

results in transient or permanent loss of sensory, motor, and autonomic nerves below the

level of injury (1). The overall global incidence of SCI is 10.5 per 100,000 persons (2).

Although 94% of patients with acute traumatic SCI survive treatment, survival is greatly

reduced due to post-injury complications (3). Current therapeutic approaches for SCI that are

part of standard care include the reduction of fractures, surgical decompression of the spinal

canal and stabilization of the spine, and rehabilitation. However, standard treatment does not

directly promote neuroregeneration, but may only reduce the effects of secondary injury and

improve the conditions under which the endogenous mechanisms of repair act. The ideal
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result is to achieve rapid recovery of neurological function after the

release of compression by medical and surgical intervention (4).

However, there are currently no optimal treatment strategies to repair

damaged nerve cells.

Regenerative medicine strategies based on cell therapy have

attracted interest in recent years (5). Mesenchymal stem cells

(MSCs) have the ability to differentiate and self-proliferate, and

there has been an increasing focus on their use as potential

therapeutic agents for a variety of diseases. MSCs release

cytokines and exosomes to reduce inflammation at the site of

injury. MSCs also release vascular endothelial growth factor

(VEGF), nerve growth factor (NGF), glia-derived neurotrophic

factor (GDNF) and brain-derived neurotrophic factor (BDNF) to

promote nerve cells regeneration and inhibit glial scarring (6, 7).

The use of MSCs represents a promising approach for SCI cell

therapy. MSC transplantation therapy for SCI has been clinically

proven to promote sensory and functional recovery in patients with

SCI (8–11). However, stem cells have the ability to differentiate into

multiple cell types and transplantation has been associated with

tumour regeneration. Tumour regeneration is a reason why stem

cell transplantation investigated with caution (12). In addition, the

low survival rate of stem cells under the hostile conditions of injury

is also one of the main factors limiting their clinical application (13).

In this paper, we describe the microenvironment alterations of the

spinal cord after injury. Second, we summarize the role of MSCs in

SCI. Finally, we highlight the challenges surrounding the use of

MSCs in the treatment of SCI and discuss future applications.
2 Pathophysiology of spinal
cord injury

2.1 Primary spinal cord injury

Primary SCI is usually caused by trauma resulting in fracture or

dislocation of the vertebrae and compression, tear, or transection of

the spinal cord (14). Spinal cord compression is the most common

mechanism and is often accompanied by disruption of the

vasculature and damage to the blood-spinal cord barrier (BSCB)

(3). In the healthy spinal cord, the BSCB is essential to maintain

spinal cord homeostasis of spinal cord with stability (15). The

concept that the spinal cord is privileged from normal immune

surveillance is derived from the fact that in the healthy central

nervous system there are no peripheral immune cells (16). The

BSCB can resist foreign immune cells and toxic metabolites and

maintain the stability of the spinal cord microenvironment. When

the BSCB is destroyed, pro-inflammatory cytokines (TNF-a, IL-b,
and IL-6), free radicals, and toxic substances can enter the area of

injury, aggravating neuronal damage.
2.2 Secondary spinal cord injury

Secondary SCI is characterized by a series of cellular and

molecular changes that begin within minutes of the primary

injury. Secondary injury consists of three consecutive and
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overlapping phases: acute (within 48 hours of injury), subacute

(48 hours to two weeks after injury), and chronic (lasting up to six

months after injury) (17). Secondary injuries usually worsen the

injury and cause permanent harm to the patient.

Disruption of the microvascular supply aggravates cell death a

few minutes after SCI. When spinal cord cells are destroyed,

damage-associated molecular patterns (DAMPs) are released,

which induce a potent inflammatory response (18). With the

activation of pattern recognition receptors (PRRs), resident and

peripheral immune cells are recruited at the lesion site (19).

Resident microglia, astrocytes, and peripheral-derived immune

cells upregulate the expression of inflammatory factors TNF, IL-1,

and IL-6 (20). The upregulation of inflammatory factors further

aggravates the extensive infiltration of immune cells, which is the

main cause of neurodegeneration (21). Neutrophils are known to be

the first peripheral cells recruited at the site of injury (22). Reactive

oxygen species (ROS) and matrix metalloproteinases (MMPs),

released by neutrophils when they engulf necrotic matter and

debris, lead to secondary tissue damage (23). Unlike other

immune cells, the neutrophil response begins within one hour of

injury and the increase in neutrophils persists at the site of injury for

3 days (24).

Microglia and monocytes-derived macrophages (MDMs) are

the main cell types that trigger neuroinflammatory responses (25).

Microglia are resident immune cells in the central immune system

and have immune defence functions and maintain the stability of

the nervous system (26). In the healthy spinal cord

microenvironment, microglia are in a stable state. In the early

stages of injury, the phagocytic ability of microglia allows removal

of the surrounding necrotic tissue and debris (27). The positive

effect of microglia at the site of injury lasts only one week, and

subsequently, activated microglia and macrophages also release

ROS and pro-inflammatory factors, leading to secondary damage

(27, 28). Microglia, astrocytes, and oligodendrocytes form dense

boundary structures of glial scars near the damaged tissue (29). The

formation of glial scarring prevents immune cell infiltration and

reduces inflammation (30). However, glial scarring is also an

important barrier to neuronal regeneration after SCI (27).

Microglia are macrophages residing in the central system, and

after SCI, microglia are activated before bloodborne macrophages

(31). Activated microglia then recruit bloodborne macrophages.

Studies have shown that after SCI, M1 macrophages are mainly

derived from microglia, and a small number of these are derived

from blood-derived macrophages (32). In SCI, activated microglia

secrete inflammatory factors such as IL-b, TNF-a, and IL-6 to

promote the infiltration of blood-derived macrophages into the

surrounding damaged tissue (33). Bloodborne macrophages include

pro-inflammatory M1 and anti-inflammatory M2. Compared with

microglia, M1 macrophages have a stronger phagocytic ability (34).

In the subacute phase of SCI, M1 macrophages release IL-b, TNF-a,
IL-6, interferon-g, NO, and ROS, resulting in vascular endothelial

damage and axonal damage. M2 macrophages release anti-

inflammatory cytokines and neurotrophic factors (IL-4, IL-10, IL-

13, transforming growth factor b (TGF-b) and insulin-like growth

factor (IGF)) to provide the environment for neural regeneration

(35). The SCI microenvironment is complex and changeable, and
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the regeneration of damaged neurons and axons cannot be achieved

by self-regulation alone (36). Therefore, it is necessary to reverse the

hostile SCI microenvironment to promote SCI recovery.
3 Mesenchymal stem cells regulate
spinal cord injury

MSCs derive from a wide range of sources and have self-

proliferation and multidirectional differentiation capabilities (37).

MSCs are widely used in cell therapy and regenerative medicine

because of their immunomodulatory and tissue repair effects (5, 38).

MSCs can be isolated from almost all tissues, including bone

marrow, adipose tissue, amniotic fluid, umbilical cord, liver, and

heart (39). MSCs isolated from various tissues exhibit various cell

surface markers that can be used for a range of treatment options.

MSCs are nonimmunogenic, highly viable and are known to

provide structural support in SCI (40). The advantage of MSCs is

that they are easy to isolate and preserve, and do not raise

specifically ethical issues (41). The most commonly used types of

MSCs in clinical practice are bone marrow mesenchymal stem cells

(BM-MSCs), human umbilical cord mesenchymal stem cells (HUC-

MSCs), and fat-derived mesenchymal stem cells (AD-MSCs) (42).

BMSCs have strong differentiation potential under various

induction conditions and can be divided into different subtypes of

osteoblasts, chondrocytes, adipocytes, fibroblasts, and neurons and

glial cells (43). BMSCs mainly play a role in inhibiting immunity

against inflammation, promoting the transition of M1 macrophages

to M2 type and releasing neurotrophic factors (7). The disadvantage

of BMSCs is that they require patients to undergo bone marrow

aspiration under local anaesthesia. AD-MSCs are derived from

adipose tissue. A key feature of AD-MSCs is that they can be

obtained in large quantities without causing extensive damage.
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Compared to BMSCs, AD-MSCs release growth factors,

extracellular matrix molecules, and proteases to promote

angiogenesis and wound healing (44). HUC-MSCs have stronger

differentiation and proliferation capabilities than BMSCs (45). In

addition, HUC-MSCs are small in size, pass through the BSCB

system more easily, and do not cause fat embolism and vascular

embolism (46). The role of MSCs in SCI can be broadly summarized

as suppressing immunity against inflammation, releasing

nutritional factors to promote neurological recovery, and

stimulating angiogenesis to remodel BSCBs.
3.1 Anti-inflammatory role

The most attractive aspect of MSCs in regulating regeneration is

the i r un ique immunomodu la to ry ab i l i t y (47 ) . The

immunomodulatory mechanism of MSCs is mainly mediated by

direct contact between cells and immune cells and paracrine activity

(48). When SCI occurs, microglial activation and macrophage

activation release a large number of cytokines and growth factors,

including TGF-b, basic fibroblast growth factor, IL-6, andIL-1 (49).

Transplantation of MSCs reduces the inflammatory response after

SCI (Figure 1). The inhibition of inflammation by MSCs is more

dependent on the realization of exosomes produced by their

paracrine effect. Exosomes are membrane vesicular structures

approximately 30-150 nm in diameter produced by MSCs

through the paracrine pathway. As a novel intercellular

communication substance, extracellular vesicles (EVs) are

involved in cell proliferation and inhibit apoptosis and

inflammation to mediate tissue repair (50). EVs can act as a

vehicle to target inflammatory regions in vivo, releasing

biomolecular cargoes to regulate the inflammatory response at

SCI sites (51). Transplantation of BMSCs into a SCI rat contusion
FIGURE 1

MSCs in anti-inflammatory signaling pathways in SCI. MSCs reduce oxygen partial pressure at the site of injury through the IGF-1-Foxo3 signaling
pathway.MSCs reduce NLRP3 expression through the P38 MAPK-MK2 pathway and MAPK-NF-kB pathway. MSCs bind to TLR on the surface of
macrophages/microglia via Keap1, thereby reducing IL-6 and TNF-a expression by NF-kB; MSCs reduce neuropathic inflammation through the
Notch-STAT3 pathway, which is beneficial for SCI repair.
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model significantly upregulated the number of M2 macrophages at

the injury site and downregulated the number of M1 macrophages,

while the levels of IL-4 and IL-13 increased, and the levels of TNF-a

and IL-6 decreased (52).

The classical mitogen-activated protein kinases (MAPKs)

pathway (p38 MAPK), also known as stress-associated protein

kinases, can be activated during inflammation (53). In SCI, p38

MAPK-mediated inflammatory responses have been demonstrated.

Toll-like receptors (TLRs) on macrophages upregulate the

expression of iNOS, cyclooxygenase 2, IL-6, and TNF-a in

response to a signal by p38 MAPK (54). In addition, p38 MAPK

promotes the translation of cytokines in NK cells and T cells by

upregulating the MAPK interaction kinase (Mnk) pathway (55).

Therefore, p38 can mobilize major SCI-associated pro-

inflammatory cytokines in post-traumatic inflammatory processes

(53). Li et al. found that HUC-MSCs inhibit p38 activation in

microglia and macrophages and reduce SCI central inflammation

by inhibiting TLR4 and NF-kB signalling pathways (56). The

miRNA delivered by BMSC-EVs targets TLR4 and inhibits the

activation of the NF-kB pathway, alleviating the inflammatory

response (57–59). Complement (C3/C5) is involved in the NF-kB
signalling pathway. Zhao et al. found that BMSCs-EVs inhibit

complement mRNA synthesis and release, and inhibit the

activation of NF-kB signalling by binding to microglia (60).

Blocking the activation of NF-kB signalling reduces the release of

pro-inflammatory inflammatory factors.

The Notch pathway is a highly conserved signalling pathway

that plays a role in vivo by promoting cell differentiation and stem

cell proliferation, and maintaining cell motility (61). The Jagged1/

Notch1 signalling pathway plays an important role in endogenous

neurogenesis and reducing inflammation at the site of injury, and is

considered to be an important target for reducing inflammation

after SCI (62). Notch1 was confirmed in SCI mouse models with an

initial elevation on the first day after injury which persisted until 14

days after injury. After Zhou et al. blocked the Jagged1/Notch1

signalling pathway using Jagged1 siRNA, the expression of the pro-

inflammatory factors IL-1b, IL-6, and TNF-a in SCI mouse models

was significantly reduced (63). MSCs transplantation can hinder

Jagged1/Notch1 signalling pathway conduction after SCI, resulting

in weaker expression of Notch and its downstream factors in

microglia/macrophages (63). Astrocytes mainly differentiate into

A1 neurotoxic-reactive astrocytes and A2 protective astrocytes in

central nervous system diseases (64). The signalling mechanism that

regulates astrocyte responsiveness after SCI is an important target

for alleviating neuroinflammation. Notch1 can alter STAT3

phosphorylation (65). MSCs blocking the Jagged1/Notch

signalling pathway can indirectly inhibit phosphorylation of the

JAK/STAT3 signalling pathway in A1 neurotoxic-responsive

astrocytes to achieve anti-inflammatory effects (63).

Tristetraprolin (TTP) is a substrate of p38MAPK-activated

protein kinase 2 (MK2) (66). The p38/MK2 pathway is a key

regulator of TTP expression, stability, and function. Previous

studies have shown that MK2 can promote the expression of

nucleotide-binding domain-like receptor protein 3 (NLRP3)
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inflammosomes by activating TTP, thereby promoting the

inflammatory response (67). Li et al. showed that HUC- MSCs can

reduce the production of NLRP3 inflammasomes by inhibiting the

MK2/TTP signalling pathway (68). At the same time, MSCs can

reduce spinal neuronal apoptosis by suppressing the expression levels

of pro-caspase-1 by inhibiting the MK2/TTP signalling pathway.

Mohamadi et al. also demonstrated that MSCs transplantation can

reduce the expression of NLRP1 inflammasome components

(NLRP1, and caspase-1) and pro-inflammatory factors (IL-1b, IL-
18 and TNF-a) (69).. Furthermore, Huang et al. confirmed that fat-

derived MSCs exosomes can target the elimination of NLRP3 at the

SCI site and reduce inflammatory cytokine production (70). The

reduction of peri-SCI inflammation by MSCs-EVs has been widely

demonstrated (51).

The nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2)

signalling pathway is involved in antioxidative stress. Nrf2 can

counteract the NF-kB-driven inflammatory response, endoplasmic

reticulum stress and autophagy damage, and is an important factor

in oxidative stress in the body (71). Keap1 is an endogenous

inhibitor of Nrf2, and under basal conditions, Nrf2 is degraded

by cytoplasmic Keap1 chelation combined with targeted

proteasomes (72). MSCs are able to block the expression of

Keap1 and reduce oxidative stress caused by SCI. miR-200a is a

small interfering RNA, miR-200a targets the Keap1 3′-untranslated
region (3′-UTR), resulting in degradation of the mRNA encoding

Keap1 (73). Wang et al. found that the miR-200a released by MSCs

can target Keap1 and inhibit the expression of Keap1, thereby

improving the level of oxidative stress in SCI (74).
3.2 Promotion of axon regeneration

The goal of treatment after SCI is to repair the damaged nerve

cells and restore patient nerve function. Neuronal destruction and

loss of nerve cells after SCI are major factors in neurological

dysfunction. Although the differentiation of MSCs into neurons

in vivo remains controversial, BMSCs secrete brain-derived

neurotrophic factor (BDNF) and b nerve growth factor (b-NGF)
to promote neuronal survival and axon regeneration (Figure 2) (75,

76). Studies have found that oligodendrocytes are missing with

demyelination and irreversible damage to the central nervous

system (77). Muniswami et al. observed that MSCs spontaneously

expressed neuromarkers at SCI sites, including b III tubulin, enolase
2, and microtubule associated protein 1b (MAP1b) (78). b III

tubulin is the main component of neuronal microtubules and

plays a key role in axon orientation, maturation, and maintenance

(79). At 14 days after SCI, an increase in the number of viable

neurons and oligodendrocytes was detected. Park et al. genetically

engineered MSCs to express oligodendrocyte lineage transcription

factor 2 (Olig2) (80). Transplantation of engineered MSCs to the

site of injury one week after SCI in a rat model allowed recovery of

rat neurological function. Zhou et al. confirmed that MSC-EVs can

be internalized by neuronal cells, activate MEK/ERK pathway

signalling, and enhance tubulin expression (81).
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The LIN-12/NOTCH signalling pathway is a key pathway

controlling the proliferation and differentiation of neural stem

cells (82). Autophagy is a conserved cellular process in cellular

evolution that allows the degradation of damaged cytoplastic

materials and organelles. After nerve cells damage, LIN-12

restricts nerve axon regeneration through autophagy (83, 84).

Chen et al. found that MSCs can inhibit the NOTCH signalling

pathway and promote the differentiation of neurons (85). The Wnt/

b-catenin pathway can also promote neuronal differentiation (86).

The Wnt family is a class of glycoproteins widely involved in

neurodevelopment, axon guidance, cell proliferation, and nerve

cells survival (87). Previous studies have shown that activation of

the Wnt/b-catenin signalling pathway plays a key role in functional

recovery and axon regeneration after SCI (88). Yin et al. found that

MSCS transplantation can enhance axon regeneration after SCI by

enhancing the expression of Wnt3a protein (89).

Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase involved

in various cellular functions, including cell proliferation, growth,

differentiation, migration, and survival (90). The mTOR protein

encoded by the mammalian target of rapamycin (mTOR) gene

belongs to the family of serine-threonine kinases that control

cellular responses to stressors such as growth factors, nutrient

deprivation, and DNA damage (91). The PI3K/AKT/mTOR

signalling pathway is one of the main pathways by which

mammals regulate growth (91). The PI3K/AKT/mTOR signalling

pathway is associated with cancer development (92). In vitro

experiments have confirmed that blocking the PI3K/AKT/mTOR

pathway aggravates neuronal damage (36). BMSCs transplantation

effectively restores motor function after SCI by activating the PI3K/

AKT/mTOR pathway (93). Fan et al. developed a hydrogel loaded

with BMSCs-exosomes (36). The miRNA contained in BMSC-

exosomes significantly reduces mRNA expression levels in iNOS,

IL-6 and TNF-a and promotes macrophage M2 polarization

through the NF-kB pathway. BMSC-exosomes also promote
Frontiers in Immunology 05
neuronal differentiation and axon regeneration by activating the

PI3K/AKT/mTOR pathway.

Insulin-like growth factor 1 (IGF-1) is a protein hormone that is

an important growth factor involved in the development of the

central nervous system and in promoting recovery after injury or

pathological processes (94). BMSCs can secrete IGF-1, and the

increase in IGF-1 can maintain the BMSC survival. IGF-1

suppresses oxidative stress at the SCI site, decreasing harmful

substances such as ROS. Studies have shown that IGF-1 can

actively target ROS around the injury site, blocking cellular

oxidative stress processes by inhibiting the transcription factor

Foxo3 (95). IGF plays an important role in nerve cells

regeneration. IGF-1 binds to IGF-1 receptors on neural stem cells

to promote neural stem cell recruitment and differentiation (96, 97).

The presence of glial scars can resist the invasion of inflammatory

factors to a certain extent, reducing the inflammatory response after

SCI. However, the presence of glial scars also hinders axon

regeneration and is detrimental to nervous system recovery (98).

Astrocytes are the most abundant glial cells in the central nervous

system and play an important role in regulating blood flow,

maintaining integrity, and maintaining neuronal homeostasis (99).

After SCI, activated microglia transform astrocytes into a neurotoxic

state. Chondroitin sulphate proteoglycans (CSPGs) released by

astrocytes are strongly associated with glial scar formation (100).

Due to the presence of glial scars, the regenerated axons cannot

penetrate the colloidal scar structure and therefore cannot build

neural networks. MSC-EVs inhibit the activation of astrocytes and

reduce apoptosis in neuronal cells (101). MSCs transplanted into SCI

rats inhibited the formation of glial scarring and also changed the

morphology of astrocytes, providing a supportive microenvironment

for axon regeneration and functional recovery (102). MSCs can also

inhibit glial scarring by lowering cytokine levels. Studies have shown

that TGF-b can mediate glial scarring by activating Smads signalling

in astrocytes (103). Lev et al. showed that BMSCs can reduce glial
FIGURE 2

MSCs promote nerve regenerative signaling pathways in SCI. MSCs promote tubulin expression through the MEK-EPR signaling pathway; MSCs
inhibit TGF-b to produce glial scarring; MSCs inhibit neurocyte autophagy via the Lin12-Notch pathway; MSCs promote axon regeneration through
Wnt/b-catenin; MSCs induce neuronal cell differentiation via the PI3K-mTOR pathway. MSCs induce neural regeneration via the IGF-1-Foxo3
signaling pathway.
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scarring and promote axon regeneration by inhibiting the TGF-b/
Smads signalling pathway (104).
3.3 Promotion of vascular repair

Traumatic SCI usually results in the direct destruction of the

blood vessels around the spinal cord. Destruction of the blood vessels

results in ischemic necrosis, and secondary injury leads to cascade

enlargement (105). Vascular recovery contributes to the recovery of

motor function in patients with SCI, so promoting SCI vascular

recovery is a new target for the treatment of SCI (106). Menezes et al.

demonstrated that fat-derived MSCs secrete a large number of

angiogenic factors such as vascular endothelial growth factor

(VEGF), fibroblast growth factor (FGF), platelet-derived growth

factor (PDGF), and IGF-1 (107). These angiogenic factors can

promote pericyte recruitment, which is considered a critical step in

vascular maturation (108). The migration of MSCs to the SCI site also

induces endogenous cell differentiation into pericyte, promoting new

angiogenesis (108). Zhang et al. confirmed that post-SCI vascular

endothelial cells can absorb MSC-EVs, while normal vascular

endothelial cells cannot (109). Although the underlying mechanism

is remains unclear, necrotic vascular endothelial cells may be in a

specific state conducive to receiving MSC-EVs. The authors reported

that 57% of the vascular endothelial cells around the mouse SCI

showed a vascular regeneration effect after receiving MSC-EVs and

an extensive vascular network was formed around the injury over 28

days (109). Recovery of the vascular endothelium also engulfs myelin

debris and inhibits fibrotic scar formation (110).

MMP released after SCI damages the BSCB by degrading the

extracellular matrix (ECM) (111). MMP causes destruction of the

BSCB, and penetration of inflammatory factors and neurotoxic

substances aggravates secondary damage (112). Although

peripheral astrocytes can rely on the glucose-1 transporter (Glut-

1) to cause new angiogenesis, this weak vascular regeneration is not

sufficient to reconstruct the damaged vascular system (112). Wang

et al. confirmed that MSC-EVs can maintain the integrity of the

BSCB by inhibiting the expression of MMP and promoting the

expression of tight junction proteins and adhesion junctions (18).

Cao et al. used urine-derived MSC-EVs as a vehicle to deliver

angiogenesis-related proteins to the SCI site (113). EVs produced by

MSCs through the paracrine pathway have been shown to promote

post-SCI angiogenesis and SCI recovery.

In summary, MSCs mainly repair SCI through anti-

inflammatory effects and by promoting nerve axon regeneration

and vascular regeneration. MSCs promote SCI recovery by

modulating multiple pathways. Although the mechanism

underlying the effect of MSCs is still not fully understood, the

role of MSCs has been demonstrated.
4 Clinical application of MSCs in the
treatment of SCI

MSCs have been shown to promote SCI recovery in clinical

trials. The effectiveness of MSCs on SCI recovery is influenced by a
Frontiers in Immunology 06
variety of conditions: mode of transplantation, dose and frequency

of MSCs, timing of SCI, and type of SCI (114). At present, the

commonly used methods of MSC transplantation are subarachnoid

space transplantation, intravenous injection, and local injection into

the injured area (115). Intravenous MSCs are prone to pulmonary

embolism, and intrathecal MSCs require larger doses because the

arachnoid membrane adsorbs a large number of stem cells, which is

not conducive to stem cell migration (116). Transplantation

(intramedullary injection) can deliver MSCs directly to the site of

injury but there is a risk of increased tissue pressure and damage to

the normal spinal cord. Most clinical studies have reported delivery

of MSCs via intrathecal injection and orthotopic injection (117).

Yoon et al. reported that transplantation in the acute and subacute

phases could improve neurological function in 33.3% patients with

SCI improved from American Spinal Injury Association (ASIA)

Impairment Scale score (AIS score) A to B or C), while

transplantation in the chronic phase (5.2% of patients improved

from AIS score A to B or C) did not result in a significant

improvement of the outcomes (118). This may be due to the fact

that during the chronic phase of SCI, the formation of glial scarring

acts as a physical barrier that interferes with axon regeneration

(116). Although Yoon et al. demonstrated that MSC transplantation

in the acute phase can promote the recovery of extension function

in patients with SCI, transplantation of MSCs in the acute phase

creates a cytotoxic environment for implanted stem cells due to the

presence of ROS, excitatory transmitters, and inflammatory

molecules (119). Transplantation in the subacute phase of SCI

appears to be the optimal time for transplantation (120). In the

subacute phase, the level of inflammatory factors at the SCI site is

lower than that in the acute phase and glial scar formation has not

yet occurred. Dai et al. injected autologous BMSCs into a chronic

SCI site (121). After 6 months, the ASIA sensory and motor scores

were tested, and improvement in ASIA sensory (5.4 ± 8.22) and

motor scores (0.9 ± 1.07) was observed in 10 of the 20 patients who

underwent MSC transplantation. There was no significant

improvement in ASIA sensory (0.25 ± 0.44) and motor scores

(0.10 ± 0.31) in the control group. However, this improvement in

neurological function may be explained by the large number of stem

cells transplanted (122–124). In the current study, the dosage of

stem cells transplanted was mainly between 1×106-5×108 cells/

kg (41).

The promotion of sensory, motor, and neurological recovery by

MSCs following SCI has been widely demonstrated (Table 1) (125–

131). Evidence indicates that treatment with MSCs did not cause

significant adverse effects (134). Cofano et al. reviewed the clinical

treatment of bone marrow mesenchymal stem cells and found no

significant adverse effects of stem cell therapy (41). Clinical studies

have reported the development of mild fever, gastrointestinal

dysfunction, headache, and urinary tract infection in only small

numbers of patients after MSCs transplantation (9, 120). Nirmeen

et al. reported that of 43 patients with SCI undergoing MSC

transplantation, 24 patients developed neuropathic pain within 3

days of transplantation (123). This finding may be related to the

frequency of MSC transplantation as the 43 patients received MSCs

once a month, while in other studies most patients underwent MSC

transplantation only once. There have been no reports on the
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TABLE 1 Clinical application of mesenchymal stem cells in the treatment of patients with spinal cord injury.

Author
year

Type of
study

Time of
injury

Number
of
patients

Number
of
control
group

Cell transplan-
tation methods

Stem
cell
type

Number
of stem
cells

Result

Sergiu
Albu
2021 (11)

Randomized
controlled
study

Chronic SCI 10 10 Subarachnoid space BMSCs 1×106 In patients with chronic complete
SCI, a single intrathecal infusion of
MSCs results in improved sensation
in segments near the site of injury.

Yoon
2007
(118)

Non-
randomized
controlled
study

17 cases of
acute SCI, 6
cases of
subacute SCI,
and 12 cases of
chronic SCI

35 13 In situ
transplantation

BMSCs 2 × 108 The AIS grade increased in 30.4% of
the acute and subacute treated
patients (AIS A to B or C), whereas
no significant improvement was
observed in the chronic treatment
group.

Saeid
2014
(120)

Cohort study Subacute SCI 31 20 Subarachnoid space BMSCs 1.2×106 45.5% of patients reported significant
recovery (from Asian A to Asian C),
compared with 15% of patients in
the control group showed significant
recovery.

Dai 2013
(121)

Cohort study Chronic SCI 40 20 Subarachnoid space BMSCs 8×105 Improvements in ASIA sensation
(5.4 ± 8.22) and motor score (0.9 ±
1.07) were observed in 10 of 20
patients.

Nirmeen
2017
(123)

Case-
Control
Study

Chronic SCI 63 20 Subarachnoid space BMSCs 5×106 BMSCs improved ASIA sensory and
motor scores 6 months after
transplantation.

Honmou
2021
(125)

Case series Chronic SCI 13 / Intravenous
injection

BMSCs 1×108 At 6 months after MSC infusion,
neurological improvement based on
ASIA grade occurred in 12 of 13
patients.

Satti 2016
(126)

Case series 6 cases of
chronic SCI
3 cases were
subacute

9 / Subarachnoid space BMSCs 1.2×106 From the date of transplantation,
patients were only 33 months
without observing adverse effects.

Cheng
2014
(127)

Cohort study Chronic SCI 34 10 In situ
transplantation

HUC-
MSCs

4 × 107 Seven of the 10 patients in the
HUCMSCs group showed significant
and stable improvements in exercise,
self-care ability and muscle tone.

Hur 2016
(128)

Case series Chronic SCI 14 / Subarachnoid space AD-
MSCs

9×107 ASIA motor scores were improved
in 5 patients, ASIA sensory score
recovery was seen in 10, ADMSCs
was free of serious adverse events.

Jeong
Chan Ra
2011
(129)

Case series Chronic SCI 8 / Intravenous
injection

AD-
MSCs

4×108 During the 3-month follow-up, none
of the patients experienced any
serious adverse events associated
with hAdMSC transplantation.

Yao 2013
(130)

Case series Chronic SCI 25 / Subarachnoid space HUC-
MSCs

1×107 Patients (16%) with advanced
traumatic SCI with HUC-MSCs had
improved ASIA sensory and motor
scores.

Zhu 2016
(131)

Case series Chronic SCI 28 / Subarachnoid space HUC-
MSCs

1.6×106-
6.4×106

UCB-MNC transplantation can lead
to significant recovery of movement,
bowel and bladder in patients with
chronic complete SCI.

Park 2012
(132)

Cohort
study, single-
arm study

Chronic SCI 10 / In situ
transplantation

BMSCs 8×106 Six of the 10 patients showed
improved upper extremity motor
power at 6 months of follow-up.

Vaquero
2018
(133)

Cohort
study, single-
arm study

Chronic SCI 20 / Subarachnoid space BMSCs 1×108 55.5% of patients experienced
improvement in somatic sensation
or motor evoked potentials
F
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relationship between MSCs transplantation frequency and adverse

effects. Although MSC transplantation appears to improve function

in patients with SCI, the effects are not yet clear. Karamouzian et al.

reported that only 45.5% of patients in the subacute phase after SCI

showed improvement in neurological function after autologous

BMC transplantation (120). Park et al. reported that only 3 out of

10 patients with SCI experienced improvements in daily

functioning following MSC transplantation (132). Vaquero et al.

reported that 44.4% of patients experienced improvement in

infralesional muscle reinnervation following MSC administration

(133). At present, the effective rate of MSCs in the treatment of SCI

does not support the widespread use of MSCs in clinical treatment.

Therefore, further research is needed to optimize the effectiveness of

MSC treatment. There are many ongoing clinical trials on the use of

MSCs for the treatment of SCI (Table 2). In these clinical trials,

most MSCs were transplanted at doses of 1×106/kg or 10-100

million per dose. The types of MSCs used in registered clinical trials

continued to be BMSCs, AD-MSCs and UC-MSCs. Outcomes

observed included ASIA sensory and motor scores, adverse

events, and neurologically associated sensory and motor

movements. Some trials are at the stage of patient recruitment

while others are completed and the publication of data is currently

awaited. It is anticipated that these results will provide guidance on

the safety and efficacy of MSCs in the treatment of SCI.

MSCs have the potential for multi-lineage differentiation, easy

isolation and preservation, and rapid proliferation and homing to

lesions, which have been applied to the treatment of SCI (41). MSCs

from different sources have different intrinsic properties. The use of

BMSCs, HUC-MSCs, and AD-MSCs has been reported in the

treatment of SCI (Table 1). A meta-analysis by Chen et al.

showed that autologous BMSCs transplantation significantly

improved ASIA motor [MD = 8.01, 95% CI (4.27, 11.76)] and

sensory score [MD = 17.98, 95% CI (10.04, 25.91)] (135). Liu et al.

analysed 12 studies up to January 30, 2021 with a total of 642

patients and compared BMSCs with UC-MSCs for the treatment of

SCI (136). Compared to UC-MSCs, BMSCs were associated with

greater improvement in ASIA exercise scores (weighted mean

difference [WMD], 6.67; 95% CI, 0.83–12.73) and ASIA sensory

scores (WMD, 12.41; 95% CI, 3.42–21.72). This finding may be

explained by the greater ability of BMSCs to secrete neuronal

phenotypic markers to induce axon regeneration compared to

MSCs from other sources (137).
5 Challenges in the clinical application
of MSC therapy

MSCs have immunomodulatory abilities and play an important

role in the regulation of immune responses and the development of

many diseases. Studies have shown that mesenchymal stem cells are

involved in the initiation, progression, and metastasis of cancer

(138). The suppression of the immune system byMSCs is conducive

to immune escape by tumour cells. Although MSCs have tumour

homing properties, they can be used as vectors for antitumor drug
Frontiers in Immunology 08
delivery (139). However, the overall effect of MSCs on tumours is to

promote tumour growth more than to inhibit tumour growth (138,

140). In patients treated with stem cells, the patient spontaneously

developed gliomas after four years (141). Although there are few

reports of tumorigenesis, this remains an aspect of MSC therapy

that cannot be ignored. Although MSCs are beneficial to the

recovery of neurological function in patients with SCI, the

mechanism of action of MSCs and the cellular mechanisms that

prevent the recovery of neural circuits after SCI remain unclear

(41). Future research needs to focus on understanding the SCI

cellular mechanisms and MSC action for use in clinical practice.

The fate of transplanted cells depends primarily on the

surrounding environment rather than on the properties of the

cells themselves (142). Inflammatory factors and toxic substances

in the SCI microenvironment are not conducive to the survival of

MSCs. Dead MSCs release toxic substances that exacerbate SCI

damage (143). The survival rate and long-term survival of MSCs in

hostile environments remain unresolved issues (144). Gels and

scaffolds based on stem cell therapy can deliver MSCs to the site

of injury and release MSCs slowly and continuously to the site of

injury (145–149). Tissue engineering strategies can reduce the

number of times that MSCs are administered to the patient and

reduce the mechanical damage at the site of puncture. Various types

of scaffolds and gels of natural and synthetic biomaterials have been

developed to mimic the stem cell microenvironment to maintain

stem cell survival (146). The ideal biomaterial should have good

biocompatibility and low immunogenicity while being

biodegradable. When transplanted to the site of injury, the

biomaterial should have ideal mechanical properties for cell

adhesion and axon regeneration (150). MSCs with neurotrophic

factor co-delivery strategies appear to be more effective therapeutic

options (151). However, tissue engineering is currently being

applied only in the rat SCI injury model, and its application to

clinical practice will require further research. We consider that

tissue engineering strategies will address the challenges of delivering

MSCs for the treatment of SCI in the future.
6 Conclusion

The amplification of the inflammatory cascade after SCI often

causes permanent harm to the patient. Toxic substances

and inflammatory factors not only aggravate SCI, but also

cause irreparable damage to the nervous system. The role of

MSCs in the treatment of SCI is promising. MSCs achieve

immunosuppression through direct contact with immune cells or

paracrine release signalling molecules to reduce the inflammatory

response at SCI. MSCs also release neurotrophic factors such as

BDNF and b-NGF to promote axon regeneration. Furthermore,

MSCs regulate signalling pathways to inhibit glial scarring.

Obstruction of glial scarring facilitates axon regeneration. In

addition, MSCs can release angiogenic factors such as VEGF, FGF,

PDGF and IGF-1 to promote perispinal angiogenesis and reshape

BSCB. MSCs have been shown to be beneficial in SCI mice for motor
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TABLE 2 Ongoing trials about MSCs in SCI.

Gov Identifier Subject Cell type Dosage Transplanting Methods Phase(s) Primary Outcome Mea-
sures

Secondary Outcome Measures Recruitment
status

NCT03505034 Intrathecal Transplantation of UC-

MSC in Patients with Late Stage of

Chronic Spinal Cord Injury

UC-MSC 1×106/kg, once

a month for 4

months

Intrathecal

Transplantation

II ASIA sensory and

motor scores

IANR-SCIRFS, Electromyogram test,

Residual urine

Unknown

NCT01694927 Autologous Mesenchymal Stem Cells

in Spinal Cord Injury (SCI) Patients

/ / In situ transplantation II Number of related

adverse events

Functional improvement in muscle

strength, Functional Improvement

in sphincters control

Unknown

NCT02574572 Autologous Mesenchymal Stem

Cells Transplantation in Cervical

Chronic and Complete Spinal Cord

Injury

BMSCs / In situ transplantation I Number of related

adverse events

ASIA grade,

AIS scores, sensorial mapping and

neuropathic pain

Unknown

NCT03521336 Intrathecal Transplantation of UC-

MSC in Patients with Sub-

Acute Spinal Cord Injury

UC-MSC 1×106/kg, once

a month for 4

months

Intrathecal

Transplantation

II ASIA Score Scale, IANR-SCIRFS,

electromyogram test, residual urine

Unknown

NCT03521323 Intrathecal Transplantation of UC-

MSC in Patients with Early Stage of

Chronic Spinal Cord Injury

UC-MSC 1×106/kg, once

a month for 4

months

Intrathecal

Transplantation

II ASIA Score Scale, IANR-SCIRFS,

electromyogram test, residual urine

Unknown

NCT02574585 Autologous Mesenchymal Stem

Cells Transplantation in

Thoracolumbar Chronic and

Complete Spinal Cord Injury Spinal

Cord Injury

BMSCs Two

percutaneous

injections with

a 3-month

interval

between the

injections.

Percutaneous injections II Number of related

adverse events

ASIA grade, AIS scores, sensorial

mapping and neuropathic pain

Not yet

recruiting

NCT01446640 Mesenchymal Stem

Cells Transplantation to Patients

with Spinal Cord Injury (MSC)

BMSCs Intravenous

administration

1×106/kg;

intrathecal

administration

1×106/kg

Intravenous combined

with intrathecal

administration

I, II Number of adverse

events

Electromyogram and

Electroneurophysiologic test, Muscle

strength assessment, Motor and

sensory assessment

Recruiting

NCT05671796 Autologous Marrow Stem

Cell Transplantation in Patients with

Subacute Spinal Cord Injury

BMSCs 50,000,000 Intrathecal transplantation II ASIA scores quality of life, neuropathic pain,

sensory impairment

Not yet

recruiting

NCT02688049 NeuroRegen Scaffold™ Combined

With Stem Cells for Chronic Spinal

Cord Injury Repair

mesenchymal

stem cells,

neural stem

cells

10 million receive NeuroRegen

Scaffold stem cells

transplantation

I, II ASIA Impairment Scale,

SSEP, MEP

Independence Measures,

transplantation site, Urinary and

Bowel Function, Adverse Events

Enrolling by

invitation

NCT04520373 Autologous Adipose

Derived Mesenchymal Stem

Cells for Spinal Cord Injury Patients.

ADSCs a single dose intrathecal delivery II ASIA sensory and

motor scores

SSEP, NBSS, Incidence of abnormal

CSF composition, adverse events

Recruiting

NCT05152290 Safety of Cultured Allogeneic Adult

Umbilical Cord Derived Mesenchymal

Stem Cells for SCI

UC-MSCs 100

million cells

In situ transplantation I Adverse events ASIA scores Recruiting

NCT01393977 Difference Between Rehabilitation

Therapy and Stem

Cells Transplantation in Patients

With Spinal Cord Injury in China

UC-MSC / In situ transplantation II Electromyogram and

Electroneurophysiologic

test

Electromyogram and

Electroneurophysiologic test

Unknown

NCT02352077 NeuroRegen Scaffold™ With Stem

Cells for Chronic Spinal Cord

Injury Repair

BMMCs / NeuroRegen scaffold with

BMMCs or MSCs

transplantation

I Number of adverse

events

SSEP, MEP, AIS Scale,

Independence Measures,Quality of

Life, VAS, bladder pressure

monitory, MRI

Enrolling by

invitation

NCT02917291 Safety and Preliminary Efficacy of

FAB117-HC in Patients with Acute

Traumatic Spinal Cord Injury (SPINE)

ADSCs 20 or 40

million cells

In situ transplantation I Number of adverse

events

ISNCSCI scale, SCIM III, SSEP,

MEP

Recruiting

NCT04213131 Efficacy and Safety of hUC-MSCs and

hUCB-MSCs in the Treatment of

Chronic Spinal Cord Injury

UCB-MSCs 100,000 cells/

mL) were
injected via 4

points,16 mL
hUC-MSCs/

point.

In situ transplantation Not

Applicable

Neurologic function

score

WISCI, SCIM, KLS, MAS Recruiting

NCT02481440 Repeated Subarachnoid

Administrations of hUC-MSCs in

Treating SCI

UC-MSCs 1×106/kg, once

a month for 4

months

Subarachnoid space I/II ASIA sensory and

motor scores, IANR-

SCIFRS

NBD, Residual urine output Completed

NCT02152657 Evaluation of Autologous

Mesenchymal Stem Cell

Transplantation in Chronic Spinal

Cord Injury: a Pilot Study

/ / Percutaneous injection Not

Applicable

Adverse events ASIA sensory and motor scores,

Urodynamics

Completed

NCT05018793 Safety of Cultured Autologous Adult

Adipose Derived Mesenchymal Stem

Cell Intrathecal Injection for SCI

AD-MSCs 100 million

cells

Intrathecal injection I Adverse events ASIA sensory and motor scores Suspended

NCT01162915 Transfer of Bone Marrow Derived

Stem Cells for the Treatment of Spinal

Cord Injury

BMSCs / Intrathecal injection I Adverse events / Suspended

(Continued)
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function recovery in preclinical studies. In clinical practice, MSCs

have also been used in the treatment of patients with SCI. The ability

of MSCs to improve ASIA sensory and motor scores and promote

bladder function recovery and neurological symptom recovery in

patients with SCI has been widely demonstrated. After treatment

with MSCs, patients mild fever, gastrointestinal dysfunction,

headache, and urinary tract infections have been reported,

although these did not cause serious adverse reactions. Although

MSCs can improve ASIA sensory and motor scores in patients, the

effectiveness of MSC therapy reported in the literature is not
Frontiers in Immunology 10
sufficient to support the widespread clinical use of MSCs and

needs to be further improved. In addition, there are many

unanswered questions about MSCs in the treatment of SCI. The

cell dose and frequency of doses required, the mechanism of action

of MSCs, and the cellular processes that prevent neural circuit

recovery after SCI remain unclear. Furthermore, the toxic

environment associated with SCI is not conducive to MSC

survival. Although further clinical studies are required to elucidate

these points, the evidence currently available indicates that MSCs are

likely to play a major role in the treatment of SCI in the future.
TABLE 2 Continued

Gov Identifier Subject Cell type Dosage Transplanting Methods Phase(s) Primary Outcome Mea-
sures

Secondary Outcome Measures Recruitment
status

NCT02981576 Safety and Effectiveness of BM-MSC

vs AT-MSC in the Treatment of SCI

Patients

BMSCs, AD-

MSCs

3次 Intrathecal injection I/II ASIA scores, Adverse

events

Adverse events Completed

NCT02570932 Administration of Expanded

Autologous Adult Bone Marrow

Mesenchymal Cells in Established

Chronic Spinal Cord Injuries

BMSCs 1×106/kg once

every three

months, for a

total of 3 times

Intrathecal injection II IANR-SCIFRS Adverse events, NBDS Completed

NCT01769872 Safety and Effect of Adipose Tissue

Derived Mesenchymal Stem Cell

Implantation in Patients With Spinal

Cord Injury

AD-MSCs 2×108 Intrathecal injection I/II ASIA scores Adverse events, SSEP Completed

NCT01274975 Autologous Adipose Derived MSCs

Transplantation in Patient With Spinal

Cord Injury

AD-MSCs 4×108 Intrathecal injection I Security / Completed

NCT03308565 Adipose Stem Cells for Traumatic

Spinal Cord Injury

AD-MSCs 100 million

cells

Intrathecal injection I Number of related

adverse events

SSEP, ASIA scores Completed

NCT01624779 Intrathecal Transplantation Of

Autologous Adipose Tissue Derived

MSC in the Patients With Spinal Cord

Injury

AD-MSCs 9×107 once a

month, three

times a month

Intrathecal injection I MRI Changes in neurological function,

neuroelectrophysiological changes,

ASIA scores

Completed

NCT04288934 Treatment of Spinal Cord Injuries

With (AutoBM-MSCs)vs (WJ-MSCs)

BMSCs / / I ASIA scores IANR-

SCIRFS, SCIM III

MRI Completed

NCT01873547 Different Efficacy Between

Rehabilitation Therapy and Stem Cells

Transplantation in Patients With SCI

in China (SCI-III)

UC-MSC / Intrathecal injection III IANR-SCIRFS BI,MPQ, SSEP Completed

NCT01325103 Autologous Bone Marrow Stem Cell

Transplantation in Patients With

Spinal Cord Injury

BMSCs / Intrathecal injection Not

Applicable

Security and feasibility Functional improvement in muscle

strength, Improvement of sphincters

control

Completed

NCT01909154 Safety Study of Local Administration

of Autologous Bone Marrow Stromal

Cells in Chronic Paraplegia

BMSCs 100×106, Three

months later

100×106

Intrathecal injection I Number of related

adverse events

IANR-SCIRFS, SSEP,ASIA scores,

Urodynamics

Completed

NCT00816803 Cell Transplant in Spinal Cord Injury

Patients

BMSCs / / I/II Security ASIA scores and MRI Completed

NCT02165904 Subarachnoid Administrations of

Adults Autologous Mesenchymal

Stromal Cells in SCI

BMSCs Once every

three months,

three times in

total

Intrathecal injection I ASIA scores, IANR-

SCIRFS, Barthel, SSEP,

Urodynamics, MRI

Number of related adverse events Completed

NCT02482194 Autologous Mesenchymal Stem Cells

Transplantation for Spinal Cord

Injury- A Phase I Clinical Study

BMSCs / Intrathecal injection I Number of related

adverse events

ASIA scores, Muscle strength Completed
fron
UC-MSC, Umbilical Cord Mesenchymal Stem Cells.
IANR-SCIRFS, International Association of Neural Restoration Spinal Cord Injury Functional Rating Scale.
ASIA, American Spinal Injury Association.
AIS scores, ASIA Impairment Scale.
SSEP, Somatosensory Evoked Potentials.
MEP, Motor Evoked Potentials.
NBSS, Neurogenic Bladder Symptom Score.
VAS, Visual analog scale.
ISNCSCI scale, International Standards for Neurological Classification of SCI scale.
SCIM, Spinal Cord Independence Measure.
hUCB-MSCs, human umbilical cord blood-derived mesenchymal stem cells.
WISCI, Walking Index of Spinal Cord Injury.
KLS, Kunming Locomotion Scale.
MAS, Modified Ashworth Scale.
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