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Adrenergic receptor signaling
regulates the CD40-receptor
mediated anti-tumor immunity

Akansha Singh and Ashish Ranjan*

Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University,
Stillwater, OK, United States
Introduction: Anti-CD40 agonistic antibody (aCD40), an activator of dendritic

cells (DC) can enhance antigen presentation and activate cytotoxic T-cells

against poorly immunogenic tumors. However, cancer immunotherapy trials

also suggest that aCD40 is only moderately effective in patients, falling short of

achieving clinical success. Identifying factors that decrease aCD40 immune-

stimulating effects can aid the translation of this agent to clinical reality.

Method/Results: Here, we reveal that b-adrenergic signaling on DCs directly

interferes with aCD40 efficacy in immunologically cold head and neck tumor

model. We discovered that b-2 adrenergic receptor (b2AR) activation rewires

CD40 signaling in DCs by directly inhibiting the phosphorylation of IkBa and

indirectly by upregulating levels of phosphorylated-cAMP response element-

binding protein (pCREB). Importantly, the addition of propranolol, a pan b-
Blocker reprograms the CD40 pathways, inducing superior tumor regressions,

increased infiltration of cytotoxic T-cells, and a reduced burden of regulatory T-

cells in tumors compared to monotherapy.

Conclusion: Our study highlights an important mechanistic link between stress-

induced b2AR signaling and reduced aCD40 efficacy in cold tumors, providing a

new combinatorial approach to improve clinical outcomes in patients.

KEYWORDS

immunotherapy, Anti-CD40 agonist antibody, propranalol, adrenergic signaling,
anti-tumor immunity
1 Introduction

The unique ability of dendritic cells (DCs) to cross-present antigens to CD8+ T-cells

makes them the most potent antigen-presenting cells (APCs) in anti-tumor immunity

cascade. This is highly promising, but DCs with dysregulated CD receptor signaling fail to

respond significantly to tumor antigens, resulting in poor antigen presentation and T-cell

mediated tumor clearance. To overcome this challenge, the use of anti-CD40 agonistic

antibody (aCD40), an activator of APCs has grown with the goal of enhancing the
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proportions of functional/activated DCs and subsequent activation

of cytotoxic T-cells (1, 2). However, immunologically cold tumors

can generate redundant immune evasive mechanisms to inhibit

aCD40 immune activation by released tumor antigens, and clinical

trials have shown that this approach is moderately effective as a

monotherapy (3). Also, aCD40’s short circulatory half-life and

toxicity can further limit its clinical utility (4–6). Thus,

therapeutic approaches that increase sensitivity to aCD40

immunotherapy and thereby reduce the required treatment doses

are needed to improve outcomes in patients with cold tumors.

Herein, we aimed to dissect the role of b2-adrenergic signaling in

aCD40 treatment, thereby providing a mechanistic and

pharmacological basis to improve outcomes in clinical settings.

Adrenergic signaling mediated stress and anti-tumor immunity

are intricately linked and demonstrate an inverse relationship. The

sympathetic nervous system is closely associated with the body’s

immune system since both primary and secondary lymphoid organs

are permeated by post-ganglionic sympathetic neurons (7). The

neurotransmitters (norepinephrine or NE) released from adrenergic

neurons during stress can bind to the b2-adrenergic receptor

(b2AR) present on tumor cell membranes. This binding activates

anti-apoptotic pathways via adenylyl cyclase to induce rapid tumor

growth rates, metastasis, chemo- and radio-resistance (8–11). The

released NE also engages with macrophages, DCs, or T-cells to

enhance macrophage polarization from M1 to M2 type, increases

the production of anti-inflammatory cytokines, and reduces the

proliferative capacities of cytotoxic T-cells (8, 12). Several studies

have already demonstrated that b-ARs expressed on DCs decline

pro-inflammatory cytokine secretion (13–16), antigen uptake (17),

antigen presentation (18, 19), and migration capabilities (15, 20).

What is not known is how the complementary activation

mechanisms of aCD40 and b2AR influence DC effector

functions, and whether targeting these signaling pathways

concurrently would translate into superior tumor control relative

to monotherapies.

Among the b2AR inhibitors, Propranolol, an FDA approved

Pan-Beta blocker has been shown to improve outcomes of radiation

(21), Immune checkpoint inhibitors (ICI) (22–24) &

chemotherap ie s (25) in pre-c l in i ca l tumor mode l s .

Mechanistically, propranolol remodels tumor microenvironment

by increasing the infiltration of effector CD8+ T-cells and declining

suppressor cell populations. Propranolol hydrochloride is also being

investigated in clinical trials as supportive therapy for prostate

cancer (26) and stage IIIC-IV melanoma, and as part of

combinatorial regimens of recurrent or metastatic urothelial

cancer with anti-PD1 ICI (27), and radiation therapy for

esophageal cancer (28). Based on these promising features, the

aims of this study were two-fold. First, we assessed the implications

of b-adrenergic signaling on DCs activation and maturation

mediated by aCD40. Next, we evaluated the ability of

propranolol to improve local aCD40 in-situ immunotherapy of

poorly immunogenic head and neck tumors (MOC2). In-situ

therapies utilize direct injection of immunostimulatory reagents

into tumors to disrupt local immunosuppression, thereby reducing

the dosage and associated toxicities. Our data shows that blocking

b2AR can enhance the in-situ aCD40 efficacy against the MOC2
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tumor model at suboptimal doses, thereby providing a translation

basis of this approach for clinical use.
2 Materials

RPMI media (11875093), DMEM (11965092), Fetal bovine

serum, FBS (10082147), Penicillin-Streptomycin, PenStrep

(15140122), PBS (10010023), Collagenase IV (17104019), Pierce

BCA Protein Assay (23228) were procured from ThermoFisher/

Gibco, Waltham, MA, USA. Murine GM-CSF (315–03) was

purchased from PeproTech, Cranbury, NJ, USA. Isoproterenol-

HCL (16504), BSA (A7030) was purchased from MiliporeSigma, St.

Louis, MO, USA. aCD40 (FGk45) from BioXcell West lebanon,

NH. APC-Cy7 anti-CD45 (557659), Pe-Cy7 anti-CD45 (552848),

BB515 anti-MHC-II (565254), BV421 anti-CD40 (562846) were

purchased from BD Biosciences, San Jose, CA, USA. PerCP anti-

CD3 (100326), BV785 anti-CD4 (100453), PE-Cy7 anti-CD8

(100722), APC-Cy7 anti-CD11c (117324), FITC anti-MHC-II

(107605), PE anti-CD86 (105008), and ELISA MAX™ Deluxe Set

Mouse IL-6 (431304), IL1b (432604) and IL-12 (433604) was

procured from BioLegend, San Diego, CA, USA. TRIzol Reagent

(15596026), PE anti-GranzymeB (12–8898–82), AF488 anti-FOXP3

(53–5773–82), unconjugated GAPDH (AM4300) antibody and

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium

Bromide) (M6494) were purchased from Invitrogen, Waltham,

MA, USA. Unconjugated Phospho-IkBa (2859S), Phospho-CREB

(9198S), IkBa (4814T) and CREB (9197T) antibodies were

purchased from Cell Signaling Technology, Inc. Danvers, MA,

USA. iScript™ gDNA Clear cDNA Synthesis Kit (1725034), iTaq

Universal SYBR Green Supermix (1725124) was purchased from

Bio-Rad, Hercules, CA, USA. IL-6, IL-1b, IL-10, and GAPDH

primers were ordered from IDT, Coralville, IA, USA. The

Quantikine™ Mouse IL-10 (M1000B) immunoassay was

procured from R&D Systems, Inc., Minneapolis, MN, USA.

Mouse OSCC (MOC2) cell line (EWL002-FP) was purchased

from Kerafast, Boston, MA, USA.
3 Methods

3.1 Generation of tumor cell lysate,
and bone marrow-derived Dendritic
cells (BMDCs) for cytotoxicity
and signaling studies

The lysate was generated by sonicating 10,000 MOC2 cells using

Branson Sonifier 450 and centrifuging the lysate to harvest whole or

partially lysed cells. The protein content of the whole lysate was

determined using a BCA assay kit.

Female mice aged 8-12 weeks were utilized to generate bone

marrow-derived DCs (BMDCs) through culturing of the harvested

marrow cells with RPMI media that was enriched with FBS,

Penicillin-Streptomycin, and GM-CSF. On the 5th day, the

BMDCs were harvested, and their CD11c expression was

confirmed using flow cytometry (≥80% CD11c+) and these cells
frontiersin.org
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were used for subsequent experiments as described in Figure 1.

Briefly, the BMDCs were divided into two groups: naïve BMDCs

(nDCs, untreated with tumor cell lysate) and induced DCs (iDCs,

treated with tumor cell lysate). 25,000 BMDCs were treated with

1mM Isoproterenol (non-selective b2AR agonist, ISO), 10mg/ml

aCD40 or 100 mg/ml tumor cells lysate and incubated for 48h in

RPMI with 100ng/ml GM-CSF to assess cytotoxicity using the MTT

assay (following manufacturer’s protocol), and for other

mechanistic assays as described in following sections. For co-

treatments, BMDCs were pretreated with 1mM ISO for 1h before

being subjected to aCD40 or tumor cell lysate and incubated

for 48h.
3.2 In-vitro and in-vivo immune cell
analysis using flow cytometry

Briefly, iDCs and nDCs were washed with cold FACS buffer

(PBS + 2% FBS) and stained for 30mins on ice in dark for CD11c,

MHC-II, CD86 & CD40. Cells were washed twice with cold FACS

buffer before acquisition on BD™ LSRII instrument. For in-vivo

studies, MOC2 tumor samples frommice were cut into ~1cm pieces

and digested with 200 U/ml Collagenase IV solution. Digested

tumors were passed through 70 mm cell strainers and incubated

in RBC lysis buffer (Invitrogen) for 10min. Single-cell suspensions

were washed with cold FACS buffers and stained for 30mins on ice

in dark. Data was analyzed using Flowjo software v.10.8.1 (Treestar
Frontiers in Immunology 03
Inc., Ashland, OR, USA) and cells were gated as follows- CD45+

CD3+ (Total T-cells), CD45+ CD3+ CD4+ CD8- (TH, CD4+ T

helper cells), CD45+ CD3+ CD8- CD4+ FOXP3+ (Treg, Regulatory

T-cells), CD45+ CD3+ CD4- CD8+ (TC, CD8+ T-cells), CD45+

CD3+ CD4- CD8+ GZMB+ (Effector cytotoxic T-cells), CD45+

CD11c+ (DC, Dendritic cells), CD45+ CD11c+ MHC-II+ CD86+

(Activated DCs), CD45+ CD11c+ MHC-II+ CD40+ (Matured

DCs). Channel gating (Figure S1) and compensations were done

using unstained cells, single-stained cells, and appropriate FMOs.
3.3 RT-qPCR analysis for cytokine gene
expression in nDC and iDCs

RNA was extracted from treated and untreated nDCs and iDCs

using TRIzol reagent followed by DNase treatment. cDNA was

prepared from 1mg of total RNA using cDNA synthesis kit following

manufacturer protocol. SYBR green based real-time analysis was

done to detect the expression of IL-1b, IL-6 & IL-10 genes using

GAPDH as a housekeeping gene. PCR mixture contained 1ml
cDNA, 10ml SYBR green master mix (2X), and 100nM of each

reverse and forward primer in a total volume of 20ml. PCR was run

using settings of 95°C for 15s and 60°C for 60s for 35 cycles, on 7500

Fast Real-Time PCR system, Applied Biosystem. DCT for the gene

target was calculated by subtracting GAPDH CT values for each

replicate and represented as 2^DCT in the bar graph. Primer

sequences are given in Table 1.
FIGURE 1

A schematic representation of the in-vitro BMDC isolation and treatment plan is shown. Bone marrow cells derived from C57BL/6 female mice were
cultured in DC conditioning media and the expression of CD11c was confirmed after 5 days of culture. BMDCs with ≥80% CD11c expression were
categorized as naïve (nDCs) or induced DCs (iDCs) based on exposure to MOC2 tumor cell lysate. The cells were then treated with 1 mM ISO (a b2AR
agonist) and 10 mg/ml aCD40 (a CD40 agonist) for 48 hours before analysis. Schematic created with BioRender.com.
frontiersin.org
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3.4 Western blot analysis of NFkB pathway
targets and quantification of released cytokine

nDC and iDC were lysed and the total protein amount was

estimated using BCA assay. An equal amount of cell lysate (30mg) was
loaded on SDS-PAGE (BioRad, MiniPROTEAN Tetra System), and

transferred to NC membrane (BioRad Trans-Blot Turbo) for 30min

run at a constant voltage of 25V. Blots were blocked using 3% BSA

solution for 1h at RT and stained with anti-pIkBa, anti-IkBa, anti-
pCREB, and anti-CREB antibodies overnight at 4°C. Blots were

washed in TBST buffer before incubating with appropriate

secondary antibodies for 1h at RT, and imaged using BioRad,

ChemiDoc™ MP Imaging System. Blots were stripped using mild

stripping buffer (Glycine, pH2) and re-stained with anti-GAPDH

antibody for 1h at RT following the above-mentioned procedure. To

create intensity graphs, the intensities of pIkBa, IkBa, pCREB1,
CREB, and GAPDH bands were measured using ImageJ software.

The background intensities were subtracted from each blot. The

intensities of pIkBa, IkBa, pCREB, or CREB were then normalized

by dividing them with the GAPDH band intensities and represented

as ratios of the phosphorylated to unphosphorylated IkBa or CREB

on a bar graph. Data were analyzed using 2 independent BMDC

experiments. ELISA was also performed to quantify the released

cytokines, IL-6, IL-1b, IL-10 & IL-12, in 50ml of iDC culture

supernatants following the manufacturer’s protocol.
3.5 MOC2 in-vivo study design

All animal associated procedures were approved by Oklahoma

State University Animal Care and Use Committee. For tumor

inoculation, MOC2 cells (purchased from Kerafast, Boston, MA,

USA) cultured in DMEMmedia supplemented with 10% v/v FBS &

100U/ml PenStrep, harvested at 70-80% confluency were washed

with sterile cold PBS before inoculations. 8-weeks old C57BL/6

female mice were injected subcutaneously with 1.5 X 105 MOC2

cells in the flank region. Propranolol-HCl (10 mg/kg B.W.)

resuspended in sterile PBS was injected subcutaneously from day

5 onwards daily until mice euthanasia. Tumor volumes were

measured daily using a caliper (3-in Digital caliper, UltraTECH)

and calculated using the formula (L*W*W)/2. Once tumors reached

an average volume of ~50 mm3, 30 mg of aCD40 antibody was
Frontiers in Immunology 04
injected intratumorally. Two doses were given 8 days apart, and

mice were euthanized 4-wk post-inoculation. Tumors were

harvested for immune cell analysis using flow cytometry.
3.6 Statistical analysis

All analyses were performed using Prism v.9.4.0 software

(GraphPad Software Inc. La Jolla, CA, USA). Treatment groups were

compared using Two-tailed Unpaired T-tests. For group analysis with

multiple variables, One-way ANOVA with either Tukey or Bonferroni

multiple comparison test, and Two-way ANOVA were used as

applicable. P values less than 0.05 was considered significant and

represented as * P <0.05, ** P <0.005, *** P <0.0005, **** P <0.0001.
4 Results

4.1 b2AR signaling reduced the surface
expression of co-stimulatory molecules on
nDCs and iDCs.

b2AR agonist treated nDCs showed significantly reduced

CD11c+ expression and viability (~40%) relative to untreated

control, but these effects were not observed upon exposure to

MOC2 tumor lysates in iDCs (Figures 2A–C). Also, the MHC-II,

CD86 & CD40 expressions significantly decreased in both nDCs

and iDCs with ISO (Figures 2B, C, E & Figure S2), but the average

fold decrease was more pronounced in iDCs compared to nDCs

(~MHC-II [83% vs 74%], CD86 [70% vs 53%] & CD40 [80% vs

24.1%]; Figure 2D).
4.2 b2AR signaling reduced aCD40 priming
abilities of nDCs and iDCs.

Unlike iDCs, nDCs that were co-treated with aCD40 and ISO

showed significantly reduced cell viability compared to aCD40 alone

(Figure 3A). Additionally, although the MHC-II and CD86 expression

on CD11c+ cells and percentage of CD40+ cell modified similarly for

nDCs and iDCs (Figure 3B, C & Figure S2), however, the MFI of CD40

expression on iDC was significantly reduced relative to nDC (Figure

S2), indicating an overall decline in the aCD40 mediated priming of

iDCs following b2AR activation (Figures 3D, E).
4.3 b2AR signaling reengineered CD40
signaling by inhibiting phosphorylation of
IkBa subunit of the Ikk complex to alter
cytokine production.

The activator of NFkB1 & NFkB2 complexes, i.e. IKK complex,

was analyzed by targeting phosphorylated IkBa (pIkBa, Ser32) using
western blot and represented as the ratio of phosphorylated and

unphosphorylated IkBa band intensities. In both nDCs and iDCs, a

significant increase in intracellular levels of pIkBa vs IkBa was
TABLE 1 Mouse primer sequences used for RT-PCR.

Gene 5’ Primer sequence
Forward

5’ Primer sequence
Reverse

IL-1b TGGACCTTCCAGGAT
GAGGACA

GTTCATCTCGGAGCC
TGTAGTG

IL-6 ACAACCACGGCCTTC
CCTACTT

CACGATTTCCCAGAGA
ACATGTG

IL-10 CGGGAAGACAATAAC
TGCACCC

CGGTTAGCAGTATGT
TGTCCAGC

GAPDH CATCACTGCCACCCA
GAAGACTG

ATGCCAGTGAGCTTCC
CGTTCAG
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B

C

D E

A

FIGURE 2

The impact of ISO (1µM) treatment on the viability and surface expression of co-stimulatory molecules on CD11c+ expressing naïve DC (nDCs) and
tumor lysate induced DCs (iDCs) was evaluated after 48 hours. (A) ISO reduced nDCs viability, while having no effect on iDCs. (B, C) Both nDCs and
iDCs treated with ISO showed significant decreases in surface expression of co-stimulatory molecules, MHC-II+, CD86+ and CD40+. (D) iDCs
exposed to ISO showed a higher decrease in MHC-II, CD86 and CD40 surface expression compared to nDCs. The fold change was calculated by
comparing the ISO treated population to the respective control (untreated nDCs or lysate-only treated iDCs) using the formula [(ISO treated
population/Control population)-1]. (E) The results are demonstrated by representative contour plots of MHC-II+, CD86+ and CD40+ cell
populations, showing the intensity of ISO treated nDCs and iDCs overlaid with their respective controls. Statistical analysis was carried out using
unpaired t-test, One-way ANOVA & Two-way ANOVA tests where applicable. P values less than 0.05 were considered significant. * P <0.05, ** P
<0.005, *** P <0.0005, **** P <0.0001.
B C

D E

A

FIGURE 3

Viability & frequencies of MHC-II+, CD86+ & CD40+ nDCs and iDCs exposed to 10 µg/ml aCD40 and 1µM ISO for 48h. (A) A significant decrease in
the viability of aCD40 treated nDCs with ISO treatment was observed in absence of tumor lysate stimulation. (B, C). The population of MHC-II+ and
CD86+ nDC and iDC was reduced with ISO and aCD40 co-treatment, however, CD40+ population remain unchanged in nDCs but reduced in
iDCs. (D) Decrease in the surface expression of co-stimulatory molecules was significantly higher in aCD40-treated iDCs compared to nDCs. Fold
change in a cell population with ISO treatment was calculated using aCD40 only treated nDCs and iDCs as control and using the formula: [(ISO
treated population/Control population)-1]. (E) The results are demonstrated by representative contour plots of MHC-II+, CD86+ and CD40+ cell
populations, showing the intensity of ISO treated nDCs and iDCs overlaid with their respective aCD40 treatment controls. Statistical analysis was
carried out using unpaired T-test, One-way ANOVA & Two-way ANOVA tests where applicable. P values less than 0.05 were considered significant.
*** P <0.0005, **** P <0.0001.
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observed with aCD40 treatment, but pIkBa levels declined

significantly with aCD40+ISO cotreatment (~1.5-fold in nDCs and

~4-fold in iDCs). Also, the levels of phosphorylated CREB (pCREB,

Ser133) relative to unphosphorylated CREB (CREB) decreased slightly

in nDCs with aCD40 treatment, but this phenomenon was more

evident in iDCs. The addition of ISO (± aCD40) significantly increased
the levels of pCREB in both nDCs and iDCs (Figure 4A). To

understand the association of IKK complex activation with cytokines

production, the gene expression of IL-1b, IL-6 & IL-10 in iDCs was

quantified. Expression of IL-10 decreased, and IL-1b & IL-6 increased

in presence of aCD40 in iDCs. In contrast, ISO significantly decreased

the expression of IL-1b and IL-6 and increased the expression of IL-10

in aCD40 treated iDCs. (Figure 4B). These were similarly observed in

culture supernatant with significant decreases in pro-inflammatory

cytokine levels of IL-1b, IL-6, and IL-12 and an increase in anti-

inflammatory IL-10 levels in aCD40+ISO treated iDCs relative to

aCD40 treated cells (Figure 4C).
4.4 aCD40 and propranolol combination
achieved superior MOC2 tumor
suppression and induction of anti-tumor
immunity

Propranolol mediated efficacy of aCD40 in-situ vaccination

(ISV) in the MOC2 model was evaluated by comparing tumor

growth up to 4 weeks post-inoculation (see Figure 5A schematic).
Frontiers in Immunology 06
aCD40 and propranolol induced partial to moderate reduction of

tumor growth compared to the untreated control, but the combined

treatment achieved a significant suppression of tumor growth rates

compared to the control (p<0.05; Figure 5B). We also evaluated the

percentage of T-cells and their functional counterparts in the tumor.

Data showed a significant increase in the frequency of tumor-

infiltrating CD45+ CD3+ T-cells in the combination regimen

compared to control which was not observed with monotherapies

(Figure 5C). Notably, a significantly higher infiltration of CD8+ T-

cells in Prop+aCD40 treated tumors (~24%) relative to untreated

tumors (9%) and aCD40 (~15%) was noted. A significantly higher

numbers of CD8+ T cells vs CD4+ T cells was observed with

combination treatment compared to control and Prop alone treated

tumors. A non-statistically significant decrease in regulatory T-cells

(CD4+ Foxp3+) populations and an increase in cytotoxic T-cells

(CD8+ GZMB+) was observed with all therapies compared to control

but their ratio demonstrated a significantly higher number of

cytotoxic T-cells vs Tregs in aCD40 and Prop+aCD40 groups

compared to the untreated control. Further, the addition of Prop

enhanced CD45+ CD11c+ cells by 2.5-fold in treated tumors

compared to untreated and aCD40 treated tumors (Figure 5D).

Additionally, the mean population of MHC-II & CD86 double-

positive cells increased from ~11% in untreated tumors to ~13% in

aCD40, and ~16% in Prop+aCD40 & Prop alone treatments.

Importantly, the MHC-II+ CD40+ double-positive DCs in Prop

+aCD40 treated tumors showed the highest enhancement (~3-fold,

p<0.05) vs untreated tumors, and Prop and aCD40 monotherapies
B C

A

FIGURE 4

Analysis of Phosphorylated IkBa and CREB levels in nDCs and iDCs treated with ISO (1µM) and aCD40 (10 µg/ml) for 48h. (A) Western blots showed
reduced pIkBa levels compared to unphosphorylated IkBa in the presence of ISO in both aCD40 treated nDCs and iDCs. ISO treatment increased
pCREB levels in both nDCs and iDCs, with or without aCD40 treatment. The ratio of phosphorylated to unphosphorylated forms is shown as the
intensity graphs. Respective GAPDH blots used to normalize the band intensities are shown in Figures S4A, B and the normalized band intensities are
summarized in Figure S5C. (B) Gene expression analysis revealed that aCD40+ISO treatment significantly decreased IL-1b & IL-6 levels in iDCs
compared to aCD40 treatment alone, and increased IL-10 expression in these cells. The results are expressed as 2^DCT with respect to GAPDH
levels. (C) The release of IL-1b, IL-6 & IL-10 in the culture supernatant of co-treated iDCs showed a similar trend, with aCD40-mediated increase in
released IL-12 significantly declining with ISO treatment. Statistical analysis was carried out using One-way ANOVA. P values less than 0.05 were
considered significant. * P <0.05, ** P <0.005, *** P <0.0005, **** P <0.0001.
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(~2-fold). (All immune cell population data are presented in

Supplementary Table 1.)
5 Discussion

Prior research has shown that NE-mediated adrenergic receptor

activation inhibits the activation, differentiation, and effector

functions of T-cells (29–32) and modulates the cytokines and

chemokines production from macrophages, monocytes, and DCs

(7, 33, 34). b2AR signaling can also polarize macrophages fromM1 to

M2 type, thereby enhancing anti-inflammatory cytokines like IL-10,

IL-4 & IL-13, and decreasing pro-inflammatory cytokines like INFg,
TNFa, IL1b, CCL2, CCL3 and CCL4 to cause tumor progression

(35–39). Considering that CD40 pathways mainly impact APCs, the

reported roles of b2AR signaling on macrophages and DCs piqued

our interest in understanding their ability to modulate their functions

and impact therapeutic outcomes. We found that b2AR signaling

limits DCs function in the presence of tumor antigens by decreasing

the expression of MHC-II, CD86, and CD40.

Our data disagrees with a previous study (40) that showed no

effects on MHC-II & CD86 expression in NE and LPS stimulated DCs.

We believe that unlike LPS that works via TLR4, DAMPs & PAMPs
Frontiers in Immunology 07
present in tumor cell lysate can induce DC activations throughmultiple

signaling mechanisms (TLR3, TLR4, RAGE, etc.) on DCs (41, 42),

thereby generating dramatic different immunoactivities with b2AR
activation vs LPS alone. To demonstrate this, we compared the

stimulation of BMDCs with two types of cancer cell lysates (B16F10

melanoma and MOC2 oral squamous carcinoma) to that of LPS

treatments. Our results showed that LPS-treated BMDCs did not

exhibit any changes in MHC-2 and CD86 surface expression, while

BMDC stimulation with B16F10 andMOC2 tumor cell lysates resulted

in differential MHC-2 expression in response to ISO treatment (as

shown in Figure S3). While we did not investigate the specific

mechanisms behind the differences in MHC-2 and CD86 expression

on DCs with the various types of cell lysates, our data still provides

strong evidence that the expression of immunomodulatory markers on

DCs is dependent on the composition of the ligand/antigen pool.

The use of Pan Beta-blocker like propranolol enhances the

efficacy of immunotherapy by blocking b2AR signaling on

progenitor and functional immune cells to result in better

therapeutic outcomes (22, 27, 31). We looked at the effects of

b2AR activation on DCs in presence of aCD40 in BMDCs. b2AR
signal ing can regulate NFkB pathways by inhibi t ing

phosphorylation of IkBa through enhanced b-Arrestin2 protein

production (43, 44). We found that activation of b2AR on aCD40
B C

D

A

FIGURE 5

Treatment design of the murine efficacy and immune-evaluation study. (A) Propranolol (10mg/kg of BW) was administered subcutaneously daily 5
days post-inoculation. Two 30 µg aCD40 intratumoral injections were administered at 8 days intervals in the tumor (~50 mm3 volume). Mean tumor
volume and anti-tumor immune cells were compared on day 28 post-inoculation (Timeline created with BioRender.com). (B) The combination of
Prop+aCD40 demonstrated a significant reduction in tumor volume compared to the control on day 28 post-inoculation, while monotherapies did
not show any significant differences. These results suggest that the combination therapy of Prop+aCD40 is more effective in reducing tumor growth
compared to either Prop or aCD40 alone. Immune cells infiltrating MOC2 tumors (n=5 mice/group) analyzed by flow cytometry showed superior
immunomodulation with Prop+aCD40. (C) Frequencies of CD3+ T-cells, especially CD8+ T-cells infiltrating tumors were enhanced at the highest
level by combination treatment vs untreated control and monotherapies. The ratio of cytotoxic T-cells (CD8+ GZMB+) to T regulatory cells (CD4+
Foxp3+) was increased significantly in aCD40 treated groups relative to the control. (D) CD11c+, MHC-II+ CD86+ double positive (gated at CD45+
CD11c+) & MHC-II+ CD40+ double positive (gated at CD45+ CD11c+) dendritic cell frequencies showed significant enhancements in the presence
of Prop and aCD40. Statistical analysis was carried out using One-way ANOVA & Two-way ANOVA multiple comparison tests. P values less than
0.05 were considered significant. * P <0.05, ** P <0.005, *** P <0.0005, **** P <0.0001. ns, nonsignificant.
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treated DCs significantly decreased the levels of pIkBa and

enhanced the accumulation of unphosphorylated IkBa in cells,

thereby suggesting the suppression of DC maturation and CD40-

mediated NFkB activation. b2AR signaling has also been shown to

act ivate cAMP/PKA pathways and subsequent CREB

phosphorylation. We observed higher levels of pCREB in ISO

treated nDCs and iDCs (Figure 4A). Phosphorylated (p) CREB

can compete with activated NFkB for the DNA binding sites. Thus,

we propose that pCREB may indirectly interfere with aCD40
mediated DC priming (see Figure 6 schematic), to decrease the

production of pro-inflammatory cytokines and co-stimulatory

molecules (e.g. decreased IL-6 and IL-1B expression and

enhanced IL-10 production in iDCs) (45, 46). We noticed similar

trends in the cytokines produced in the culture supernatants. The

ability of DCs to activate T cells is often evaluated by measuring IL-

12 production and co-stimulatory molecules (47, 48), so we

examined the IL-12 released from these cells and found that ISO

treatment had a significant impact on the release of IL-12 from

aCD40-treated induced DCs (iDCs). Thus, we propose that

activation of b2AR signaling in aCD40-treated naïve and induced

DCs transforms the DC population into an immune-tolerant type,

both by blocking NFkB activation and indirectly promoting

CREB activation.

Propranolol has been shown to improve the functions of naïve and

activated immune cells (22, 27, 31). Since b2AR activation subverted

aCD40 signaling in BMDCs, we also investigated the effects of

pharmacological b2AR blocking on therapeutic outcomes of aCD40 in

immunologically cold MOC2 tumors (49). Despite the improvements

made in the potency of CD40 monoclonal antibodies (mAbs) through
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approaches such as engineering the Fc region, the use of aCD40
immunotherapy in clinics is still faced with challenges due to its

associated toxicities. These toxicities include liver damage, low platelet

count, cytokine release syndrome (CRS), and hyper-immune activation (2,

50, 51). Also, the widespread expression of the CD40 receptor on both

immune and non-immune cells in tumors and other organs leads to broad

activation of CD40-expressing cells, limiting the treatment dose of aCD40
mAbs and causing non-specific toxicity. Therefore, we employed a lower

dose of aCD40 antibody (30µg; 2X) with Propranolol via intratumoral

route to overcome the dose-limiting toxicities associated with higher

quantities of aCD40 (4). b-blocker with aCD40 treatment significantly

suppressed tumor growth at suboptimal doses compared to untreated

control, and the outcomeswere comparable to a prior report administering

higher aCD40 dosage (50µg) and greater frequency (3X) of treatment in

the melanoma model (52). MOC2 tumors show a high presence of Tregs

and minimal populations of CD8 T-cells (53, 54). Blocking b2AR in mice

tumor models can increase lymphocyte infiltration, and lower M1 to M2

polarization of macrophage and Treg population (22, 30, 55, 56). Our

findings demonstrate that the combination of Prop+aCD40 effectively

modulates the tumormicroenvironment, leading to a pronounced increase

in CD8+ T cell and cytotoxic T cell infiltration, and a reduction in Tregs

compared to tumors treated with monotherapies or untreated control.

Surface expression of MHC and co-stimulatory molecules on DCs are

known to correlate with enhanced T cell activation and its effector

functions (57–61). Blocking b2AR signaling with Prop significantly

increased intratumoral CD11c+ populations, and when combined with

aCD40 treatment, the number of double-positive MHC-II+ CD40+ DCs

significantly increased. This suggests that the combination treatment

facilitated robust anti-tumor immune cell priming and maturation. The
FIGURE 6

Proposed mechanism of b2AR signaling mediated re-engineering of CD40-CD40L signaling in DCs. An increase in intracellular pIkBa (pIkBa) level
with aCD40 treatment is reversed by b2AR signaling, thereby resulting in an altered cytokine production and immuno-retardation of anti-tumor
response. Adapted from “NF-KB Signaling Pathway”, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.
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increased presence of dendritic cells in the tumor microenvironment,

facilitated by Prop treatment, provided a stronger foundation for aCD40
immune therapy. As a result, the combination treatment showed a

significant improvement in adaptive anti-tumor immunity compared to

control, unlike monotherapies. For in-vivo studies, our goal was to include

a true untreated control to simulate clinical conditions and evaluate the

immunological synergism between aCD40 & Propranolol. PBS is not a

standard treatment for head and neck tumors and other types of tumors.

Therefore, previous pre-clinical studies, including ours, have used

untreated controls relative to PBS to assess the effectiveness of in-situ

vaccination or parenteral treatment (52, 62–64). Additionally, studies by

Hu et al., Singh et al., and others have shown that PBS or non-relevant/

isotype control antibody treatments do not enhance tumor control

compared to propranolol or aCD40 alone (64–68). Future studies may

include PBS (or an isotype control antibody) to further confirm the

feasibility of the proposed combination therapy in the MOC2

murine model.

Thus, our investigation provides the foundational basis for

improving aCD40 immunotherapy by the use of b-blockers. This
combination can be particularly relevant for cold TMEs and can

reverse b2AR signaling mediated tumor cell survival seen previously

(69, 70). We found that the combination of Prop+aCD40 enhanced

therapeutic and anti-tumor immune responses compared to control,

however, some changes were not statistically different from

monotherapies. Further studies are needed to optimize treatment

dosages and timelines to achieve a pronounced tumor remission.

Gender-specific differences in b-blocker response and immune cell

characteristics should also be explored to gain a deeper

understanding of the therapeutic outcomes (71).
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SUPPLEMENTARY FIGURE 1

Gating strategy used for the analysis of BMDCs.

SUPPLEMENTARY FIGURE 2

Mean fluorescence intensities of different surface markers, MHC-II (A), CD86
(B), and CD40 (C) analyzed on CD11c gated BMDCs. Population percentage is

shown in Figure 2 and Figure 3. Statistical analysis was carried out using One-

way ANOVA. P values less than 0.05 were considered significant. * P <0.05,
*** P <0.0005, **** P <0.0001.

SUPPLEMENTARY FIGURE 3

MHC-II and CD86 expression on CD11c+ BMDCs under different stimulation.
(A) 10,000 BMDC (>80% CD11c+) were stimulated with 1 µg/ml LPS and in

combination with 10 µg/ml aCD40 for 48h showed a significant increase in

MHC-II and CD86 expression. Upon ISO treatment, LPS alone stimulated
BMDCs demonstrated no change in MHC-II and CD86 expression whereas it

decreased in LPS+aCD40 treated BMDCs. (B) BMDCs treated with 100 µg/ml
B16F10 tumor cell lysate showed a significant decrease in MHC-II expression

which increased with the addition of aCD40. With ISO treatment, MHC-II
expression further increased in these cells whereas CD86 expression

decreased. (C) BMDCs treated with 100 µg/ml MOC2 tumor cell lysate

alone and with aCD40 showed a similar pattern of MHC-II expression as
B16F10 lysate stimulated cells but MHC-II and CD86 expression decreased

upon ISO treatment. Statistical analysis was carried out using One-way
ANOVA. P values less than 0.05 were considered significant. * P <0.05, ** P

<0.005, *** P <0.0005, **** P <0.0001.

SUPPLEMENTARY FIGURE 4

Western blots of phosphorylated and unphosphorylated IkBa (A) & CREB (B),
presented in Figure 4A, are shown with their respective GAPDH blots used for

normalization. (C) Table summarizing normalized band intensities of target
proteins represented as a ratio of phosphorylated and unphosphorylated

forms of IkBa & CREB in Figure 4A.

SUPPLEMENTARY TABLE 1

Frequencies of immune cells analyzed in murine MOC2 tumor model treated
with b2AR antagonist (Prop) and CD40 agonist (aCD40).
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