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Human intestinal epithelial cells
can internalize luminal fungi via
LC3-associated phagocytosis
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Background: Intestinal epithelial cells (IECs) are the first to encounter luminal

microorganisms and actively participate in intestinal immunity. We reported that

IECs express the b-glucan receptor Dectin-1, and respond to commensal fungi

and b-glucans. In phagocytes, Dectin-1 mediates LC3-associated phagocytosis

(LAP) utilizing autophagy components to process extracellular cargo. Dectin-1

can mediate phagocytosis of b-glucan-containing particles by non-phagocytic

cells. We aimed to determine whether human IECs phagocytose b-glucan-
containing fungal particles via LAP.

Methods: Colonic (n=18) and ileal (n=4) organoids from individuals undergoing

bowel resection were grown as monolayers. Fluorescent-dye conjugated

zymosan (b-glucan particle), heat-killed- and UV inactivated C. albicans were

applied to differentiated organoids and to human IEC lines. Confocal microscopy

was used for live imaging and immuno-fluorescence. Quantification of

phagocytosis was carried out with a fluorescence plate-reader.

Results: zymosan and C. albicans particles were phagocytosed by monolayers of

human colonic and ileal organoids and IEC lines. LAP was identified by LC3 and

Rubicon recruitment to phagosomes and lysosomal processing of internalized

particles was demonstrated by co-localization with lysosomal dyes and LAMP2.

Phagocytosis was significantly diminished by blockade of Dectin-1, actin

polymerization and NAPDH oxidases.

Conclusions: Our results show that human IECs sense luminal fungal particles

and internalize them via LAP. This novel mechanism of luminal sampling suggests

that IECs may contribute to the maintenance of mucosal tolerance towards

commensal fungi.

KEYWORDS
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Introduction

Intestinal epithelial cells (IECs) stand in the frontline of the

largest mucosal surface in the human body. As such, IECs are in

constant interaction with luminal microorganisms and dietary

molecules, as well as with immune cells in the lamina propria

beneath them. Besides being a physical barrier, IECs function as

innate immune cells, sensing and actively responding to luminal

microbiota (1–3). However, the role of human IECs in host

tolerance towards commensal fungi and their contribution to

shaping host immune response remain obscure.

We previously reported that human IECs express the b-glucan
receptor Dectin-1 (4), a central C-type-lectin-receptor (CLR)

involved in fungal recognition and immune response (5–9). We

further demonstrated that IECs were directly activated by cell wall

components of commensal fungi via Dectin-1. However, pro-

inflammatory cytokine secretion occurring in response to b-
glucan was silenced when whole fungi were sensed (10)

suggesting epithelial tolerance to commensals.

We therefore sought a physiological homeostatic outcome of

fungal recognition by IECs. Dectin-1 functions in phagocytosis of

non-opsonized fungi by professional phagocytes (9, 11, 12). As

stable transfection of Dectin-1 allows b-glucan-dependent
phagocytosis by non-phagocytes (11, 13, 14), we asked whether

IECs, that endogenously express Dectin-1, can phagocytose b
-glucan containing fungal particles, and by which mechanism.

Here we provide evidence supporting a novel mechanism of

interaction between IECs and commensal fungi at the intestinal

mucosa, where b-glucan and C. albicans were phagocytosed by

human IECs in a Dectin-1 dependent and spleen tyrosine kinase

(Syk) independent manner leading to LC3 associated phagocytosis

(LAP) and lysosomal degradation.

Results

Zymosan uptake by IECs is dependent on
actin-polymerization

To assess phagocytosis in IECs we chose zymosan, a particulate

b-glucan rich, cell wall extract of Saccharomyces cerevisiae which is

commensal in the human gut. Hence, zymosan is highly applicable

as a representative of luminal fungal species in the vicinity of

mucosal surfaces. In addition, zymosan is widely used to study

phagocytosis by professional phagocytes and the pHrodo-red label

of zymosan, that turns fluorescent intracellularly, is indicative of

internalized particles in living cells (15). Using the human epithelial

cell lines SW480, HCT116 and Caco-2 we detected cellular uptake

of pHrodo-red zymosan where some cells presented multiple

internalized particles as well as fragmented zymosan indicative of

intracellular processing (Figure 1A and Supplementary Figures S1A,

S2A respectively), suggesting that phagocytosis of b-glucan
expressing particles is common in human IECs. We detected

cellular internalization of pHrodo-red zymosan in a few cells as

early as 3 hours of incubation and phagocytosis was clearly

observed following overnight incubation where up to 20% of the

cells were zymosan positive (Figures 1B, D).
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To test whether cytoskeleton-mediated engulfment participates in

the uptake of zymosan, we applied the actin- polymerization-inhibitor

cytochalasin-D. This resulted in attenuated phagocytosis as reflected by

a 70% decrease in the number of pHrodo-red zymosan positive SW480

cells (***p=≤0.001, Figures 1B–D and Supplementary Figure S3), and

in the total fluorescence of intracellular pHrodo-red zymosan (**p ≤

0.01, Figure 1E). Similar sensitivity to cytochalasin-D was observed in

HCT116 cells (Supplementary Figures S1B, C). As actin mediated

engulfment of extracellular particles is a hallmark of phagocytosis these

results indicate a genuine zymosan phagocytosis in IECs.
Zymosan phagocytosis by IECs
involves Dectin-1

We have previously demonstrated functional Dectin-1 in IECs (4,

10). Since Dectin-1 mediates phagocytosis in professional phagocytes,

we next asked whether it also functions in phagocytosis in IECs. To this

end, we used laminarin, a soluble Dectin-1 antagonist, that blocks

zymosan and fungal phagocytosis in professional phagocytes (16–19).

Notably, laminarin inhibited zymosan phagocytosis by SW480 and

HCT116 cells as indicated by significant decrease in the number of

pHrodo-red zymosan positive cells (by 77% ****p ≤ 0.0001, Figures 1F–

H and Supplementary Figure S1B) and the total fluorescence of the

intracellular pHrodo-red zymosan (Figure 1I **p=≤0.01 and

Supplementary Figure S1D ***p=≤0.001). Altogether Dectin-1

dependent zymosan phagocytosis by IEC lines was demonstrated.
Phagocytosis by IECs is Syk-independent

Syk is a major signaling mediator downstream Dectin-1 and is

involved in Dectin-1 triggered phagocytosis by professional phagocytes

(19, 20). Yet, there are examples where Syk was dispensable for

phagocytosis (13, 21). Syk is activated by commensal fungi and b-
glucan and is required for b-glucan-induced cytokine secretion in

human IECs (4, 10, 22). Therefore, we asked whether Syk is essential

for zymosan phagocytosis. We found that the Syk inhibitor 574711 [3-

(1-methyl-1H-indol-3-yl-methylene)-2-oxo-2,3-dihydro-1H-indole-5-

sulfonamide] did not interfere with phagocytosis (Figure 1J) while its

inhibitory activity was indicated by a significant decrease of zymosan-

induced IL-8 secretion in the same experiment (60% inhibition by 5

µM of Syk inhibitor, **P ≤ 0.01, Figure 1K). Further evidence for Syk-

independence was obtained with Caco-2 cells, which do not express

Syk (10), but readily phagocytose pHrodo-red zymosan

(Supplementary Figure S2). We conclude that in IECs, phagocytosis

of zymosan may occur independently of Syk activation.
Human intestinal organoids can
phagocytose zymosan

We next asked whether primary human IECs can phagocytose

zymosan. To test this, we used human intestinal organoids generated

from ileal and colonic crypts obtained from surgical samples, that were

grown as two-dimensionalmonolayers to facilitate epithelial exposure to
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FIGURE 1

Uptake of zymosan by human intestinal epithelial cells. (A) SW480 cells were seeded on glass-bottom chambers as indicated in Methods, and fed
overnight with pHrodo-red zymosan (zymosan, red) and counter stained with Hoechst 33342 (blue) prior to confocal live imaging. White arrowheads
– intracellular red fluorescent zymosan, Black arrowheads - extracellular intact zymosan, arrow- intracellular fragmented zymosan. Original
magnification x20, scale bar 10 µm. (B–E) Zymosan uptake is sensitive to cytochalasin-D. (B, C) SW480 were treated as in A, in the absence (B) or
presence (C) of cytochalasin-D (CytoD, 10 µM). Scale bar 20 µm. Arrows and arrowhead indicate intracellular processed and intact zymosan
respectively. Wider fields of the images are shown is Supplementary Figure S3. (D) Phagocytosis was quantified using imageJ as the percentage of
red-fluorescence positive cells in at least 4 randomly taken fields as described in Methods. Each dot is the quantification of a single field. Data is
representative of three independent experiments performed. ***p ≤ 0.001, Unpaired t-test vs. no inhibitor. (E) SW480 cells were seeded in 96 well
plate, treated as in (B, C) as well as with the vehicle (DMSO, 1:1000) in triplicate wells, and phagocytosis was assessed as the relative fluorescence
(RFU) by a microplate reader. Data are shown as the individual measure of each biological replica and mean ± SD of biological triplicates from a
representative of three independent experiments performed. ns-non significant ****p<0.0001, One-way ANOVA followed by Tukey multiple
comparison test. (F–I) Zymosan uptake depends on Dectin-1. (F, G) SW480 were treated as in A, in the absence (F) or presence (G) of laminarin (1
mg/ml) that was added to the medium 1 hour prior to zymosan. Scale bar 50 µm. White arrows and arrowhead indicate intracellular processed and
intact zymosan respectively. Black arrowheads indicate extracellular zymosan. (H) Phagocytosis was quantified as in (D). (I) cells were seeded on 96
wells, treated as in (F, G) in triplicate wells, and phagocytosis was analyzed as in (E). (J) Zymosan phagocytosis is resistant to Syk inhibition. SW480
cells were seeded on 96 well plate, in the presence or absence of the Syk inhibitor 574711 (1 and 5 µM), which was added 1 hour prior to the
addition of pHrodo-red zymosan. Phagocytosis was assessed as in (E). Data are shown as individual measures and mean ± SD of biological triplicates
from a representative of three independent experiments performed. (K) Zymosan-induced IL-8 secretion is sensitive to Syk inhibitor. Cells seeded on
the same 96 well plate were pre-treated with Syk inhibitor as in (J) and stimulated overnight with 100 mg/ml of non-labelled zymosan. Supernatants
were assessed for IL-8 by ELISA. Data are shown as individual measures and mean ± SD of biological duplicates from a representative of three
independent experiments performed. N.D- not detected; ns-non significant *p<0.05; **p<0.01, One-way ANOVA followed by Tukey multiple
comparison test.
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large particles (23) (see methods). We assessed phagocytosis in ileal and

colonic organoids cultured in expansion medium and then grown for 2-

3 additional days in a generic differentiation medium (see methods)

prior to pHrodo-red zymosan exposure (Figures 2A, B; Supplementary

Figures S4, S5A). We found pronounced phagocytic activity, which was

distinctly higher in organoids grown in differentiation medium

compared to those cultured in expansion medium only

(Supplementary Figure S5B). Hence, we performed our phagocytosis

experiments in differentiation medium throughout this work.

Phagocytosis of zymosan was observed by all ileal (n=4) and colonic

(n=18, derived from ascending [n=13], transverse [n=2] or from

sigmoid colon [n=3]) organoids tested, suggesting that phagocytic

capacity of the epithelium is found along the lower human

gastrointestinal tract. Importantly, 2 of the ileal and 5 of the colonic

organoids were derived from patients with Crohn’s disease, and one

colonic organoid from ulcerative colitis. All these IBD-derived

organoids phagocytosed zymosan and behaved identically to those

generated from normal tissue, by all the parameters examined

throughout this report, yet, all the data presented hereby, are from

normal organoids. Fragmentation of internalized (fluorescent) zymosan

suggests its intracellular processing in organoid cells (Figure 2C and

Supplementary Movies 1, 2), similarly to our observation in cell lines.

Notably, different epithelial cell types in the organoid

monolayers were identified (Supplementary Figures S6, S7) and

phagocytosis was observed in goblet as (MUC2+) as well as non-

goblet (MUC2-) IECs (Supplementary Figure S8), suggesting that

phagocytosis may be shared by different types of IECs. This

appeared to be more prominent at the periphery of the organoid

cultures, which represent the luminal regions of the villus or crypt

(24). Interestingly, Dectin-1 was expressed at the peripheral regions

of the organoids (Supplementary Figure S9) and at the apical side of

the lumen-facing IECs in colonic crypts of frozen sections

(Supplementary Figure S10). To test the function of Dectin-1 in

phagocytosis, we assessed intracellular pHrodo-red zymosan in

organoids in the presence or absence of laminarin. A decrease in

intracellular pHrodo-red zymosan in the presence of laminarin

(Figure 2D) was observed by live confocal microscopy. This

observation was quantitatively confirmed by a significant decrease

(*p ≤ 0.05 to ***p ≤ 0.001 in organoids from three individuals) in

the fluorescence of pHrodo-red zymosan measured by a microplate

reader (Figure 2E). Next, we show that Dectin-1 engulfs

intracellular zymosan particles, as verified by fluorescence profile

analysis (Figures 2F–H and Supplementary Figure S11) while it was

not detected at fragmented zymosan (Figure 2G). This implies a

specific role for Dectin-1 at the early stages of zymosan recognition

and uptake, rather than during intracellular processing.

Collectively, our results suggest that human colonic and ileal IECs

are able to phagocytose zymosan in a Dectin-1-dependent manner.
Phagocytosis of Candida albicans by IECs

We next asked whether IECs phagocytose fungal particles. C.

albicans, in its yeast-form, is a frequent commensal in the human

gastrointestinal tract (25, 26). The cell-wall inner b-glucan layer is

exposed in heat-killed (HK) C. albicans, rendering it highly accessible
Frontiers in Immunology 04
to Dectin-1. Yet, unlike zymosan, HK- C. albicans did not induce

cytokine secretion by IECs, although it did elicit Syk and ERK

activation (10). We therefore labeled a commercially available

preparation of HK- C. albicans strain (ATCC 10231) with

Rhodamine-green-X to assess microscopically its uptake by IECs.

Colonic and ileal organoids, as well as IEC lines internalized HK- C.

albicans particles where cellular fragmentation verified their

intracellular localization and processing (Figure 3A; Supplementary

Figure S12A). As observed for zymosan, here too, goblet and non-

goblet cells (MUC2+ and MUC2- respectively) phagocytosed HK- C.

albicans (Supplementary Figure S13; Figure S14). Simultaneous

exposure of organoid cultures to HK-C. albicans and zymosan,

revealed double-labeled cells, indicating phagocytosis of both types of

particles (Figure 3B, Supplementary Figure S13). Upon UV-

inactivation, C. albicans retains its fungal cell wall intact, as in

intestinal colonizing cells (27, 28). Uptake of labeled UV-inactivated

C. albicans (of a different wild type strain-SC5314) by ileal and colonic

organoids was observed, suggesting their capability to phagocytose

luminal fungi (Figure 3C; Supplementary Figure S12B). Finally, Dectin-

1 localization around intracellular HK-C. albicans (Figure 3D), which is

supported by intensity fluorescence profile (Figure 3E), infers its

involvement in phagocytosis. We cannot exclude the possibility that

other phagocytic receptors may contribute to epithelial phagocytosis of

C. albicans, hence, we asked whether such receptors are expressed by

IECs. To this end, we tested Dectin-2/CLEC6A, which is implicated in

fungal phagocytosis (29–31). Indeed, we detected Dectin-2 on the

surface of human ileal and colonic IECs isolated from surgical

specimens by flow cytometry (Supplementary Figures S15A–C), and

in colonic frozen sections (Supplementary Figure S15D) as well. This

finding further supports the idea of epithelial capability to phagocytose

luminal fungi although the role of Dectin-2 in phagocytosis was not

addressed here.
LC3 is recruited to phagosomes of
fungal particles

LC3 associated phagocytosis (LAP) is a receptor-mediated

phagocytosis that utilizes some components of the autophagy

machinery to process extracellular cargo (32–34). Dectin-1 mediated

LAP has been demonstrated in phagocytosis of fungi by professional

phagocytes such as macrophages and dendritic cells (20, 35). To

determine whether LAP of fungal particles occurs in IECs, we

generated SW480 cells stably expressing GFP-tagged-LC3. These cells

were incubated with pHrodo-red zymosan and using live confocal

imaging pHrodo-red zymosan (Figure 4A) engulfed by GFP-LC3 was

detected, and was further confirmed upon analysis of fluorescence

intensity profile (Figure 4B). Similarly, using an antibody specific to

LC3 LAP-engaged phagosomes (LAPosomes, (36)) of zymosan and

HK-C. albicans in organoids (Figures 4C, D; Supplementary Figure

S16A) and IEC lines were identified (Supplementary Figure S16B).

Interestingly, the commercial preparate of HK-C. albicans contained a

minor fraction of hyphae. We found that IECs could phagocytose and

recruit LC3 to the hyphal form of C. albicans (Figures 4E, F). This

surprising finding suggests that IECs can recognize and internalize a

wide range of microbial forms.
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FIGURE 2

Intestinal organoids uptake zymosan. (A, B) Ileal (A) and colonic (B) organoids were grown as monolayers in expansion medium and let to
differentiate for 2 days. pHrodo-red zymosan (red) was added to the medium for 24h. Original magnification x10, scale bar 50 µm, white arrows and
arrowhead indicate intracellular processed and intact zymosan respectively. Black arrowheads indicate extracellular zymosan. Shown are
representative frames from wider fields, presented in Supplementary Figures S4, S5A, from 3-5 randomly acquired scans of two independent
experiments of two organoids. (C) Colonic organoids (from a different individual) were treated as in (B), nuclei were stained with Hoechst 33342
(blue) prior to confocal live imaging. Shown a representative frame from a z-stack analysis. Entire z-stack movie is shown in Supplementary Movie 1.
Arrows and arrowhead indicate intracellular processed and intact zymosan respectively. Original magnification x63, scale bar 10 µm. (D) Laminarin
inhibits zymosan uptake by intestinal organoids. Colonic organoids were grown as in B, in the presence or absence of laminarin (1 mg/ml) that was
added to the medium 1 hour prior to zymosan in triplicate wells. Shown are intracellular fluorescent zymosan (red) and the organoid cells (DIC), or
zoom-in insets where nuclei were stained with Hoechst 33342 (blue) prior to confocal live imaging. Shown are representative frames from 3-6
random fields imaged from each of triplicate wells. The experiment was repeated with organoids from four individuals. Original magnification x20,
scale bar 50 and 10 µm, Arrows and arrowhead indicate intracellular processed and intact zymosan respectively. (E) Colonic organoids from three
individuals (colon-1 to colon-3) were seeded in 96 well plate, treated as in (D) in triplicate or 6-replicate wells for 48 hours. Phagocytosis was
assessed as the relative fluorescence by a microplate reader. Data are shown as the measured value (dots) and mean ± SD of biological replicates
from four independent experiments performed. Colon-1 was tested twice (exp.1 and 2), zym=zymosan. ***p<0.001, **p<0.01, *p<0.05 vs. no
inhibitor, Student’s t-test was performed individually for each independent experiment. (F, G) Dectin-1 is recruited to internalized zymosan. Ileal
organoids were fed with AF488-zymosan (green) overnight and stained with Dectin-1 antibody (magenta) and DAPI. Original magnification x20 scale
bar 10 µm (F) and x63 scale bar 5 µm (G). Arrowheads – intact zymosan, arrows- fragmented zymosan. (H) Fluorescence intensity profile along the
arrow of an inset from (G) is shown on the graph.
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Rubicon is recruited to phagocytosed
zymosan and C. albicans

Rubicon is a key regulatory protein considered unique to LAP in

professional phagocytes (37, 38). In order to support the notion that

IECs are capable of LAP we assessed the presence of Rubicon at

zymosan and C. albicans’ particles upon their incubation with

organoids. Indeed, using a specific antibody we identified Rubicon

around intracellular HK-C. albicans (Figures 5A, B) and zymosan

(Figures 5C–E) in intestinal organoids, suggesting its recruitment and
Frontiers in Immunology 06
involvement in the phagocytic process, lending further support to the

occurrence of LAP in IECs.
Phagocytosis depends on NADPH-oxidase
activity

A hallmark of LAP in macrophages is the production of reactive

oxygen species (ROS) by nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase-2 (NOX2) (33, 36). Human colonic
A

B

D

E

C

FIGURE 3

Phagocytosis of C. albicans by human intestinal organoids. Colonic organoids were fed overnight with Rhodamine-green-X labeled HK- C. albicans
(A, green), or both pHrodo-red zymosan and HK-C. albicans (B) or UV-inactivated C. albicans (C). Live confocal images were acquired directly or
after nuclear stain with Hoechst 33342 (blue). Arrowhead - intact C. albicans, arrow- fragmented C. albicans. Original magnification x40, scale bars
50 µm (A), 10 µm (A-inset and B) and 20 µm (C). (D) Dectin-1 is recruited to phagocytosed C. albicans. Ileal organoids were fed with Rhodamine-
green-X labeled HK- C. albicans. Following fixation organoids were stained with Dectin-1 polyclonal antibody. Original magnification x63, scale bar 5
µm. (E) Fluorescence intensity profile along the arrow of an inset from (D) is shown on the graph.
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IECs express NOX1, which is a structural homolog of NOX2 as well

as additional NADPH oxidases including DUOX2 (39). To test

whether NADPH-oxidases are involved in IEC-mediated

phagocytosis, we treated organoid monolayers and SW480 cells

with pHrodo-red zymosan after exposure to the general NADPH
Frontiers in Immunology 07
oxidase inhibitor diphenyleneiodonium (DPI). Figure 6A

demonstrates that DPI (at 2 µM) drastically suppressed zymosan

phagocytosis in organoids. This finding is supported by

quantification of phagocytosis as reflected by total fluorescence

using a microplate-reader where up to 44% and 65% inhibition by 2
A

B

D

E F

C

FIGURE 4

LC3 is recruited to phagosomes in IECs. (A) SW480 LC3-GFP cells were fed with pHrodo-red zymosan overnight. Live imaging shows LAPosomes
(arrow) as LC3 (green) around intact zymosan (red) particles, as well as fragmented zymosan and autophagosomes. (B) Fluorescence intensity profile
along the arrow of an inset from (A) is shown on the graph. (C) Colonic organoids were fed with pHrodo-red zymosan (red) overnight and stained
with LC3 antibody (green) and DAPI (blue). (D–F) Colonic organoids were fed with Rhodamine-green-X HK-C. albicans (green) overnight and stained
with LC3 antibody (magenta) and DAPI (blue). Shown is LAP of yeast (D) and hyphal form (E, F) of HK-C. albicans. F is an inset of (E) Original
magnification ×40 (A, B), ×63 (C, D) x20 (E, F) scale bar 10 µm (A–D, F) and 50 µm (E).
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µM (***p≤ 0.001) and 10 µM DPI (****p≤ 0.0001) respectively was

observed (Figure 6B). Similar inhibition was observed in organoids

from a different individual (Figure 6C) and in cell lines (Figure 6D).

Our results indicate that NOX activity is necessary for phagocytosis,

implying a role for ROS production and supports the occurrence of

LAP in IECs.
Phagocytosed fungi are degraded in the
lysosomes

The evidence regarding intracellular fragmentation of zymosan

and C. albicans (Figures 1–3), suggest the occurrence in of

phagosome maturation via fusion with lysosomes and lysosomal

degradation of phagosome content. To verify this, we asked whether

phagocytosed zymosan and C. albicans colocalize with lysosomes.

Indeed, intact and fragmented zymosan and C. albicans (both HK-

and UV- inactivated) colocalized with acidic organelles as identified

by lysosomal dyes in ileal and colonic organoids and in cell lines

(Figures 7A–C; Supplementary Figures S17A, B). In addition, the

lysosomal protein LAMP2 encircled phagocytosed particles in

organoids and cell lines (Figures 7D, E; Supplementary Figure

S17C). Finally, colocalization of LAMP2 with LC3 around

intracellular zymosan indicates LAPosomes that fuse with

lysosomes (Figures 7F, G).

Together, our findings suggest that human IECs are capable of

LAP of fungal particles, and provide mechanistic evidence for stages

of the process, starting from their identification by the receptor,
Frontiers in Immunology 08
Dectin-1, via recruitment of Rubicon and LC3 to final degradation

in the lysosomes (Figure 8).
Discussion

The intestinal epithelium acts as a physical and functional

barrier as well as an active participant in mucosal immunity by

orchestrating protection against pathogens and maintaining tissue

homeostasis (2, 3). We and others had previously shown that IECs

exert various responses upon interaction with bacterial and fungal

components through pattern-recognition receptors such as Toll-

like receptors (TLRs) and Dectin-1, yet they appear to tolerate

various commensal microorganisms (4, 10, 40–42).

In this work we present a novel mode of IEC-microbiota

interaction where IECs along the lower human gastrointestinal

tract can internalize commensal fungal particles via LAP.

Importantly, our data demonstrate that this is a host-driven

process, since the phagocytosed particles are fully inactive. As

non-professional phagocytes, the phagocytic capability of

epithelial cells is considered limited compared to professional

phagocytes (2, 43). However, their abundance on large mucosal

surfaces may contribute to tissue homeostasis and the defense

against pathogens (2). Indeed, previous studies in human and

murine models demonstrated that epithelial cells (colonic,

mammary and hair follicular) engulf apoptotic cells (44–46).

Moreover, Retinal pigment epithelium used LAP to clear

photoreceptor outer segments in mice (47, 48) and HeLa cells
A

B

D EC

FIGURE 5

Rubicon is recruited to the phagosome. Colonic (A) and ileal (B) organoids from the same individual were fed overnight with HK-C. albicans (green)
and stained with Rubicon antibody (magenta) and DAPI (blue). (C–E) Colonic (C) and Ileal (D, E) organoids were fed with pHrodo-red zymosan (red)
and stained with Rubicon (green) and DAPI (cyan). Original magnification x63, scale bar 5 µm.
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used a host derived LAP-like mechanism to target Yersinia

Pseudotuberculosis (49).

In this work we focused on fungal recognition by IECs

predominantly via the interaction of Dectin-1 with fungal

b-glucan. However, additional phagocytic receptors such as

Dectin-2 (this report) and TLRs (42) are expressed by IECs and a

previous work further demonstrated TLR4 mediated bacterial

phagocytosis by mouse enterocytes (50). Together these findings
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support the notion of epithelial capability to phagocytose luminal

microorganisms.

LAP of fungi and fungal materials has been characterized in

professional phagocytes (51–53) such as mouse macrophages and

dendritic cells (20, 35) and in human monocytes (19). The role of

Dectin-1 in this process was demonstrated by the inhibition of LAP

upon Dectin-1 deficiency or following exposure to its antagonist,

laminarin (19, 20). Likewise, we demonstrate in this work that

Dectin-1 was involved in zymosan phagocytosis by human IECs.

While Syk is activated by zymosan and fungi in IECs (4, 10, 22) it

seems dispensable for phagocytosis. Examples for Dectin-1

mediated Syk-independent phagocytosis exist also in

macrophages (13, 21).

Recruitment of LC3 and Rubicon, that acts as a regulatory

switch to inhibit autophagy and to promote LAP (37, 38), to the

internalized zymosan and C. albicans and the dependence of

phagocytosis on ROS production are indicative for LAP. In

macrophages, the phagocytic NOX2 complex plays a role in LAP,

but not in canonical autophagy (33). In IECs, it might be replaced

by other NADPH-oxidases, such as NOX1. While there is scarce

evidence for fungal phagocytosis by epithelial cells: Dectin-1

mediated phagocytosis of spores of Aspergillus fumigatus in

airway epithelium (54), and zymosan internalization by chicken

IECs (55) we present here the first evidence for LAP in primary

human epithelial cells.

Luminal sampling at steady state is important for homeostasis

and bui ld ing mucosal to lerance towards commensal

microorganisms and is usually attributed to professional mucosal-

resident phagocytes and to transcytosis (uptake and delivery

without intracellular degradation) by specific epithelial M-cells

(34, 56–59). The phagocytic capacity presented in this work is not

likely to be assigned to M-cells for several reasons: first, it is

observed in epithelial cell lines and in organoids derived from

different parts of the gastrointestinal tract from ileum to sigmoid

colon, while M-cells are mostly found in the small intestine and

require specific differentiation conditions including TNFa and

RANKL (60–62) that were not used in this study. Second,

phagocytosis occurs by goblet and non-goblet cells. Finally, we

find Dectin-1 mediated LAP, and epithelial processing of the

internalized particle, as opposed to the transcytosis of intact

particles by M-cells.

The role of commensal fungi in shaping mucosal tolerance and

host systemic immune response has been recently established in a

series of reports (26, 63–65) underlying their interaction with

mucosal immune cells e.g., lymphocytes via mononuclear

phagocytes. Here we propose epithelial phagocytosis as another

pathway for intestinal mucosal sensing of fungi. While the

physiological outcome of epithelial phagocytosis of fungi is still

uncovered, it is plausible to assume that it has an impact on the

mucosal milieu. Indeed, an example where IECs acquire antigens

from commensal bacteria (segmented filamentous bacteria, SFB),

for generation of TH17 cell responses in mice was recently provided

(41). IECs endocytosed vesicles containing SFB cell wall–associated

proteins, that acted as immunomodulators on T cells. Still, the

mechanism by which IECs induced Th17 differentiation remains

unclear. Interestingly, mucosa-associated fungi elicit a protective
A

B

D

C

FIGURE 6

DPI inhibits zymosan phagocytosis. (A) Colonic organoid
monolayers grown in differentiation medium for 3 days were
exposed to pHrodo-red zymosan for 24 hours in the presence or
absence of DPI (2 µM) that was added for 60 minutes prior to the
addition of zymosan. Shown are intracellular fluorescent zymosan
(red) and the organoid cells (DIC) of representative frames from 7-15
random fields imaged. The experiment was repeated 3 times using
organoids from two different individuals. Original magnification x20,
scale bar 50 µm. (B) Colonic organoids were seeded in 96 well
plate, treated as in (A) in the presence or absence of DPI (2 or 10
µM) or in the presence of vehicle (DMSO 1:1000) in 8-replicate wells
for 48 hours. Phagocytosis was assessed as the relative fluorescence
by a microplate reader. (C) A summary of four experiments
performed showing zymosan (zym) phagocytosis inhibition by 2 µM
DPI in colonic organoids from two individuals (colon-2 and colon-
3). (D) SW480 cells were seeded in 96 well plate and treated as in
(B) in triplicates for 24 hours. Data are shown as individual measures
(dots) and the mean ± SD of biological 8-replicates (B) and
triplicates (D) from a representative of four or three independent
experiments performed. **p<0.01, ***p<0.001, ****p<0.0001, One-
way ANOVA followed by Tukey multiple comparison test (B, D) or
individual t-test vs. no inhibitor for each of the separate experiments
shown in (C).
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effect on IECs barrier function and protected mice against intestinal

injury and bacterial infection via Th17 cells (65). It is not known

whether IECs play an active role in the observed increased

frequency of Th17 cells.
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In professional phagocytes, LAP of fungi enhances pathogen

killing (35) (19), cytokine secretion (30)and promotes MHC class II

recrui tment to the LAPosome for susta ined ant igen

presentation (20).
A
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FIGURE 7

Phagocytosed particles are directed to lysosomal processing. (A) Colonic organoids were incubated overnight with Rhodamine-Green-X labeled HK-
C. albicans (green) and stained with lysosomal-NIR reagent (magenta). (B, C) Ileal organoids (B) and SW480 cells (C) were incubated with pHrodo-
red zymosan (red) and stained with lysosomal-green reagent. Arrows indicate colocalization of fragmented HK-C. albicans or zymosan and
lysosomes. (D) SW480 cells were fed with HK-C. albicans (green) and stained with LAMP2 antibody. (E) Intact and fragmented zymosan particles are
surrounded by LAMP2. Ileal organoids were fed with AF488-zymosan (green) overnight, and stained with LAMP2 antibody (red). Arrowhead - intact
zymosan, arrow- fragmented zymosan. (F, G) LAPosomes merge with lysosomes. (F) SW480 cells were fed with pHrodo red zymosan (red) and
stained with LAMP2 (green) and LC3 (magenta) antibodies and counterstained with DAPI (blue). (G) Ileal organoids were fed with AF488-zymosan
(green) and stained with LAMP2 (red) and LC3 (magenta) antibodies and counterstained with DAPI (blue). Original magnification x63 (A, D–G), x40
(B), x20 (C), scale bar 10 µm.
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IECs express MHC class II and co-stimulatory molecules and

hence were suggested to act as antigen presenting cells (APCs) (66–69).

Indeed, there is evidence that MHC class II-expressing IECs functioned

as APCs to prime donor CD4+ T cells ex-vivo and in vivo where

microbiota influences MHC class II expression on IECs in the ileum.

Still, the presented peptides were mostly thought as endogenous

peptides (70). Whether IECs can present exogenous peptide is not

clear, and an experimental model was presented to study the

interactions between IEC MHC-II and the surrounding immune and

microbial milieu (71). We propose that degradation products of

phagocytosed fungi might be presented in context with MHC class II

by IECs, similarly to their presentation upon phagocytosis by

professional antigen presenting cells (Figure 8). In this case, IECs

may contribute to humoral responses. It was recently found that

commensal fungi induce, via intestinal mononuclear phagocytes, the

production of secretory IgA (sIgA) in the murine gut and systemic

serum IgG (63, 64). A decrease in antifungal sIgA was observed in

patients with Crohn’s disease (64), underlying a feature of loss of

tolerance towards commensal microorganisms, which is typical of

inflammatory bowel diseases (IBD) (72). Accordingly, possible

contribution of interrupted epithelial LAP to disrupted mucosal

homeostasis and loss of tolerance may be assumed. In our hands,

IBD derived organoids could phagocytose fungal particles via LAP in a

similar manner to the healthy ones. Yet this is a small cohort, and an

interrupted LAP is expected to be detected in organoids if it is carried

genetically or under inflammatory conditions. An attractive approach

will be to assess whether genes associated with IBD that may function

in LAP indeed affect epithelial LAP. An immediate candidate from our
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work is NOX1, which has recently been shown to prevent

inflammation, and its mutations were linked to ulcerative colitis (39,

62). Another interesting candidate is the ATG16L1 T300A

polymorphism. Individuals carrying this polymorphism exhibit

defects in T-regulatory responses to outer-membrane-vesicles

(OMVs) of the commensal Bacteroides fragilis, and sensing those

OMVs, in mouse dendritic cells, occurs via LAP and involves

Rubicon and ATG16L1 (58).

Our findings may have mechanistic and translational implications,

as well as paving the way for detailed characterization of the processes

underlying epithelial phagocytosis of microorganisms. Specifically,

facilitating further identification of host and microbial factors, such

as cell wall composition of pathogens compared to commensals, that

control epithelial phagocytosis. Our experimental setting may also be

useful to study the outcome of IECs’ phagocytosis with respect to the

impact on neighboring cells (e.g., T-cells). Using patient derived

organoids (73), our findings may allow the assessment of epithelial

phagocytic capabilities under defined genetic (e.g. ATG16L1 variants)

and experimental inflammatory conditions and evaluate their

contribution to homeostasis or if perturbed, to the pathogenesis of IBD.
Methods

Cell lines

Human colon epithelial cell lines SW480, HCT116 and Caco-2

were purchased from ATCC (Manassas, VA). SW480 and HCT116
FIGURE 8

A proposed model for epithelial phagocytosis of fungi. Recognition of commensal fungi by intestinal epithelial cells leads to Dectin-1 mediated
phagocytosis. Rubicon and LC3 are recruited to the phagosome and form LAPosomes. Upon fusion with lysosomes fungi are degraded. We propose
that degradation products might be presented in the context of MHC class II.
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cells were grown in RPMI medium (01-100-1A, Biological Industries)

supplemented with 10% fetal bovine serum (04-007-1A, Biological

Industries), and Caco-2 cells were grown in EMEM (01-040-1A,

Biological Industries), supplemented with 20% fetal bovine serum.

All growth media contained 100 units/mL penicillin G, and 100 µg/mL

streptomycin (03-031-1B, Biological Industries). All cells were

maintained in a humidified incubator at 37°C with 5% CO2.

To generate cells stably expressing GFP-LC3, SW480 cells were

transfected with pEGFP-LC3 using the Lipofectamine 2000 reagent

(Invitrogen) according to the manufacturer’s instructions. Stable

clones expressing GFP-LC3 were selected and cultured in the

presence of 1000 mg/ml geneticin (G-418, 345810, Calbiochem).

pEGFP-LC3 (human) was a kind gift from Toren Finkel (74)

(Addgene plasmid # 24920).
Human samples and ethics statement

The Institutional Ethical Committee of the Rabin Medical Center

approved the study (approval number 0763-16-RMC and 0298-17)

and a written informed consent of all participating subjects was

obtained. The identity of all participating subjects remained

anonymous. Tissue samples were taken from surgical specimens of

patients undergoing bowel resection for colonic tumors (normal ileal or

colonic samples were taken from a distance of at least 10 cm from the

tumor) or patients with Crohn’s disease or ulcerative colitis undergoing

bowel resection. Specimens were kept overnight at 4°C in RPMI

containing 100 units/mL penicillin G (03-031-1B, Biological

industries), and 100 µg/mL streptomycin and 2.5 µg/mL

amphotericin B (Fungizone, 03-028-1B, Biological industries)

supplemented with 10% fetal bovine serum.
Human intestinal organoids

Human ileal and colonic crypts were isolated and organoids were

cultured as previously described (75). In brief, tissue fragments were

washed twice with crypt isolation medium: 0.5 mM DL-Dithiothreitol

(DTT), 5.6 mM Na2HPO4, 8 mM KH2PO4, 96.2 mM NaCl, 1.6 mM

KCl, 43.4 mM sucrose, 54.9 mM D-sorbitol. Tissue was incubated in

crypt isolation medium supplemented with 2 mM EDTA, for 30

minutes at 4°C followed by vigorously shaking till crypt were

released from the mesenchyme. Crypt pellet was washed with FBS

and resuspended in ice-cold Matrigel (FAL356231, Corning) and

seeded as 15 µl domes on pre-warmed 12-wells tissue culture plates.

Plates were incubated upside down for 20 min in a 37°C 5% CO2

incubator until the Matrigel solidifies. Organoid expansion media

[based on (76, 77)] consisted of advanced DMEM F12 (12634010,

Gibco) (26% of total volume), 100/100 U/ml Penicillin/streptomycin,

10 mM HEPES (10 mM, 03-025-1B, Biological Industries), 1×

GlutaMAX (35050-038, Gibco), and the following growth factors: 1×

B27(12587001, Gibco), 1 mM N-Acetylcysteine (A9165, Sigma-

Aldrich), 100 ng/ml Noggin (120-10C, Peprotech), 50 ng/ml human

EGF (AF-100-15, Peprotech), 10 mM Nicotinamide (N0636, Sigma-

Aldrich), 10 mM SB202190 (1264, Tocris), 500 nM A83-01 (2939,

Tocris), 10 nM Prostaglandine E2 (2296, Tocris), 26 mg/ml Primocin
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(ant-pm In vivoGen), and conditioned medium from the L cell line

secreting Wnt3A (50% of total volume) and 293T cells secreting R-

spondin 1 (20%). 10 mM Y-27632 (Rock inhibitor, Y0503, Sigma-

Aldrich) was added to expansion medium for the first 2 days. Medium

was changed every other day.

2D organoid monolayer culture protocol was based on the

s upp l emen t a r y p r o t o c o l o f I n t e s t i c u l t™ med i um

(WWW.STEMCELL.COM) culture: µ-Slide 8-well glass bottom

chambers (Ibidi, Martinsried, Germany) were coated with 1:50

Matrigel in PBS for one hour at a 37°C 5% CO2 incubator. 3D

organoids were resuspended with Recombinant Trypsin EDTA

Solution (03-079-1A, Biological Industries) and mechanically

disrupted into a single cell suspension. Cells were resuspended in

expansion medium containing 10 mM Y-27632 (Rock inhibitor) and

seeded on coated slides (approximately 2 domes per 8-well chamber).

Expansion medium was changed every other day until 2D organoids

reached 50-70% confluency. Prior to phagocytosis experiments, 2D

organoids were grown for additional 2-3 days in a generic

differentiation medium based on (77). Briefly, advanced DMEM F12

was supplemented with 100/100 U/ml Penicillin/streptomycin, 10 mM

HEPES, 1× GlutaMAX, 1× B27, 1 mM N-Acetylcysteine, 500 ng/ml

human R-spondin 1 (120-38, Peprotech), 100 ng/ml Noggin, 50 ng/ml

human EGF, and 100 mg/ml Primocin.
Candida albicans growth conditions and
labeling

C. albicans wild type strain SC5314 was kindly provided by

Judith Berman (Tel Aviv University). Cells were grown overnight in

YPAD medium at 30°C. UV inactivated C. albicans cells were

prepared as previously described (78). Briefly, cells were exposed

in a thin liquid suspension to 4 doses of UV radiation (100 mJ/cm2)

in a UV cross linker (CL-1000 UVP, Upland, CA). Cells were

counted and resuspended in PBS. Killing was verified by seeding

onto YPAD-agar plates. Heat-killed C. albicans wild type strain

ATCC 10231 (tlrl-hkca) was purchased from In vivoGen (San

Diego, CA) and resuspended in endotoxin-free water.

Heat-killed or UV-inactivated particles of C. albicans were

labeled with Rhodamine Green-X (R-6113, Life Technologies,

Invitrogen), as previously described (79). After labeling cells were

washed, resuspended in PBS, counted and aliquoted.
Confocal phagocytosis assay

IEC lines were seeded on m 8-well glass-bottomed slides (Ibidi,

Martinsried) at a density of 3-4x104 cells/well. Two days later,

medium was replaced and cells were stimulated overnight with

pHrodo-red zymosan (100 µg/ml, P35364 Invitrogen) or AF488-

zymosan (100 µg/ml) Z23373 Invitrogen) or Rhodmine-green-x

labeled C. albicans (approximately at 0.3-1×106/well). We counted

about 105 cells/well, hence, MOI= 3-10/cell). The next day cells were

either directly imaged with confocal microscope (LSM 800, Zeiss,

and Zen3.2 software) or stained with Hoechst 33342 (14533, Sigma)

to visualize nuclei or with lysosomal staining reagents (Green -
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Cytopainter ab176826 or NIR - Cytopainter ab176824, Abcam). For

image analysis and fluorescence intensity profile we used Zen 3.2

software. Where indicated, the inhibitors Cytochalasin-D (10 µM,

MBS250255, Calbiochem) or laminarin (1 mg/ml, L9634, Sigma) or

diphenyleneiodonium (DPI) (2 µM, D2926, Sigma) were added 1

hour prior to pHrodo-red zymosan addition.

2D organoid monolayers were seeded as described above, and

grown in differentiation medium for at least 2 days prior to their

exposure to labeled zymosan or C. albicans. Then, organoids were

treated and assessed as the cell lines. In some cases, cells or

organoids were fixed with 4% paraformaldehyde or 100%

methanol for further immuno-staining. All images within each

experiment were acquired under the same conditions.
Image quantification of phagocytosis

We quantified phagocytosis either by confocal image analysis

using ImagJ or by multi-well-plate fluorescence quantification using

a microplate reader. Image-analysis quantification was applied on

confocal images of cell lines, where random fields acquired were

representative of the uniformly distributed phagocytic cells. For

each experimental condition (phagocytosis in the presence or

absence of inhibitors) the number of nuclei within at least four

confocal random fields (acquired at x20 magnification) was

determined with ImageJ. Then the number of pHrodo-red

zymosan positive cells within each field was manually counted.

The percentage of positive cells was calculated. For each condition,

at least 2000 cells were analyzed.
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Microplate reader quantification of
phagocytosis in cell lines and organoids

We assessed the level of phagocytosis by quantification of the

total fluorescence within replicate wells as an additional assay for

cell lines, and as the main assay quantify phagocytosis in organoid

monolayers where it was highly important to quantify the whole

well since phagocytosis is not uniformly distributed. SW480 and

HCT116 cells were seeded in 96-well flat-bottomed plastic plates at

a density of 4x104 cells/well for 24 hours. The next day the medium

was replaced with 100 µl/well of fresh medium or medium that

contains inhibitors (Cytochalasin-D 10 µM, Laminarin 1 mg/ml,

Syk inhibitor 574711 [3-(1-methyl-1H-indol-3-yl-methylene)-2-

oxo-2,3-dihydro-1H-indole-5-sulfonamide], (Calbiochem, Merck-

Millipore) 1 or 5 µM, DPI (2 or 10 µM) or DMSO as vehicle

(1:1000) where applicable and pHrodo-red zymosan at 100 µg/ml

was added in triplicate wells for 24 hours. Wells were washed gently

3 times with white-RPMI and relative fluorescence was measured

with Synergy H1 microplate reader (Biotek). For phagocytosis

quantification in organoids, 96-well plastic plates were coated

with Matrigel as described for 8-well chambers. Cells from 3D

human colonic organoids were resuspended and seeded in a ratio of

one-two domes to 60 wells or 10,000 cells/well. Organoid

monolayers were grown in expansion medium for at least 3 days,

reaching at least 50% confluence, and then the medium was

replaced with differentiation medium for 2-3 days (where wells

were 80-90% confluent). Before stimulation, medium was replaced

with fresh differentiation medium in the presence or absence of

laminarin (1 mg/ml) or DPI (2 or 10 µM), and pHrodo-red
TABLE 1 Antibodies used for immuno-fluorescence.

Antibody host Fixation Dilution Cat. # Company

Dectin-1 Rabbit polyclonal Methanol 1:200 NBP1–25514 ovus Biologicals

Dectin-1 (GE2) Mouse monoclonal PFA 1:50 ab82888 Abcam

LC3A/B (D3U4C) Rabbit monoclonal Methanol 1:100 12741 Cell Signaling

Rubicon Mouse monoclonal PFA 1:100 ab156052 Abcam

LAMP2 (H4B4) Mouse monoclonal Methanol 1:200 sc-18822 Santa cruz

Ki67 Rabbit monoclonal PFA 1:400 RBK027 Zytomed

Muc2 (996/1) Mouse monoclonal PFA 1:200 ab11197 Abcam

Lysozyme Rabbit polyclonal PFA 1:400 A 0099 Dako

Dectin-2 Mouse monoclonal PFA 1:100 ab107572 Abcam

ZO-1/TJP1 Mouse monoclonal PFA 1:100 33-9100 Thermo Scientific

EpCAM (VU-1D9) Mouse monoclonal PFA or Methanol 1:400 187372 Abcam

EpCAM Rabbit polyclonal PFA or Methanol 1:400 ab71916 Abcam

anti mouse AF488 Donkey 1:1000 ab150109 Abcam

anti mouse AF647 Donkey 1:1000 ab216773 Abcam

anti rabbit AF488 Donkey 1:1000 ab150065 Abcam

anti rabbit AF647 Donkey 1:1000 ab150067 Abcam
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zymosan at 100 µg/ml was added in triplicates to 8-replicate wells as

indicated for 48 hours to allow accumulation of phagocytic cells

thus obtaining enhanced phagocytosis signal. Medium was removed

and organoids were washed gently 3 times with white-RPMI before

relative fluorescence was assessed in a microplate reader.
Cytokine secretion (ELISA)

SW480 cells were seeded in 96-well flat-bottomed plastic plates at

4x104 cells/well for 24 hours. The next day the medium was replaced

with fresh medium or medium that contains Syk inhibitor (1 or 5 µM/

ml) (100 µl/well) and one hour later, zymosan (100 µg/ml, tlrl-zyn, In

vivoGen, not labeled) was added in triplicate wells for 24 hours.

Supernatants were assessed for IL-8 secretion using ELISA (DY208

R&D systems) according to the manufacturer’s instructions. In parallel,

in the same 96-well plate, triplicate wells were exposed to pHrodo-red

zymosan in the presence and absence of the same Syk inhibitor, for

phagocytosis microplate reader quantification assay.
Cell staining by immunofluorescence

Cells or organoid monolayers seeded in 8-well chambers and

treated as indicated in the figure legends, were fixed with 4%

paraformaldehyde for 30 minutes at room temperature or with ice-

cold methanol for 15 minutes at -20°C according to the requirement of

the primary antibodies, washed with PBS, and blocked-permeabilized

with 5% donkey serum containing 0.3% triton for 1 hour at room

temperature. Cells or organoid monolayers were incubated with the

indicated primary antibodies overnight at 4°C, followed by staining

with the corresponding fluorescently labeled secondary antibodies for 1

hour at room temperature and counterstaining with DAPI, which was

included in the non-hardening mounting medium (GBI Labs, E-19-18,

Mukilteo, WA). Samples were visualized by inverted confocal

microscope (LSM 800, Zeiss). All images within each experiment

were acquired under the same conditions. Details of primary and

secondary antibodies appear Table 1.
Statistical analysis

Cell line results are reported as the measured data point and the

mean of triplicates ± SD of a representative of at least 3 experiments

performed. Organoid quantitative data are represented as the

summary of the experiments performed in separate organoids.

Significance was determined using unpaired two-tailed student’s

t-test or one-step ANOVA as indicated (GraphPad Prism 7.03

software, San Diego, CA). Differences were noted as significant by

the following conventions: *p<0.05; **p<0.01; ***p<0.001

****p<0.0001, as specifically indicated in the legend of each figure.
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