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Exosomes, MDSCs and Tregs:
A new frontier for GVHD
prevention and treatment
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The development of graft versus host disease (GVHD) represents a long-standing

complication of allogeneic hematopoietic cell transplantation (allo-HCT).

Different approaches have been used to control the development of GVHD

with most relying on variations of chemotherapy drugs to eliminate allo-reactive

T cells. While these approaches have proven effective, it is generally accepted

that safer, and less toxic GVHD prophylaxis drugs are required to reduce the

health burden placed on allo-HCT recipients. In this review, we will summarize

the emerging concepts revolving around three biologic-based therapies for

GVHD using T regulatory cells (Tregs), myeloid-derived-suppressor-cells

(MDSCs) and mesenchymal stromal cell (MSC) exosomes. This review will

highlight how each specific modality is unique in its mechanism of action, but

also share a common theme in their ability to preferentially activate and expand

Treg populations in vivo. As these three GVHD prevention/treatment modalities

continue their path toward clinical application, it is imperative the field

understand both the biological advantages and disadvantages of each approach.

KEYWORDS

graft vs host disease, exosomes, regulatory T cells, myeloid derived suppressor cell
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Introduction

Graft versus-host disease (GVHD) remains a significant problem following an

allogeneic hematopoietic cell transplantation (allo-HCT) with GVHD patients

experiencing a lower quality of life and a higher risk of death. Our understanding of the

cellular and molecular mechanisms of GVHD has provided researchers additional clarity

on the etiology of its pathogenesis. This has allowed for a growing number of non-biologic

and biologic-based GVHD prophylaxis/treatment therapeutics to be investigated as safer

modalities for allo-HCT patients. Specifically, the investigation into the use of biologics for

GVHD therapies is still in its infancy but there are several exciting possibilities in the

pipeline. In this mini-review, we will highlight three emerging biologic-based therapies that

are at different stages of conceptualization and development which include T regulatory

cells (Tregs), myeloid-derived-suppressor cells (MDSCs) and mesenchymal stromal cell
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(MSC) exosomes. We will also emphasize the similarities and

differences of each modality in terms of biologic activity and

possible clinical use.
Tregs as a GVHD prevention/
treatment modality

T regulatory cells (Tregs) represent a T cell polarization state

with potent immunosuppressive activity (1–4). Classically restricted

to the CD4 lineage, an analogous T cell population within the CD8

lineage has now also been described (5, 6). Irrespective of the

lineage, Tregs are best characterized by the transcription factor

FOXP3 as well as high levels of the IL-2Ra subunit (CD25) at

baseline (3). Upon activation, Tregs dampen immune responses

through the secretion of the immunosuppressive cytokines IL-10,

IL-35 and TGF-b, by modifying the expression of the inhibitory

ligands CTLA-4 and by decreasing the inflammatory environment

through the consumption of IL-2 and eliminating extracellular ATP

via CD39/CD73 activity (3, 7) (Figure 1).

While the activity of Tregs is predicated on the recognition of

self-peptides presented by antigen-presenting-cells (APCs) to

prevent the development of an autoimmune disease, Tregs can

also develop against non-self-peptides in the periphery (8).

Moreover, there are two sub-types of Tregs, thymus-derived

Tregs (tTregs) and induced-Tregs (iTregs) that each have non-

overlapping roles in controlling immune responses (7, 9).
Differences between induced and thymic
Tregs during allo-HCT

Classical or thymus-derived Tregs (tTregs) develop during T

cell development and are characterized in mice by the expression of

neuropilin-1, the transcription factor Helios and in the expression

of CD3, CD4, FOXP3 and CD25high characteristic of all Treg

populations (10–13). Most T cell clones that develop TCRs with

high affinity toward self-peptides in the thymus are eliminated but a

subset develop into tTregs that egress into the periphery (8). This

Treg subset is generally thought to be terminally differentiated and

act as a separate checkpoint to ensure immune responses are kept

under control during steady state conditions (4).
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In contrast, induced-Tregs (iTregs) exit the thymus as

conventional T cells but are polarized to iTregs in environments

with high levels of TGFb, retinoic acid, IDO, and other mediators

(8, 14, 15). The function of iTregs is in controlling immune

responses against the commensal microbiota and in mucosal

tolerance (16, 17). The pathway controlling the polarization of

iTregs is similar to TH17 polarization. Studies have shown that

iTregs can be polarized into TH17 cells and vice versa, highlighting

the plasticity of this population and how the balance of iTreg/TH17

polarization can influence immune responses (18–20).

In both pre-clinical mouse models and clinical studies, it has

been established that elevated Tregs frequencies in the graft is

correlated with lower rates of GVHD (21–26). Another recent study

using xenogeneic transplantation found elevated levels of Tregs

early after transplant was predictive of survival (27). This study also

translated their findings into the clinic and revealed that high levels

of Tregs between days 7-17 post-transplant was associated with a

GVHD-free, relapse-free outcome (27). However, whether the

Tregs generated in this xenogeneic system or in patients

represents the expansion tTregs or the polarization of iTregs

remains unanswered.

The TCR repertoire of tTregs and iTregs do not overlap,

highlighting the different antigens they recognize (germline self-

antigens vs microbiota-derived antigens) (9, 28, 29). One

requirement of tTreg antigen recognition is the correct self-

antigen peptide sequence presented by the same HLA molecule it

was initially derived from in the thymus. During an allo-HCT,

where the HLA repertoire may be mismatched, this recognition

process may be subverted. While HLA mismatched transplants are

thought to have greater alloreactivity due to the larger proportion of

TCR clones that can recognize allo-antigens, the lack of recognition

between tTregs and their cognate antigens may also play a factor

(30, 31).

Currently, there are no conclusive studies that have investigated

the development of tTregs versus iTregs after allo-HCT. Ongoing

studies differ based on their isolation and expansion of tTregs from

existing graft material and those that polarize CD4 T cells in vitro

(32). In addition to the origin of Tregs, ongoing studies will have to

address the HLA disparity between donor and recipient in regard to

their efficacy.
Generating iTregs for allo-HCT

Many studies have highlighted the role of metabolism in the

development of iTregs. While TGFb is classically required for the

generation of iTregs, the mammalian target of rapamycin (mTOR)

may be equally important (33–35). mTOR contains two complexes,

mTORC1 and mTORC2, which are both serine/threonine protein

kinases that integrate signals from upstream nutrient sensing

receptors. A knockout of both mTOR complexes in mice results

in naïve CD4+ T cells only capable of polarizing to iTregs while the

knockout of mTORC1 prevented TH17 polarization (36, 37).

Additional studies have shown that an activated mTOR complex

promotes the expression of HIF-1a that drives TH17 polarization

(35). Conversely, blocking mTOR signaling with rapamycin (also
FIGURE 1

Novel Modalities For GVHD Prophylaxis/Treatment. Schematic
outlining three emerging approaches to GVHD prophylaxis and
treatment with their corresponding mode of actions (MOA).
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known as sirolimus), skews CD4 T cell polarization to iTregs over

TH17 cells (33–37).

The polarization of naïve CD4 T cells to iTregs by sirolimus

makes it an effective therapeutic candidate that is currently used in

the clinic. One multicenter study (BMT-CTN-1501) revealed that

sirolimus was equivalent to prednisone for initial GVHD treatment

and resulted in a shorter time to immune suppression

discontinuation (38). Another phase 2 study revealed that the

addition of sirolimus to cyclosporine and mycophenolate mofetil

GVHD prophylaxis reduces the incidence of GVHD after

nonmyeloablative HLA-mismatched transplantations compared to

historical controls (39). However, the promise of sirolimus-based

prophylaxis has been overshadowed slightly by the rapid utilization

by the transplant community of post-transplant cyclophosphamide

(PTCy), a modality that has also been shown to promote Treg

expansion (40–42). Since both sirolimus and calcineurin inhibitors

(e.g. tacrolimus and cyclosporine) bind to FKBP12 before their

target of interest (mTOR and calcineurin respectively), sirolimus

has most recently been studied as a replacement for tacrolimus in

GVHD prophylaxis regimens with two studies showing favorable

results when used with PTCy for haploidentical and mismatched

transplants (43, 44). Belumosudil, a ROCK2 inhibitor approved for

chronic GVHD, is another GVHD treatment drug that

preferentially targets iTregs. Belumosudil promotes STAT5 versus

STAT3 signaling to expand and active iTregs (45–47).

With so many current GVHD drugs connected with an

expansion of the iTreg population, it is logical for a growing

number of clinical trials to investigate the direct treatment of

Tregs. Unfortunately, iTreg adoptive therapies are hindered by

high production costs, the inability to generate/store multiple

doses and the need for a patient specific product. Thus, the

investigation into new therapies preferentially expand/polarize

iTregs in vivo should continue to be prioritized.
The role of MDSCs in
controlling GVHD

Myeloid-derived-suppressor-cells (MDSCs) represent a

heterogeneous population of cell types with the general function

of dampening immune responses (48–50). MDSC were first viewed

as a subset of immature myeloid cells that failed to differentiate

properly during myelopoiesis due to the inflammatory environment

caused by malignant cells. Recent evidence suggests that MDSC are

also composed of mature myeloid cells that have transitioned/

polarized into MDSCs. As such, of MDSC have been

characterized into three main groups; immature-MDSCs (i-

MDSC), granulocytic-MDSCs (G-MDSC) and monocytic-MDSCs

(M-MDSCs) (48–51).

While markers for each MDSC population have been

established in mice, a standardized set of human markers has not

yet been widely accepted. Generally, human M-MDSCs share

similar forward and side scatter characteristics as monocytes, are

lineage positive for monocytes (CD14+, CD33high) but also express

several M2 markers (CD124+, CD163+, CD206+) and are CD16-/
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HLA-DR- while both classical and inflammatory monocytes are all

HLA-DR+ (51). Similarly, G-MDSC are physically similar to other

granulocytes, lineage positive for granulocytes (CD15+, CD33int,

CD66b+) but also express the same immunosuppressive markers

listed above (51). Meanwhile, i-MDSC are lineage negative (CD14-,

CD15-, CD66b-) but maintain expression of CD33 and the

immunosuppressive markers (51). While specific markers of the

MDSC populations are still being resolved, the gold standard in

defining MDSC populations is their functional ability to restructure

T cell responses, suppressing classical T cell activation and

promoting Treg development.
MDSCs in GVHD prevention and treatment

MDSCs have been best characterized in the context of solid

cancers wherein they have an important role in establishing the

immunosuppressive tumor microenvironment (TME); however,

they have also been shown to prevent GVHD (52–58). One study

found elevated levels of MDSCs in the peripheral blood of patients

receiving extracorporeal photopheresis for GVHD treatment

relative to both healthy controls and allo-HCT patients without

GVHD (55). Another study investigating how post-transplant

cyclophosphamide (PTCy) suppresses GVHD identified an

integral role for MDSCs in a murine model. In this study, both

M-MDSCs and G-MDSCs were elevated in PTCy treated mice from

their GVHD model system and were similarly elevated in a cohort

of primary allo-HCT patients (54). It has also been shown that

umbilical cord blood is rich in MDSCs which may promote the low

GVHD rates seen in cord blood transplants (56). Interestingly, the

majority of studies that have found elevated MDSC frequencies

have also found a similar increase in Tregs levels. The connection

between MDSCs and Tregs has been observed in both murine and

clinical studies with MDSC depletion studies also showing a

subsequent decrease in Treg populations (52, 53, 57). These

studies and more have firmly established the hierarchy and

importance of MDSCs in promoting the activity of Tregs to

suppress GVHD.
Mechanism driving MDSCs-mediated
Treg activity

MDSCs populations have been shown to use a variety of

molecular pathways to control T cell responses including

indoleamine-pyrrole 2,3-dioxygenase (IDO), cyclooxygenases,

arginase, TGF-b, IL-10 and PD-L1 (Figure 1). The enzyme IDO

catalyzes the rate-limiting step of tryptophan metabolism to L-

kynurenine which has been shown to interact with the aryl

hydrocarbon receptor (AHR) to drive Treg development and

prevent GVHD (58–61). Furthermore, L-kynurenine can inhibit

mTOR activation through the activation of GCN2, further driving

Treg development (62, 63). The expression of arginase, which

degrades arginine, represents another pathway used by MDSCs to

dampen immune responses (64–66). The amino acid arginine is an

essential amino acid for T cell activation and proliferation. The
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expression of arginase is induced by IL-10 and TGF-b signaling but

is restricted to G-MDSCs in humans, possibly implicating a positive

feedback loop between IL-10/TGF-b producing M-DSCS and the

development of G-MDSCs (64–66).

Both TGF-b and IL-10 are two wel l es tab l i shed

immunosuppressive cytokines secreted by MDSCs that have a

dramatic impact on Treg biology (Figure 1). TGF-b is directly

connected with the expression of FOXP3 and is an essential

component of the polarization of Tregs (67–69). IL-10

meanwhile, has not been shown to be directly involved in the

polarization of Tregs but has well established effects on the

activation and proliferation of Tregs with the blocking of IL-10 in

a mouse model of rheumatoid arthritis sufficient to prevent the

immunosuppressive impact of Tregs (70). MDSCs are also potent

producers of prostaglandins which have been shown to have both

pro- and anti-inflammatory properties. In the context of T cell

biology though, recognition of PGE2 by the receptors EP2 or EP4

have been shown to prevent the polarization of T cells into TH1 cells

and directly promote the expression of FOXP3 similar to TGF-b
(67, 71–73). Additionally, the prostaglandin PGI2 has also been

shown to license Treg suppressive activity through the inhibition of

the b-catenin pathway (72).
Factors promoting MDSC development

Since MDSC were first thought to only be immature cell

populat ions derived from aberrant myelopoies is and

granulopoiesis, the biological factors that influence MDSC

formation from mature cells have not been as rigorously studied

(74). From the limited research into this important biological

phenomenon though, the field has begun to coalesce around the

hypothesis that MDSCs develop in response to the uptake of

extracellular vesicles (which include exosomes) secreted from cells

instead of a specific soluble factor or cell contact interaction. To

date, studies have found that extracellular vesicles from a variety of

cells including melanoma, chronic lymphocytic leukemia and

multiple myeloma cells are able to promote MDSC development

(48, 75–77). MDSC development from exosomes has also been

shown for non-malignant mesenchymal stromal cell (MSC)

exosomes (69, 78–81). With the growing evidence that exosomes

are sufficient to induce MDSCs, the biological factors controlling

this development and the utility of using exosomes as a novel

therapy must be explored.
Exosomes as the next
immunosuppressive therapy

Exosomes are a subtype of small lipid bound secreted

extracellular vesicles of endosomal origin ranging from 30-150nm

that contain and transfer functional cargo consisting of proteins,

lipids, microRNAs (miRNAs), mRNA and possibly even DNA (78,

82, 83). Exosomes mediate their biological function through the

presentation of proteins/lipids on their surface or by releasing their
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cargo after internalization. The targeting of exosomes to cell

populations is still poorly understood but is thought to be

correlated with their interaction with cell surface markers and/or

cells possessing phagocytic capacity (e.g., monocytes and

macrophages) (84) (Figure 1). Exosomes can be produced from a

variety of cell populations including Tregs but in this review, we will

primarily focus on exosomes derived from mesenchymal stromal

cells (MSCs) due to their connection with MDSC development and

subsequent expansion of Tregs.
miRNA driving MDSC development

As an ever-growing number of studies support the role of

exosomes in generating MDSC populations, the mechanism(s)

utilized by exosomes to generate these MDSC populations

remains largely unexplored (Figure 1). A focus of several recent

studies has been the composition of microRNA (miRNA) cargo

within exosomes. miRNAs are short 19-22 nucleotides long and are

the most abundant cargo within the exosomes (85). The primary

role of miRNA is gene regulation, specifically as post-

transcriptional regulation by targeting complementary mRNA

and inhibiting protein synthesis (85). While the vast majority of

different miRNAs expressed within humans makes this endeavor

challenging, several studies have been able to use the miRNA

repertoire within exosomes to distinguish healthy from malignant

patients (48, 75, 76). One study identified miRNA-10a within

exosomes as a driver of multiple myeloma progression while

other studies identified miRNA-155 as a driver of MDSCs from

melanoma- and CLL-derived exosomes (75, 76, 86). With exosomes

often loaded with a multitude of miRNAs and miRNAs able to

influence both transcription and post-transcriptional protein

expression, studying MDSC development represents an arduous

endeavor that is nevertheless essential to fully understand MDSC

development (87, 88).
The use of exosomes in the clinic

Compared to standard cellular therapies, exosomes have several

fundamental advantages including i) long-term storage, ii) low-

immunogenicity, iii) no requirement for HLA-matching and iv) the

ability to be mass-produced (79, 81, 89). Exosome-based therapies

also have an advantage over single-agent drugs/therapeutics

because they utilize multiple mechanisms to mediate their effect,

albeit their exact mechanisms are still being explored (79, 81). At

the time of publication, there are currently no FDA approved

exosome-based therapies for the treatment of GVHD.

Despite the lack of approved exosome-based therapies, there are

a growing number of pre-clinical studies using exosomes to treat a

variety of diseases. Most of these studies have utilized MSC-based

exosomes, which builds upon the growing field of MSC-based

cellular therapies, as they contain similar immunosuppressive

properties. A series of studies by one team of investigators have

sequentially shown that the treatment with human MSCs, or

exosomes “educated” myeloid cells were able to prevent lethal
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acute radiation syndrome (ARS) (78, 79, 82, 90). In addition,

MDSCs generated after treatment with MSC-exosomes were

better at promoting spinal injury recovery and revert

experimental pulmonary fibrosis (91, 92). In the context of

GVHD, several studies have shown that direct human MSCs or

MSC-exosome products can ameliorate GVHD when used

prophylactically (81, 93–96).

The use of MSCs for GVHD prevention and treatment has been

explored in a large number of trials with most reporting that MSCs

are safe and well tolerated. Unfortunately, the response rates among

trials varied considerably and FDA approval is still elusive (97).

Recently, there was one case report on the use of MSC-exosomes for

the treatment of chronic GVHD and another for steroid-resistant

acute GVHD (81, 98). While these groups reported that MSC-

exosomes were well tolerated with an overall beneficial impact on

the patient, larger multi-center trials will be needed to determine if

MSC-exosomes therapies can succeed where MSC cell therapies

could not. With the ability to generate exosomes in large quantities,

their ability to be frozen and used “off the shelf” for multiple

injections and their ability to be used in the allogeneic setting

without a loss in functional capacity, all indicate that exosome-

based therapies are poised to grow tremendously in the next decade.
Conclusion

The field of GVHD research is at an exciting inflection point

where the investigation into biologics as novel prophylaxis/

treatment modalities may soon become standard. While the three

modalities discussed in this review are all poised to make significant

advances toward clinical use, these biologic modalities are not

without their limitations. Similar to the experiences of CAR

manufacturing, the use of Tregs or MDSCs as a cellular therapy

will always be challenged with their production times, the

manufacturing process and capacity to be used in the allogeneic

setting. For these reasons, MSC-exosome treatment represents an

exciting and promising modality. Exosome treatments have the

potential to be used in the allogeneic setting, mass-produced for

repeated injections, and stored for immediate use. Their eventual

use in the clinic will ultimately be decided by their ease of use and

long-term efficacy compared to direct cellular therapies which boast

strong short term activity but are limited to a single infusion and

long-term activity.
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Promoting the expansion and activation of Tregs after allo-

HCT remains the most validated method of suppressing GVHD

though the optimal approach to achieve this remains under

investigation. Exploring the use of MDSCs and MSC-exosomes as

novel approaches to activate Tregs should be a focus of investigation

in the next decade. The development of these and other biologic-

based prophylaxis/treatment modalities will offer allo-HCT

recipients an improved quality of life by reducing off-target

toxicity and improving overall efficacy by directing their new

immune system to control the development of GVHD.
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