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Kidney stone disease (KSD) is one of the earliest medical diseases known, but the

mechanism of its formation and metabolic changes remain unclear. The formation

of kidney stones is a extensive and complicated process, which is regulated by

metabolic changes in various substances. In this manuscript, we summarized the

progress of research on metabolic changes in kidney stone disease and discuss the

valuable role of some new potential targets. We reviewed the influence of

metabolism of some common substances on stone formation, such as the

regulation of oxalate, the release of reactive oxygen species (ROS), macrophage

polarization, the levels of hormones, and the alternation of other substances. New

insights into changes in substance metabolism changes in kidney stone disease, as

well as emerging research techniques, will provide new directions in the treatment

of stones. Reviewing the great progress that has been made in this field will help to

improve the understanding by urologists, nephrologists, and health care providers of

the metabolic changes in kidney stone disease, and contribute to explore new

metabolic targets for clinical therapy.
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Abbreviations: Agxt, alanine-glyoxylate transaminase; AR, androgen receptor; APE1, apurate/pyrimidine

endonuclide 1; ATO, atorvastatin; AGT1, glyoxylate aminotransferase 1; BS168, bacillus subtilis 168; BMP2,

bone morphogenetic protein 2; CaOx, calcium oxalate; CaP, calcium phophate; CKD, chronic kidney disease;

CaSR, calcium-sensing receptor; COM, calcium oxalate monohydrate; CSF-1, colony-stimulating factor 1;

ERb, estrogen receptor b; EG, ethylene glycol; GAO, glycolate oxidase; GLUD1, glutamate dehydrogenase1;

HK-2, human kidney epithelial cell line; H/R, hypoxia/reoxygenation; IFN-g, Interferon g; KSD, kidney stone

disease; lncRNA, long non-coding RNAs; LAB, lactobacillus; LPN-1, lactobacillus N-1; MAPK, mitogen-

activated protein kinase; MUC4, mucin 4; miRNAs, microRNAs; M1Mjs:M1 macrophage; M2Mjs, M2

macrophage; MCP-1, monocyte chemotactic protein-1; MGP, matrix glass protein; NOX4, nicotinamide

adenine dinucleotide phosphate oxidase 4; NCOA4, nuclear receptor coactivator 4; NADPH, nicotinamide

adenine dinucleotide phosphate oxidase; NAFLD, Non-alcoholic fatty liver disease; Nrf2, nuclear factor-

erythroid 2-related factor 2; OA, obcordata A; PLA2, phospholipase A2; PTX, pentoxifylline; ROS, reactive

oxygen species; RTECs, renal tubular epithelial cells; Sirt3, sirtuin3; SOD, superoxide dismutase; SFN,

sulforaphane; SCFAs, short-chain fatty acids; TNFR, tumor necrosis factor receptor; TFEB, transcription

factor EB; TNF-b, tumor necrosis factor-b; UA, ursolic acid; VK, vitamin k; XIST, lncRNA X inactive

specific transcript.
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1 Introduction

Kidney stone disease (KSD), also known as urolithiasis or

nephrolithiasis, is one of the most common urinary tract

disorders (1). There is considerable evidence that the occurrence

and prevalence of KSD have grown significantly in recent years (1-

5% in Asia, 5-9% in Europe, and 7-13%in North America) (2, 3).

Research on the morbidity of kidney stones in China showed that

kidney stones affected 1 in 17 adults, and approximately two-thirds

contain calcium oxalate (CaOx) (4). CaOx stones cause severe

damage to renal function due to their high incidence, nearly 90%

ten-year recurrence rate and long course of the disease, leading a

great economic burden to patients and society (5, 6). Although great

progress has been made in surgical therapy, the postoperative

recurrence rate of CaOx calculi remains high, and the therapeutic

effect of preventing recurrence of CaOx stones is not satisfactory.

Previous studies have shown that gender, ethnicity, age, lifestyle and

dietary habits are important factors during stone formation (7–9).

Numerous recent studies demonstrate that the formation of kidney

stones involves multiple metabolism-related factors, such as obesity,

diabetes and metabolic syndrome (10–12), which are considered to

be dangerous elements for stone formation, but the specific

pathogenesis has not been elucidated.

Our previous research found that the most common urinary

stone components can be divided into the following types: CaOx

(65.9%), carbapatite (15.6%), urate (12.4%), struvite (2.7%), and

brushite (1.7%). CaOx and urate stones were found to occur more

frequently in males, while carbapatite and struvite were dominated

in females. CaOx stones and carbapatite were mainly observed in

people aged 30 to 50 years and 20 to 40 years. Brushite and struvite

were most prevalent in those younger than 20 years and those older

than 70 years. Carbapatite, brushite, CaOx and cystine stone were

more common in the kidney than other types, while urate stone and

struvite were formed in the bladder (13). According to whether they

contain calcium, kidney stones are classified into calcium stones

and noncalcium stones (14). Calcium-containing stones are the

most general stone type, and a mixture of CaOx and calcium

phosphate (CaP) accounts for nearly 80% of kidney stones (14,

15). Currently, the specific mechanism of 4 kidney stone formation

remains unclear, and Randall’s plaque is considered the mainstream

theory for the origin of CaOx stones. Initially, CaP crystals and

organic substrates are deposited along the basement membranes of

the thin loops of Henle and extend further into the interstitial

compartment to the urothelium, forming Randall’s plaques (16).

They make contact with the urine and become a core of tiny crystals

that adhere to the urinary tract, and eventually develop into stones

(17). Nevertheless, the 10 exact formation process of Randall's

plaques still needs further perfection (18). Of course, stone

formulation is a multistep chronic procedure involving crystal

nucleation, crystal growth, crystal accumulation and crystal

preservation (1, 15). Consequently, exploring the specific

mechanism and valuable precaution for kidney stone

development are the pivot issues to be solved in the future.

The pathophysiology of stone formation is complex, involving

the effects of multiple metabolic changes, and the view of kidney

stone formation is transforming from an isolated disease to a
Frontiers in Immunology 02
systemic disease (19). Accumulating evidence suggests that kidney

stones are associated with systemic diseases such as obesity (20),

diabetes mellitus (21), and cardiovascular disease (22). Moreover,

patients with hypertension (23), bone disease (24) and metabolic

syndrome (25) have a significantly increased risk of kidney stones,

while kidney stone patients are often associated with chronic kidney

disease (CKD) and kidney failure (26–28). Hyperoxalate,

hypercalcium, and hyperuric acid metabolism are activated

through multiple mechanisms, and these metabolic disturbances

lead to supersaturation of urine to form CaOx/CaP crystals, which

promote stone formation (29, 30). In addition, previous research

has demonstrated that oxalate and crystal-induced inflammatory

responses to renal tubular epithelial cells (RTECs) damage are

closely associated with the pathological formation of kidney

stones, and reactive oxygen-induced oxidative stress plays a key

regulatory role (29). In general, mitochondrial damage is the classic

origin of reactive oxygen species generation in renal epithelial cells

stimulated by oxalic acid and/or CaOx crystals (31). Studies have

found that nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase is involved in ROS production and kidney stone formation

(32, 33). These studies further confirm the correlation between

systemic metabolic diseases and kidney stones, and NADPH

oxidase can be used as an emerging therapeutic target for kidney

stones (34). Furthermore, David et al. showed that macrophage-

associated inflammation and anti-inflammatory are major immune

responses in the process of renal stones and involved in the

formation of renal CaOx crystals (35). The crucial role of

immune response in CaOx crystallization has led to the

recognition that immunotherapy may provide a potential

approach for preventing the recurrence of renal calculi in

individuals by modulating the immune response (36).

We summarized and categorized the numerous researches

related to kidney stones and metabolism over the past decade,

and observed that researches on the role of metabolic factors in

stone formation has received increasing attention (Table 1). This

review provides an introduction to metabolic risk factors associated

with the formation of KSD and discusses how metabolism-oriented

therapies may be a prospective approach for the therapy and

prevention of kidney stones.
2 Oxalate metabolism

Oxalate is the main promoter of crystal formation and

accelerates the crystallization or aggregation of stone components

by activating several mechanisms (30). Therefore, oxalate

metabolism in the human body seriously affect the formation of

kidney stones (37). Oxalate homeostasis in humans is controlled by

complex mechanisms, including epithelial transporters such as the

oxalate transporter SLC26A6 (38). SLC26A6 is a conserved anion

transporter that plays a critical role in ion homeostasis and acid-

base balance (39). It is mainly exposed in the intestine and kidney

and is engaged in the metabolism of oxalate in vivo as a major

transporter of oxalate absorption and excretion (40). Short-chain

fatty acids, a product of dietary fiber, decrease oxalate in urine and

renal CaOx stones via SLC26A6 (41). Amin et al. demonstrated that
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TABLE 1 Relationship between metabolite changes and kidney stone formation.

PMID Year Author Metabolin Metabolic organs
or cells

Pathway Function

23833257 2013 Ohana et al. Oxalate / SLC26A6 Regulate oxalate and induce stones formation

24956378 2014 Liang et al. Oxalate/AR / NADPH oxidase-P22-phox Regulate oxalate biosynthesis and oxidative
stress

25175550 2014 Sasakumar
et al.

oxalate Intestine / Reduce oxalate excretion

27612997 2017 Mulay et al. Oxalate Kidney tubule TNFR signaling pathway Promote the adhesion of calcium oxalate
crystals

29272854 2018 Patel et al. Oxalate / / Affect the mitochondrial function of
monocyte

29395336 2018 Amin et al. Oxalate Intestine A6mRNA/total protein Reduce oxalate and stones formation

31117291 2019 Li et al. COM/OA / NOX4/ROS/P38MAPK Inhibit kidney stones formation

30894518 2019 Zhu et al. Oxalate/AR Kidney tubule MiRNA-185-5p Inhibit the phagocytosis of CaOx crystals

31475403 2019 Peerapen et al. Oxalate/
Estrogen

Kidney tubule Annexin A1/a-enolase Affect oxalate metabolism and prevent kidney
stones

31178964 2019 Zhu et al. Oxalate/ERb Liver AGT1 Inhibit oxalate biosynthesis and prevent
stones formation

34433051 2020 Gianmoena
et al.

Oxalate/
Glyoxylate

Liver Downregulate
hypermethylation
and Agxt

Promote kidney stones formation and CKD

32317970 2020 Shimshilashvili
et al.

Oxalate/
Citrate

/ SLC26A6 - STAS domain
structure

Affect citrate and oxalate homeostasis
and induce CaOx stones

34783577 2021 Liu et al. Oxalate/SCFA Intestine SLC26A6 Reduce urinary oxalate and renal CaOx stones

18804815 2008 Tsujihata et al. ROS/ATO Kidney tubule / Inhibit oxidative stress and kidney tubule
injury

29843125 2018 Sun et al. ROS/MUC4 Kidney tubule ERK signaling pathway Inhibit oxidative stress

29849862 2018 Qin et al. ROS Kidney tubule NADPH oxidase/Ang II/AT1R Reduce the expression of stone-related
proteins

31408871 2019 Liu et al. ROS HK-2 P38MAPK/NADPH Reduce the production of ROS and apoptosis
of HK-2 cells

30599261 2019 Zhu et al. ROS/DMF / Nrf2 Inhibit inflammation and regulate oxidative
stress

31735555 2019 Liu et al. ROS / HMGB1/TLR4/NF-kB Promote kidney tubule injury

30995115 2019 Sugino et al. ROS Kidney / Inhibit kidney stones formation

31926579 2019 Li et al. ROS HK-2 APE up-regulation and
redistribution

Stimulate reactive oxygen species and
apoptosis in cells

32945480 2020 He et al. ROS / GLUD1 Reduce oxidative stress

31733571 2020 Kang et al. ROS/SOD / Autophagy-ERs response Reduce kidney stones formation and prevent
kidney

34512861 2021 Lv et al. ROS/Oxalate Kidney NLRP3/Caspase-1/IL-1b Induce inflammatory response and ROS
production

34211634 2021 Wu et al. ROS/Calcium Kidney tubule ROS/NF-kb/MMP-9 Promote calcium crystal deposition

34506233 2021 Jia et al. ROS/UA Kidney NRF2/HO-1/TLR4/NF-kb Inhibit oxidative stress

34204866 2021 Guzel et al. ROS/
Quercetin

Kidney P38-MAPK Reduce the damage caused by hyperoxaluria

33718378 2021 Wu et al. ROS Kidney TFEB Regulate inflammation and oxidative injury

(Continued)
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proinflammatory cytokines (which were elevated in obese mice)

obviously reduced oxalate transport in the intestine by reducing the

level of SLC26A6(PMID:29395336). In addition, the SLC26A6-

STAS domain can perceive and tightly regulate oxalate levels,

interfere with oxalate homeostasis, and induce the formation of

CaOx kidney stones (42). Moreover, studies have shown that many

receptors participate in the crystal-cell interaction, which is
Frontiers in Immunology 04
considered to be the indispensable process for the retention of

crystals in the kidney (43, 44). The calcium-sensing receptor (CaSR)

is a G protein-coupled receptor that is activated by extracellular

calcium and performs a wide range of functions. When stimulated

by elevated serum calcium levels, it inhibits calcium reabsorption in

the ascending limb and distal convoluted tubule and promotes CaP

and oxalate precipitation. Therefore, CaSR can also prevent the
TABLE 1 Continued

PMID Year Author Metabolin Metabolic organs
or cells

Pathway Function

24578130 2014 Taguchi et al. M2 Kidney tubule CSF-1 Inhibit renal crystal formation

30588609 2019 Xi et al. M2/SIRT3 Kidney FOXO1 Inhibit kidney calcium oxalate crystal
formation

32641994 2020 Liu et al. M2 / Nrf2-miR-93-TLR4/IRF1 Inhibit inflammatory injury

11490302 2001 Yagisawa et al. Androgen Kidney / Promate kidney stones formation

27260493 2016 Changtong
et al.

Androgen Kidney Increase a-enolase Increase COM crystal cell adhesion

27857889 2016 Gupta et al. Androgen / / Enhance kidney stones formation

29953960 2018 Singhto et al. Exosome Macrophage IL-8 production and
neutrophil migration

Exosomes are involved in the inflammatory
response in COM

29535716 2018 Singhto et al. Exosome Macrophage / Enhance the phagocytic activity of
macrophages

31342142 2019 Sueksakit et al. Androgen / / Inhibit kidney stones formation

33845860 2019 Peng et al. Androgen kidney HIF-1a/BNIP3 Induce renal tubular epithelial cells death

33852977 2021 Yuan et al. AR/
Kaempferol

Kidney tubule AR/NOX2 Inhibit oxidative stress and inflammation

35500753 2022 Lee et al. Estrogen / SLC26A6 Dysregulate oxalate transport

30548662 2018 Xi et al. Sirtuin 3 / NRF2/HO-1 Inhibit kidney stones formation

31639794 2019 Li et al. VK-1 / MGP Inhibit renal crystals formation

34675921 2021 Jin et al. SCFA Kidney CX3CR1CD24 macrophage Inhibit calcium oxalate crystal formation

34606628 2021 Wei et al. LPN1 Intestine / Prevent hyperoxaluria

34630369 2021 Liu et al. Arginine Intestine / Reduce renal CaOx crystals

33718066 2021 Hong et al. Sodium / / Increase the formation of stone

24948743 2014 Yu et al. Calcium Kidney tubule Claudin 14 Mediate hypercalciuria pathogenesis

31449775 2019 Bouderlique
et al.

Calcium/Vit-
D

/ / Accelerate Randall’s spots formation

32149733 2020 Curry et al. Calcium Kidney tubule Claudin 2 Mediate calcium reabsorption

32197346 2020 Plain et al. Calcium Kidney tubule Claudin 12 Mediate calcium reabsorption

25600098 2015 Whiteside et al. Microbiome Intestine / Diagnose and treat kidney stones

35524736 2022 Tian et al. Microbiota Intestine TLR4/NF-kB/COX-2 Reduce kidney stones formation
AR, androgen receptor; A6mRNA, SLC26A6 mRNA; Agxt, alanine-glyoxylate aminotransferase; AGT1, glyoxylate aminotransferase 1; ATO, atorvastatin; Ang II, angiotensin II; AT1R,
angiotensin receptor; APE, apurinic/apyrimidinic endonuclease; COM, calcium oxalate monohydrate; CaOx, calcium oxalate; CKD, chronic kidney disease; CSF -1, colony-stimulating; COX-2,
Cyclooxygenase 2; DMF, dimethyl fumarate; ERb, estrogen receptor b; ERK, extracellular signal-regulated kinase; ERS, endoplasmic reticulum stress; FOXO1, forkhead box O1; GLUD1,
glutamate dehydrogenase 1; HK-2, human kidney epithelial cell line; HMGB1, high-mobility group box 1; IL1b, interleukin 1 beita; IRF1, interferon regulatory factor 1; IL-8, interleukin 8; LPN1,
lactiplantibacillus plantarumN-1; MUC4, mucin 4; MMP-9, matrix metalloproteinase-9; M2, M2macrophage; MGP, matrix Gla protein; NADPH, nicotinamide adenine dinucleotide phosphate;
NOX4, nicotinamide adenine dinucleotide phosphate oxidase 4; Nrf2, nuclear factor (erythroid-derived 2)-like 2; NF-kB, nuclear factor kappa B; NLRP3, NOD-like receptor protein 3; NF-kb,
nuclear factor kappa-light-chain-enhancer of activated B cell; NOX2, nicotinamide adenine dinucleotide phosphate oxidase 2; OA, obcordata A; ROS, reactive oxygen species; STAS, sulfate
transporter and anti-sigma factor antagonist; SCFA, short-chain fatty acid; SOD, Superoxide dismutase; Sirt3, sirtuin 3; SLC26A6, Solute Carrier Family 26 Member 6; TNFR, TNF receptor;
TLR4, toll-like receptor 4; TFEB, transcription factor EB; UA, ursolic acid; VK-1, Vitamin K1; Vit-D, Vitamin D.
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precipitation of calcium oxalate in the urine by increasing the

excretion of citric acid and water in the urine, thus playing a role

in the formation of kidney stones (45–50).

Gianmoena et al. proposed that alanine-glyoxylate

transaminase (Agxt) could detoxify glyoxylate and prevent

excessive accumulation of oxalate. Downregulation and

hypermethylation of Agxt were accompanied by an increase in

oxalate production after the metabolism of precursor

hydroxyproline. In contrast, Agxt is also downregulated and

hypermethylated in hepatocytes from patients with nonalcoholic

fatty liver disease (NAFLD), providing a mechanistic explanation

for the increased risk of kidney stones and CKD in NAFLD patients

(51). Another study indicated that Bacillus subtilis 168 (BS168)

degrades oxalate and reduces the severity of calculi, also providing a

new microbial therapy for stone treatment (52). Moreover, Li et al.

indicated that Obcordata A (OA), a polyoxygestrel glycoside,

prevents kidney stones through the mitogen-activated protein

kinase (MAPK) pathway. Further studies revealed that OA

regulates oxalate metabolism in RTECs by inhibiting

nicotinamide adenine dinucleotide phospho oxidase 4 (NOX4)

and downregulating NOX4/ROS/P38 proteins (53). In addition,

therapeutic blockade of tumor necrosis factor receptor (TNFR) may

provide a novel therapeutic approach for delaying oxalate

nephropathy, as TNFR signaling is required for CaOx crystal

adhesion to the lumen of the renal tubule, which is the basic

initiation mechanism of oxalate nephropathy (54).

Ferroptosis is a nonapoptotic form of cell death, and numerous

studies have indicated that ferroptosis is present in the

pathophysiology of various diseases (55, 56). Oxalate metabolism

has been found to induce autophagy and ferroptosis in human

proximal tubules and promote the development and progression of

kidney stones, which can be ameliorated by knocking down nuclear

receptor coactivator 4 (NCOA4) (57). Patel et al. indicated that

oxalate metabolism may have a close relationship with

mitochondrial dysfunction in monocytes. Monocyte interactions

with soluble and insoluble oxalates damage mitochondria and

disrupt redox homeostasis (58). Moreover, proinflammatory

cytokines dramatically reduced oxalate secretion and increased

net oxalate absorption in the jejunum of active mice, clearly

increasing the risk of hyperoxaluria and kidney stones (59).

Consequently, inhibiting the expression and release of

proinflammatory factors may be a potential strategy for stone

control and prevention.

In addition, oxalate metabolism has been found to be regulated

by endogenous hormones. Androgens increase the excretion of

urinary oxalate, the concentration of plasma oxalate and the

deposition of renal CaOx crystals. However, estrogen has the

opposite effect (60). Liang et al. revealed that androgen receptor

(AR) signal transduction contributes to the direct upregulation of

glycolate oxidase in the liver and NADPH subunit P22-PHOx in the

renal epithelium at the transcriptional level, which may upregulate

oxalate biosynthesis. In contrast, targeting AR with the degradation

enhancer ASC-J9 can inhibit this effect (61). Interestingly, Sueksakit

et al. demonstrated that finasteride may be effective in preventing

the testosterone-promoting role on kidney stone formation. It limits

the conversion of testosterone to dihydrotestosterone, thereby
Frontiers in Immunology 05
inhibiting the effect of testosterone on oxalate metabolism.

Furthermore, finasteride counteracts androgen-induced COM

crystallization promotion as well (62). Conversely, estrogen acts

as a protective factor for stones, but the exact mechanism is not

clear. Related studies have revealed that there are two crystal

receptors of CaOx on the plasma membrane, annexin A1 and a-
enolase, both of which can enhance the crystal binding ability of

renal tubular cells. Estrogen reduces the level of these two receptors

and their crystal binding ability, thereby affecting oxalate

metabolism and ultimately forming a protective effect on stones

(63). Zhu et al. also confirmed in mouse experiments that estrogen

receptor b (ERb) inhibits oxalate biosynthesis and renal injury

induced by oxidative stress through transcriptional upregulation of

glyoxylate aminotransferase (AGT1) expression to prevent stone

formation (64).

In conclusion, we review the substances that have been

identified to affect oxalate metabolism in recent years (Figure 1),

and we believe that there are three main ways to remove oxalate:

reducing intake, increasing excretion and converting to other

substances. Previous studies have shown that the intake of dietary

oxalate, such as spinach, can promote stone formation (65, 66).

Although it is not the main cause, it suggests that healthier dietary

may prevent stones to some extent. In addition, increasing the

transport, excretion and degradation of oxalic acid (SLC26A6, AR,

ER, etc.) may be a valuable way, and the development of small

molecular drugs targeting these molecules may attract more

attention in the future.
3 Metabolic changes in reactive
oxygen species

Previous studies have revealed that the pathological formation

of kidney stones is closely related to the injury and inflammatory

response of RTECs, in which ROS-induced oxidative stress is

indispensable (67, 68). As mentioned above, ROS mainly

originates from injured mitochondria, while CaOx crystals

significantly damage epithelial cell mitochondria and aggravate

the inflammatory response (31). Excessive production of ROS by

epithelial cells promotes crystal aggregation, growth, and adhesion,

ultimately leading to stone formation (29). In addition, Khan et al.

also suggested that ROS production and the progression of

oxidative stress may be the common pathophysiological basis of

kidney stones and other metabolic diseases (69).

Sirtuin (Sirt), a conserved family of proteins containing seven

homologs (sirt 1-7), has nicotinamide adenine dinucleotide (NAD)-

dependent protein deacetylase activity (70). Sirt3 is the major

deacetylating enzyme in mitochondria and is indispensable in

reducing ROS as well as ameliorating oxidative damage and

mitochondrial dysfunction. Overexpression of sirt3 may activate

the NRF2/HO-1 signaling pathway to reduce oxidative stress and

apoptosis as well as the attachment of CaOx crystals to the surface

of renal tubular epithelium (71). Accumulating evidences suggest

that COM can induce the destruction of tight junctions and the

injury of renal cells by activating the ROS/Akt/P38 MAPK signaling
frontiersin.org
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pathway, thereby enhancing the stone pathogenesis (72–74)

(Figure 2). Li et al. showed that hyperoxalate induces ROS

production apoptosis by aberrant expression, modification, and

repartition of the apurate/pyrimidine endonuclide 1 (APE1)
Frontiers in Immunology 06
protein in HK-2 cells, which can be reversed by the antioxidant

N-acetylcysteine (75). We have previously demonstrated the effect

of lncRNA X inactive specific transcript (XIST) on ROS through

mouse models. LncRNA XIST is involved in the formation and
FIGURE 1

Factors affecting oxalate metabolism in kidney stones.
FIGURE 2

Signaling pathways involved in ROS. COM crystals induced renal cell injury by activating the ROS/AKT/P38 MAPK pathway. LncRNA XIST mediated
the inflammatory response and ROS production through the NLRP3/caspase-1/IL-1b pathway interaction. ROS, reactive oxygen species; COM,
calcium oxalate monohydrate.
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development of kidney stones by interactions with miR-223-3p and

NLRP3/caspase-1/IL-1b pathways, mediating inflammatory

responses and ROS production (76) (Figure 2). Enhanced

superoxide dismutase (SOD) activity plays an important role in

scavenging ROS by resisting oxidative stress (77). Tsujihata et al.

proposed that atorvastatin (ATO) can inhibit kidney stones by

enhancing SOD activity and is a new alternative therapy for

preventing kidney stones (77–79). Since mucin 4 (MUC4)

silencing inactivates ERK signaling pathways and further inhibits

oxidative stress involving ROS in RTECs, it may also be a key target

for stone prevention (80).

A high concentration of calcium is a stone promoter that

accelerates the formation of kidney stones through the ROS/NF-

kB/MMP-9 axis to promote epithelialosteoblast transition and

calcium crystal deposition in renal tubules (81). Xun et al.

showed that calcium could induce oxidative stress damage and

apoptosis in RTECs through NOX4-derived ROS induced by PKC.

In addition, calcium-mediated NOX4 abnormally activates bone

morphogenetic protein 2 (BMP2) through MAPK signaling

pathway , induc ing rena l tubu lar ep i the l i a l ce l l s to

transdifferentiate into osteoblasts and form renal calculi. This

provides a new theoretical basis for the prevention and treatment

of kidney stones (82). It is known that phospholipase A2(PLA2) can

induce mitochondrial damage to produce excess ROS, while BS168

can blunt PLA2 to regulate ROS metabolism and thus affect stone

formation (52). Increased calcium and/or oxalate in renal tubular

solution may activate nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase in renal epithelial cells via the renin-angiotensin

system and trigger the production of ROS(14978165 (83)). Other

studies have found that M2 macrophages downregulate the

activation of NADPH oxidase and reduce ROS production.

Moreover, they can enhance the phosphorylation of Akt, inhibit

the phosphorylation of P38 MAPK, and reduce oxidative stress

damage and apoptosis of HK-2 cells (84). Consequently, abnormal

activation of NADPH oxidase was confirmed to be involved in the

formation of kidney stones (33). Dimethyl fumarate inhibits

NADPH oxidase by modulating Nrf2, thereby affecting stone

formation (85). Antihypertensive and lipid-regulating drugs such

as candesartan, losartan and atorvastatin limit renal CaOx stones by

suppressing NADPH oxidase-mediated ROS production (79, 86,

87). Atorvastatin also significantly inhibits oxidative stress and the

TLR4/NF-kB and NLRP3 inflammasome pathways, ultimately

improving CaOx crystal deposition and crystal-induced damage

in HK-2 cells and renal tissue of rats (88). These studies have

demonstrated the significant relationship between cardiovascular

disease, metabolic syndrome, and kidney stones, which may have

common targets in clinical treatment. Ursolic acid (UA) is a

pentacyclic triterpene compound that has been used for centuries

as an anti-inflammatory agent (89). Studies have shown that both

high and low doses of UA can restore the levels of Nrf/HO-1 protein

and SOD to reduce ROS production and effectively improve COM-

induced oxidative damage and inflammation (90).

Hormones are important regulators of ROS production, and

estrogen receptor b (ERb) has been shown to inhibit oxalate-

induced damage by reducing ROS production (64). Quercetin, a

flavanol found in nuts, wine and vegetables, has strong antioxidant
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and immune activity (91). Guzel et al. demonstrated that quercetin

not only is a strong scavenger of ROS but also enhances the total

antioxidant capacity of plasma and reduces inflammation and

oxidative stress in hyperoxaluria (92). Another nonflavonoid

organic compound, resveratrol, has extensive anti-inflammatory

and antioxidant effects (93). Resveratrol can significantly inhibit the

production of ROS, reduce oxalate-induced oxidative stress, and

play a protective role against kidney stones (94). MicroRNAs

(miRNAs), as small noncoding RNAs, participate in multiple

biological processes and modulate gene expression at the

posttranscriptional level (95). He et al. suggested that mir-30a-5p

could decrease ROS production in hypoxia/reoxygenation (H/R)-

treated HK-2 cells by targeting glutamate dehydrogenase 1

(GLUD1) (96). In addition, as one of the most characterized long

noncoding RNAs (lncRNAs), H19 is extensively engaged in the

regulation of inflammation and induction of tissue damage.

Previous studies by our group indicated that the activation of

H19 can induce ROS outburst and renal tubular cell injury,

further promoting CaOx crystal deposition in the kidney (97).

Consequently, targeting noncoding RNAs may be a novel

therapeutic strategy for renal injury.

Urolithiasis is a multifactorial and multistep metabolic disease.

The metabolic changes of ROS affect the changes of oxidative stress,

which plays an essential role in the formation of urolithiasis.

Therefore, targeting ROS induced oxidative stress provides us

with a new direction for stone prevention (98).
4 Changes in polarization and
metabolism of macrophages

Macrophage accumulation and macrophage-associated

inflammation or anti-inflammatory effects have been widely

reported in renal stone disease (35). The process of macrophages

polarization is also a metabolic alteration which regulate the

metabolism of stones in two forms (the pro-inflammatory M1

and the anti-inflammatory M2 in metabolic processes) (99, 100).

Interferon g (IFN-g) and tumor necrosis factor-b (TNF-b) from

Th1 cells tilted the polarization toward M1, while IL-4 and IL-13

secreted by Th2 cells promoted M2 polarization, which depends on

the amount of cytokines, exposure time, and cytokine competition

(101). M1Mjs promote the development of renal crystals, while

M2Mjs reduce the expression of proinflammatory factors and

suppress the development of stones through crystal phagocytosis

(102) (Figure 3A).

Previous studies have shown that macrophages recognize and

are activated by CaOx crystals through specific mechanisms, while

CaOx crystals promote the differentiation of M1 macrophages and

the production of inflammatory cytokines (103). Macrophage

uptake of kidney stone debris or crystals triggers the release of

typical cytokines, including chemokine CCL2 (monocyte

chemotactic protein-1 and MCP-1), CCL3 (MIP-1a), interleukin-
1 receptor antagonist (IL-1RA), complement components (C5/

C5a), and IL-8 (CXCL-8). These factors can in turn promote

macrophage recruitment (104) (Figure 3A). We recently found

that metformin could attenuate crystal deposition and kidney
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injury by promoting sirt1 activation and M2Mjs polarization.

Strong evidence is provided to support the therapeutic and

preventive potential of metformin use in the clinic, especially in

stones patients with diabetes (105). Xi et al. explored that sirt3 was

able to deacetylate FOXO1 to promote macrophage polarization to

the M2 phenotype (Figure 3A), and inhibit stone formation. The

levels of sirt3 in peripheral blood mononuclear cells of patients with

stones were significantly reduced, as was also demonstrated by

elevated levels of acetylated FOXO1 (106). Zhu et al. also proposed

another approach to promote M2 polarization and macrophage

recruitment for stone treatment, through the expression of ACJ-9

targeting AR (107). In addition, our previous study found that

sulforaphane (SFN), a pharmacological promoter of nuclear factor-

erythroid 2-related factor 2 (Nrf2), facilitates M2Mj polarization

and phagocytic ability, thereby inhibiting CaOx-induced epithelial

cell damage (108) (Figure 3B). Through gene sequence analysis,

Taguchi et al. reported that the deficiency of colony-stimulating

Factor 1 (CSF-1) may lead to the dysregulation of M2 macrophages

and stone-related gene expression, suggesting that the CSF-1

signaling pathway acts as an inhibitor in renal crystal formation

(109). Interestingly, exosomes, single-membrane secretory

organelles rich in nucleic acid, protein, and lipid complexes, have

been found to be involved in inflammatory and immune responses

(110, 111). Singhto et al. indicated that macrophage exosomes are

critical for the inflammatory response in COM crystals, enhancing

the migration of monocytes and T cells as well as the phagocytic

activity of macrophages (112) (Figure 3B). Meanwhile, they

enhanced the production of the proinflammatory cytokine IL-8

by monocytes and increased the fragility of the exosome membrane
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and the binding ability to COM (112, 113). Furthermore, exosomes

from CaOx-treated macrophages facilitate apoptosis of HK-2 cells

through increased autophagy, suggesting that they may be involved

in CaOx-induced renal tubular injury (114). In addition, COM

crystal-induced increased enolase-1 secretion affects renal

interstitial crystal invasion and inflammation (115). Therefore,

cytokines play significant physiological roles in the prevention of

kidney stone disease. Inhibiting the effect of exosomes may also

become a direction for inhibiting stone formation in the future.

Crystal deposition promotes the interaction of CD44 with

osteopontin and fibronectin, thereby accelerating the expression of

inflammation-related genes in renal tubular cells, which increases the

phagocytosis of monocyte-macrophages (Figure 3B). Therefore, this

decrystallizing ability of macrophages may be a new target for the

prevention of stone formation (116). Jin et al. revealed that a strong

correlation exists between short-chain fatty acids (SCFAs), immune

cells, and kidneys during the formation of calcium oxalate stones.

SCFAs inhibit kidney CaOx crystal formation by regulating

macrophage function in a microbiota- and GPR43-dependent

manner (117). Moreover, SCFAs are not only significantly

associated with antioxidant and mitochondrial stress, but also play

a critical role in energy metabolism, insulin resistance and colonic

function, and they may be a potential clinical therapeutic target

(118–121).

Polarization is not fixed at different stages of different tissues

and is regulated by multiple factors. The epigenetic regulation that

affects the survival and development of macrophages, the tissue

microenvironment, and the pathogenic microorganisms and

cytokines in inflammation are the principal approaches to
FIGURE 3

The role of macrophages in kidney stone formation. (A) Processes and regulators in the differentiation of macrophages into pro-inflammatory and
anti-inflammatory macrophages. (B) Crystals can promote the expression of inflammation-related genes in renal tubular epithelial cells by
accelerating the interaction of CD44 with osteopotin and fibronectin, thereby increasing phagocytosis by macrophages. Macrophage-derived
exosomes increase the phagocytic activity of macrophages. SFN promotes the polarization of M1 macrophages to M2 macrophages and the
phagocytosis of M2 macrophages through the activation of Nrf2. COM, calcium oxalate monohydrate; SFN, Sulforaphane; M1, M1macrophage; M2,
M2 macrophage. SIRT3, sirtuin3.
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regulating the polarization of macrophages (101). CaOx crystals

regulate macrophage polarization and phagocytosis in various ways,

and activated macrophages further aggravate the deposition of

crystals and the progression of kidney stones. Due to the

powerful role of macrophages in calcium oxalate formation,

methods of preventing stone recurrence in individuals by

immunotherapy have been proposed (36).
5 The role of hormone metabolism

According to statistical analyses, a significant difference was

found in the prevalence of stones between men and women,

suggesting that hormone metabolism may exert an essential

regulatory role in the formation of stones (7, 60). Earlier studies

have shown that androgen appears to inhibit bone bridge protein

levels and increase urinary oxalate excretion, whereas estrogen

exhibits the opposite effect. In addition, androgen leads to

increased synthesis of glycolate oxidase and excretion of urinary

oxalate, which causes a higher incidence of urinary CaOx stone

formation (122). In addition to the direct effects, sex hormones

indirectly affect renal calcium excretion by regulating intestinal or

bone calcium metabolism (123). These findings may partly explain

the greater prevalence of stones in men. Yoshihara et al. noted a sex

difference in the conversion of glycolate to oxalate in rats. Androgen

promotes glycolate oxidase and affect urine oxalate excretion, while

estrogen reduces glycolate oxidase activity (124) (Figure 4A). In
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addition, androgen appears to accelerate stone formation through

suppression of osteopontin in the kidney and augmentation of

urinary oxalate excretion. Nevertheless, estrogen has the opposite

effect (125). The adhesion of COM crystals to the apical surface of

RTECs is the early stage of kidney stone formation (126, 127).

Androgen increases surface a-enolase (which acts as an enhancer of

COM crystal binding (128)) to enhance the adhesion of COM

crystals to the apical membrane of RTECs. Therefore, blocking cell

adhesion may be an effective method for preventing stones (129,

130). Furthermore, androgen induces RTECs death by activating

the HIF-1a/BNIP3 pathway, and death of RTECs is an important

pathophysiological process leading to the development of kidney

stones (131) (Figure 4A).

A study found that augmented androgen receptor (AR)

signaling may be responsible for the link between hormones and

kidney stones. AR signaling directly upregulates glycolate oxidase in

the liver and NADPH oxidase subunit P22-PHOx in the renal

epithelium. This upregulation may enhance oxalate biosynthesis

and oxidative stress, resulting in stone formation (61). In addition,

Zhu et al. found that suppression of the AR level in RTECs

promotes macrophage recruitment, leading to enhanced

intrarenal CaOx crystal phagocytosis. A mechanistic analysis

demonstrated that AR could decrease macrophage CSF-1 by

increasing miRNA-185-5p expression, inhibiting the phagocytosis

of CaOx crystals mediated by M2 macrophage polarization

(Figure 4A). Yuan et al. showed in their study that kaempferol

(one of the most common flavonoids) could inhibit AR expression,
FIGURE 4

Role of changes in hormone metabolism in kidney stones. (A) AR signaling can induce the death of renal tubular epithelial cells by activating the
HIF-1a/BNIP3 pathway, promote oxalate excretion and COM adhesion through glycolate oxidase and a-enolase. However, it decreases macrophage
CSF-1 by increasing the expression of miRNA-185-5P, thereby inhibiting macrophage recruitment and crystal phagocytosis. (B) ER signaling affects
oxalate metabolism by inhibiting glycolate oxidase activity as well as SLC26A6 transporters. Meanwhile, it also reduces a-enolase to reduce COM
adhesion. AR, androgen receptor; COM, calcium oxalate monohydrate; ER estrogen receptor.
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oxidative stress and inflammation by regulating the AR/NOX2

signaling pathway. Meanwhile, CaOx crystal deposition and

crystal-induced kidney damage were reduced, and stone

formation could be inhibited as well (132).

In contrast, estrogen is known to decrease membrane

fibronectin and a-enolase (Figure 4B), which are increased by

high calcium and oxalate, thereby preventing stone formation.

ERb inhibits oxalate biosynthesis and the resulting damage, all of

which provide a direction for the prevention of stone formation. b-
estradiol treatment has also been shown to inhibit SLC26A6 activity

to disrupt oxalate transport (133) (Figure 4B). These studies

indicate that hormone metabolism has a significant influence on

the formation of kidney stones, which provides us with a new

research idea for the prevention of stones. Finasteran, a 5a
reductase inhibitor, has been proposed for the treatment of

kidney stones, but its specific efficacy and side effects need further

validation and clinical studies. ERb and MUC4 have been found as

targets for stone prevention, but more potential targets need to be

further explored.
6 Other metabolic changes

The process of kidney stones is regulated by multiple factors, in

addition to the elements we have mentioned above, the metabolism

of many other substances is indispensable. Lactobacillus (LAB) is

involved in the metabolism of intestinal microorganisms, degrading

oxalic acid in vitro, and reducing uric acid and kidney stones in vivo.

A study of South African men found that Lactobacillus, which

degrades oxalate, was associated with a lower risk of calcium oxalate

kidney stones (134). Liu et al. isolated a Lactobacillus plantarum N-

1 (LPN1) strain from traditional cheese that regulates arginine

metabolism in the intestinal microbiome to reduce CaOx crystals in

the kidney (135). LPN1 reduced oxaluria, renal osteopontin and

CD44 expression by enhancing intestinal barrier function,

ultimately inhibiting renal crystal deposition. It also ameliorated

ethylene glycol (EG)-induced intestinal inflammation and barrier

function by reducing serum LPS and TLR4/NF-kB signaling,

upregulating tight junction claudin-2 and enhancing the

production of short-chain fatty acids (SCFAs) in the colon (136).

In addition, Tian et al. indicated that Lactobacillus plantarum J-15

may reduce kidney stones by restoring intestinal microbiota and

metabolic disorders, protecting intestinal barrier function and

alleviating inflammation (137). Sasikumar et al. directly

demonstrated that artificially colonized Lactobacillus plantarum

could increase intestinal oxalate metabolism, reduce urinary

oxalate excretion and crystal deposition in mice (138). All

these findings suggest that lactobacillus-containing probiotics

may be a potential therapy for stone prevention, providing new

insights into the prevention of kidney stones. Previous studies have

shown that cystinuria can cause kidney stones and obstruction,

whereas new drugs including alpha-lipoic acid may reduce

stone deposition by accelerated the urinary solubility of cystine

without affecting the recovery of cystine transport (139). This

therapy may reduce stone development but probably not improve
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cystine or oxidative metabolism (140). Other studies have revealed

that a low-protein diet and a high intake of plant protein can reduce

the excretion of cystine, thereby affecting stone formation

(140, 141).

Most kidney stones contain CaOx, many of which are derived

from Randall’s plaques. Vitamin D increases urinary calcium

excretion, which presumably hastens the formation of Randall’s

plaque and kidney stones. In some genetically susceptible

individuals, the combination of calcium and vitamins may also

accelerate the formation of Randall’s plaque (142). Similarly,

vitamin K1 (VK1) metabolism affects kidney stones through

increased matrix glass protein (MGP) expression and function,

reducing intracellular crystal deposition and providing

cytoprotection. Therefore, VK1 therapy may be a potential tactic

for the cure and prevention of kidney stones (143). Understanding

the relationship between vitamin metabolism and stone formation

also provides us with a new research direction.

A high or low sodium concentration is a regulator of metabolic

changes in patients with kidney stones. Sakhaee et al. found that

high sodium intake increased calcium excretion and urinary pH and

decreased citric acid excretion (144, 145). In addition, high sodium

intake may reduce calcium reabsorption by the renal tubules,

resulting in increased urinary calcium and stone formation (146).

According to Emamiyan et al., chicory flower extract reduced

urinary oxalic acid levels and increased urinary calcium and

creatinine metabolism at high doses, which may be related to the

prevention of kidney stone formation. However, the exact

mechanism of low dose on calcium stones needs further study

(147). Claudin-2 is a cation-selective protein located on the

epithelial cells of renal tubules that can affect calcium

reabsorption, metabolism and stone formation (148, 149). In

addition, claudin-12, another protein on RTECs, is also involved

in calcium permeability (150). Claudin-14 is considered to induce

the pathogenesis of hypercalciuria and kidney stones (151).

Therefore, claudin-2, claudin-12 and claudin-14 may be potential

targets for the prevention of kidney stones. In accordance with prior

studies, kidney stones are related to metabolic syndrome. Sugino

et al. found that b3-stimulant-induced brown-like adipocytes

reduce the metabolism of renal inflammation and improve

antioxidant effects, which in concert inhibit the formation of

renal crystals (152).

Microorganisms in the kidney and urinary tract may have

important implications for urinary tract health as a result of their

metabolic regulation and contribution (153). Urease-producing

bacteria, such as Aspergillus chimaera, Klebsiella pneumoniae,

Staphylococcus aureus, Pseudomonas aeruginosa, Providence,

Siala, Mr. Charest’s and Morgan’s bacteria, regulate calcium

phosphate formation by degrading urea and promoting the

production of carbon dioxide, thus playing a role in stone

formation (154, 155). Gao et al. proposed that E. coli,

Staphylococcus, and Lactobacillus were strong predictors of

renal calculi and first reported that Mycoplasma and

Micrococcus were also involved in kidney stones, but their

potential significance in kidney stones still needs to be studied

in more detail (156).
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7 Conclusions

Metabolism-related factors, which have received considerable

attention over the past decade as modulators of kidney stones, are

discussed in this brief review. Although our functional understanding

of the different metabolic members is still at an early stage, their active

roles in stone regulation and disease treatment have become potential

targets for future clinical researches. Oxalate is the main component of

the most common stones known to date, and the mechanism by which

oxalate regulates stone formation has been extensively studied.

However, our team has previously found that recombinant lactic

acid bacteria expressing oxalate degrading enzymes can be used for

the oral treatment of hyperoxaluria (157). This provides us with a

direction that dietary and pharmacogenic degradation or reduction of

oxalate levels may be an effective measure to prevent kidney stones.

ROS-induced oxidative stress damage plays an important role in crystal

invasion of renal tubular epithelial cells. Although a large number of

substances and signaling pathways have been reported to be involved in

the inhibition of ROS production, there is still a need to discover

additional pathways to inhibit mitochondrial damage due to its ROS

production role. Previously, metabolic alterations in kidney stones were

considered to the metabolism of certain substances. However, we

believe that metabolic changes in kidney stone disease cannot be

narrowly defined as metabolic alterations of several specific

substances and should include the whole relevant metabolic activities

involved in the process. Therefore, how to promote the transition of

macrophages to M2 and inhibit the polarization of macrophages toM1

will be the focus of future research. The regulation of hormone

metabolism on kidney stone formation explains the difference in

stone prevalence between men and women. Postmenopausal women

are more likely to develop stones due to a drop in estrogen levels (13).

Therefore, estrogen supplementation may be a potential target for

preventing stone formation and progression in the future.

By summarizing the effects of oxalate, ROS, macrophages,

hormones and other substances on the formation of kidney stones,

this article reviews the metabolic risk elements associated with KSD

and provides an overview of the metabolic substances that promote

and inhibit kidney stone formation. KSD is increasingly recognized as

a multifactorial metabolism-related disorder rather than an isolated

disorder. However, due to the limitations of current studies, the

metabolic changes in stone formation are not well understood.

Therefore, future studies are needed to further clarify the metabolic

changes associated with kidney stone formation and develop new

prevention and treatment strategies.
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