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Bullous pemphigoid (BP) is an autoimmune blistering disease that primarily

affects elderly individuals. The presentation of BP is heterogeneous, typically

manifesting as microscopic subepidermal separation with a mixed inflammatory

infiltrate. The mechanism of pemphigoid development is unclear. B cells play a

major role in pathogenic autoantibody production, and T cells, type II

inflammatory cytokines, eosinophils, mast cells, neutrophils, and keratinocytes

are also implicated in the pathogenesis of BP. Here, we review the roles of and

crosstalk between innate and adaptive immune cells in BP.
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1 Introduction

Bullous pemphigoid (BP) is an autoimmune blistering disease that primarily affects the

elderly. As a result of aging of the population, the incidence of BP has increased (1, 2) to

2.5–42.8 cases/million/year (3). The presentation of BP is heterogeneous, typically

manifesting as lesions such as tense blisters and erythematous and urticarial plaques.

Subepidermal separation with inflammatory infiltrates comprising eosinophils,

neutrophils, and lymphocytes has been observed (4). Linear deposition of autoantibodies
Abbreviations: BP, bullous pemphigoid; NC16A, 16th non-collagenous domain; Th cells, helper T cells; Tfh,

T follicular helper cells; Treg, regulatory T cells; CD40L, CD40 ligand; BMZ, basement membrane zone; C3,

complement 3; EETs, eosinophil extracellular traps; MMP-9, matrix metalloproteinase-9; NE, neutrophil

elastase; NETs, neutrophil extracellular traps; MCP-4, mast cell protease-4; C3a, activated third component of

complement; C5a, activated fifth component of complement; C3aRs and C5aRs, C3a and C5a receptors,

respectively; MPO, myeloperoxidase; NADPH, neutrophil-derived nicotinamide adenine dinucleotide

phosphate; CCL, CC chemokine ligand; CCR, CC chemokine receptor; IL, interleukin; IFN, interferon;

GM-CSF, granulocyte-macrophage colony-stimulating factor; TSLP, thymic stromal lymphopoietin cytokine;

BAFF, B-cell activating factor; MBP, major basic protein; ECP, eosinophil cationic protein; EPO, eosinophil

peroxidase; EDN, eosinophil-derived neurotoxin; TARC, thymus and activation-regulated chemokine; tPA,

tissue plasminogen activator.
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and/or complement 3 (C3) along the dermo-epidermal junction has

been detected by immunofluorescence analysis (4).

The pathogenesis of pemphigoid is unclear, but autoantibodies

to the hemidesmosome are implicated. Subepidermal blister

formation with obvious inflammatory-cell infiltration is a

hallmark of BP but not pemphigus disease (5). The pathogenesis

of BP involves various immune cells and factors, including B cells

(6), T cells (7), complement cells (5), mast cells (8), neutrophils (9),

and eosinophils (10). The pathogenetic role of interactions among

the aforementioned types of inflammatory cells is unclear. Here, we

review the immune cells and cytokines implicated in the

pathogenesis of BP.
2 Immune cells

2.1 Adaptive immunity

2.1.1 B cells and autoantibodies
B cells are thought to play a critical role in the pathogenesis of

BP, which is confirmed by the efficiency of B-cell depletion therapy

for refractory pemphigoid (11). It can also be supported by the

increased expression of BAFF (B-cell activating factor) in BP (12,

13) and that lower peak serum BAFF levels after rituximab

treatment in BP patients predict relapse and a need for earlier

intervention (12, 13). Most BP patients have serum autoantibodies

to the BMZ, which are termed BP180/type XVII collagen/BPAG2

and BP230/BPAG1; these are key components of hemidesmosomes,

which mediate adhesion of the epidermis to the dermis. The

pathogenic autoantibodies implicated in BP are produced by B

cells. The mechanism by which autoreactive B cells are activated to

produce autoantibodies has been extensively investigated.

BP180 is a transmembrane protein of the hemidesmosomes in

basal keratinocytes. The extracellular domain of BP180 contains 15

interrupted repeated collagenous domains, and its structure consists

of a globular head, central rod, and flexible tail. BP180 is inserted

into the lamina densa via the rod domain and loops back through

the lamina densa via its N-terminal tail (14). Several epitopes of

BP180 have been identified, and differential epitope recognition is

associated with clinical severity (15). The extracellular portion of

the 16th non-collagenous domain (NC16A) of BP180 is the main

epitope targeted by autoantibodies. IgG autoantibodies deplete

BP180 in cultured normal human keratinocytes, thereby reducing

their adhesion (16). The injection of mice with rabbit anti-mouse

BP180 antibody induces blisters (17). Anti-human BP180 IgG

produced by immunized mCol17+/- mother mice can induce BP

lesions in their neonates whose skin expressed human but not

mouse COL17 (18, 19). BP180 NC-16A-specific IgG autoantibodies

are of the IgG1 and IgG4 subclasses (20). After binding to BP180-

NC16A antigen, IgG1 recruits C3 to activate the complement

cascade (21). In contrast, anti-NC16A IgG4 autoantibodies are

complement-independent (22). IgG4-antigen complexes recruit

various inflammatory cells, which release cytokines that induce

the separation of the BMZ and local inflammation. IgG4

autoantibodies may block IgG1 and IgG3 by binding to NC16A,

thereby inhibiting inflammation (23). IgG1 and IgG4 autoantibody
Frontiers in Immunology 02
titers are implicated in disease activity in BP (20). BP230, a

cytoplasmic protein of the hemidesmosomes, is a plakin-family

protein consisting of N-terminal, C-tail, globular, and central rod

domains. BP230 serves as a bridge by binding to BP180 via its N-

terminal domain and to the intermediate filament-binding domain

via its C-tail domain. Anti-BP230 IgG autoantibodies, which are of

the IgG1 and IgG4 subclasses, are present in most BP patients and

typically target the C-tail and intermediate filament domains (24).

The pathogenic role of anti-BP230 autoantibodies is unclear. The

anti-BP230 IgG titer is not associated with disease severity but is

implicated in atypical BP phenotypes (25, 26). In an anti-BP230

mouse model, anti-BP230 autoantibodies induced blister formation

in the absence of BP180 (27).

IgE-mediated autoimmunity may be involved in BP blister

development (28, 29). IgE autoantibodies target the intracellular

domain of BP180. IgE autoantibodies induce BP180 internalization

from the surface of basal keratinocytes, thereby suppressing their

adhesion (30). IgE deposition along the dermo-epidermal junction

was detected in perilesional skin (31–33). Circulating total IgE is

elevated in 60%–85% of BP patients. BP180 IgE was detected in

22%–100% of BP patients (34, 35). BP230-specific IgE is prevalent

in BP (35, 36). The high IgE autoantibody level in BP patients may

necessitate aggressive treatment (37). However, the relationship

between BP180NC16 IgE and disease severity is unclear (32, 38).

IgE production and its downstream effects are regulated by a

complex network of cell-bound and soluble receptors, such as FcϵRI
and CD23/FcϵRII. The expression of CD23 and FcϵRI on

circulating eosinophils, mast cells, basophils, and B cells is

increased in BP patients (39–42). Similarly, soluble CD23

expression is elevated in serum and blister fluid from BP patients

(43, 44).

2.1.2 T cells
Autoreactive T cells have been detected in the peripheral blood

of BP patients with active disease but not in the blood of those in

remission (45, 46). T-cell activation by an autoantibody molecule

can induce a variety of responses of B cells to a cross-reactive

version of the original epitope (47). In BP, CXCL12, which is

derived from infiltrated CD3+ T cells in lesions, induced the

chemotaxis and accumulation of CXCR4+ B cells by activating the

transcription factor c-Myc, thus promoting B-cell differentiation

into autoantibody-secreting cells and facilitating autoantibody

production (48). CD3+ T cells are categorized as cytotoxic (CD8+)

or helper (CD4+) T cells (Th cells). CD4+ Th cells play a central role

in activating immune cells in BP. CD4+ T cells are classified as Th1,

Th2, Th17, T follicular helper (Tfh) cells, or regulatory T (Treg)

cells depending on the inflammatory reaction (49). The Th1/Th2,

Th17/Treg, and Tfh/Treg ratios are important for immune

tolerance (50–53).

Th2 cells and IL-4 play a role in the pathogenesis of BP by

promoting autoantibody production by B cells (54). B-cell

activation by Th2 cells or surface-clustered immunoglobulins

bound to the epitope of the antigen initiates this process (55). P2

(492–506 aa, VRKLKARVDELERIR) and P5 (501–515 aa,

ELERIRRSILPYGDS), which are both peptides of BP180 NC16A

(the main antigen in BP), are important for IL-4 production by Th2
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cells and autoantibody production by B cells (54). The activation of

Th2 cells in BP is consistent with predominant IgG4 autoantibody

production: IL-4 regulates IgG isotype switching, thereby

amplifying IgG4 production (56). IL-4 also promotes IgE isotype

switching to stimulate IgE production (57, 58). IL-4 and IL-13 are

mainly secreted by Th2 cells. The efficacy of dupilumab

(autoantibody against IL-4 and IL-13R) in BP implicates type II

inflammation in its pathogenesis (59). Moreover, autoreactive Th2

and Th1 cells regulate the autoantibody response to the

immunodominant sequences of BP230 (46). In experimental BP

models, CD4+ T cells were crucial to promoting the production of

pathogenic anti-hCOL17NC16A IgG, leading to active disease (60).

Treg cells maintain peripheral immune tolerance by

suppressing autoreactive T cells (61). The contribution of Treg

cells to BP is controversial. In a mouse model, Tregs alleviate

pemphigoid lesions by altering the migratory capabilities of

myeloid cells (62), and an absence of Treg cells leads to

pemphigoid lesions (63). In another mouse model, Treg cells

suppressed steady-state autoimmune reactions to BP230 and

COL17 (64). CD4+ CD25brightFOXP3+ Treg-cell expression is

increased in peripheral blood and skin lesions from BP patients

(65, 66). In conventional BP patients, the expression levels of total

Tregs and Treg subsets were increased before, and decreased

after, systemic corticosteroid treatment. The expression of

CD45RA−Foxp3hi effector Treg cells is positively correlated with

disease severity in conventional BP, and CD45RA+Foxp3lo-naive

Treg cell expression is positively correlated with disease severity in

DPP-4i related BP (67). Differences in results among studies may be

explained by the use of different markers of Tregs.

Tfh cells promote the production of high-affinity autoantibodies

by B cells in germinal centers. CXCR5, ICOS, Bcl-6, CD40 ligand

(CD40L), and PD-1 are membrane-bound markers of Tfh cells (68).

IL-21 is preferentially expressed by Tfh cells and regulates humoral

responses by modulating B-cell proliferation and class switching

(69). BP patients have high plasma levels of Tfh cells and IL-21 and

increased CXCR5 expression in lesions (70). In addition, CXCL13,

which recruits CXCR5+ Tfh cells, is increased in BP lesions and

peripheral blood and is positively correlated with the serum anti-

BP180-NC161 titer (71). The inhibition of Tfh-cell factors (e.g.,

CD40L, PD-1, ICOS, and IL-21) suppresses autoantibody

production (72–75).

The role of Th17 cells in the pathogenesis of BP is controversial.

Th17 cells promote autoimmune pathology by secreting IL-17, IL-

21, IL-22, IFN-g, and granulocyte-macrophage colony-stimulating

factor (GM-CSF) (76). Two single-nucleotide polymorphisms,

rs2201841 and rs7530511, of IL‐23R encoding the receptor for IL-

23, which is an upstream cytokine of IL-17, are associated with BP

(77). IL-17A+CD4+ lymphocytes were elevated in BP peripheral

blood and skin lesions (53, 78). The absence of the NC14A domain

of BP180 in mice induced an IL-17-associated autoimmune

response against the cutaneous basement membrane, which was

ameliorated after anti-17A treatment (79). IL-17A-deficient mice

were protected against autoantibody-induced BP (78). IL-17

upregulates CXCL10, which increases matrix metalloproteinase-9

(MMP-9) secretion in monocytes and neutrophils, and promotes

blister formation (80, 81). Clinical trials with biologics targeting the
Frontiers in Immunology 03
IL-17/IL-23 axis (NCT04117932 and NCT04465292) were

conducted in BP patients.
2.2 Innate immunity

2.2.1 Eosinophils
Eosinophilic infiltrates and peripheral eosinophilia are features

of BP and are associated with disease severity and outcome (82, 83).

Eosinophil degranulation is prominent in early BP lesions and is

essential for blister formation (84). The localization of eosinophils

to the BMZ is dependent on IgG and complement fixation (85).

However, the interaction of eosinophils with IgE may induce their

degranulation (86). Eosinophils highly express FcϵRI, which

promotes their interaction with BP IgE autoantibodies (which

results in eosinophil degranulation and blister formation) (28,

40). Eosinophils also promote initiation of the coagulation

cascade (87). In BP patients treated with omalizumab, an

autoantibody targeting IgE, disease severity was closely related to

peripheral eosinophils, but not IgG (29).

Eosinophils exposed to eotaxin, GM-CSF, IL-5, IFN-g, and
thymic stromal lymphopoietin cytokine (TSLP) promote the

release of toxic granule proteins, including major basic protein

(MBP), eosinophil cationic protein (ECP), eosinophil peroxidase

(EPO), and MMP-9; in turn, these induce a local inflammatory

response (84, 88–91). Eosinophil extracellular traps (EETs), which

have a web-like structure containing nuclear DNA and proteins,

were also discovered in BP lesions (92). IL-5, which is elevated in

blister fluid, is essential for toxic protein release by eosinophils and

the separation of keratinocytes (93). ECP, MBP, and EPO are

increased in BP lesions and plasma and directly promote the

separation of keratinocytes (94). In addition, ECP and eosinophil-

derived neurotoxin (EDN) are decreased in plasma after

immunosuppressive treatment, suggesting that these markers are

associated with disease activity (95). An initially low level of ECP

may promote remission within the first year (95). Benralizumab, a

humanized IgG1k monoclonal autoantibody against the IL-5R a
subunit, and bertilimumab, a humanized monoclonal autoantibody

targeting eotaxin-1 (CCL-11), are currently being evaluated in

clinical trials as treatments for BP (NCT02226146 and 04612790).

2.2.2 Neutrophils
Neutrophils infiltrate BP skin lesions and release proteolytic

enzymes and reactive intermediates to promote inflammation. A BP

model suggests that neutrophils are a determinant of disease

phenotype (96, 97). The cytokines and proteases secreted by

neutrophils include myeloperoxidase (MPO), neutrophil elastase

(NE), MMP-9, and neutrophil-derived nicotinamide adenine

dinucleotide phosphate (NADPH). These cytokines degrade the

extracellular matrix and split dermal–epidermal junctions, thus

exerting an immunomodulatory effect in autoimmune diseases

(81, 98, 99). The formation of neutrophil extracellular traps

(NETs), like EETs, is increased in BP peripheral blood and

lesions and correlates with disease activity (100, 101). In vitro,

BP180-NC16A antigen-antibody complexes can induce NETosis,

releasing NETs through a cell death process (9). Elevated NETs in
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BP patients boost autoantibody production by inducing B-cell

differentiation into plasma cells, an effect mediated by MAPK P38

cascade activation (9).

2.2.3 Mast cells
Mast cells accumulate and degranulate in early BP lesions (8).

The role of mast cells in pemphigoid is debated (102, 103). FcϵRI, an
IgE receptor expressed on mast cells, may induce IgE-mediated

inflammation, urticarial plaques, skin edema, and eosinophil

accumulation and activation (8). Mast cells with IgE and BP180

peptides are present in BP lesions and induce mast cell

degranulation (104). Multiple inflammatory cytokines and

proteases are released from mast cell granules following their

activation. Tryptase, a marker of mast cells, is increased in blisters

of BP and related to the BP autoantibody titer to the BMZ.

Moreover, the plasma level of tryptase is related to BP

autoantibodies (105). IL-5, released by mast cells, promotes

eosinophil accumulation and activation in BP. In BP models,

activated mast cells release mouse mast cell protease-4 (MCP-4),

a homolog of human chymase, which activates MMP-9 and cleaves

BP180 (106). MCP-4 also activates NET release by neutrophils,

thereby stimulating autoantibody production by B cells (9, 107).

Mast cells express IgG receptors (FcgRIII, FcgRIIa, and FcgRI)
and C3a and C5a receptors (C3aRs and C5aRs, respectively), which

are important for complement activation and IgG-induced

inflammation (108, 109).
2.2.4 Keratinocytes
Keratinocytes are implicated in the pathogenesis of BP. The

separation of keratinocytes, induced by BP autoantibodies via Rac1/

proteasome activation, is critical for blister formation (110).

Keratinocytes secrete thymus and activation-regulated chemokine

(TARC/CCL17), a ligand for CCR4 and CCR8 important for the

migration of these receptor-expressing cells (111). TARC is

increased in BP plasma and lesions (112, 113). Keratinocytes

express tissue plasminogen activator (tPA) after BP180

autoantibody activation (114). tPA, a component of the

plasminogen/plasmin system, may interact with MMP-9 or NE to

promote inflammation (115, 116).
2.2.5 Complement
Linear complement deposition along the dermal–epidermal

junction occurs in >80% of BP patients (117). A role for the

classical and, to a lesser degree, alternative complement pathways

in BP blister formation has been reported (118).

The anti-BP180 NC16A IgG serum level is significantly higher in

patients with C3 deposition, and patients without blisters have

significantly fewer C3 deposits (117). Antigen-IgG1 autoantibodies

binding to the BMZ trigger complement activation (21). C3 activation

at the dermal–epidermal junction leads to the formation of chemotactic

peptides (activated third component of complement [C3a] and

activated fifth component of complement [C5a]) and the recruitment

of neutrophils, eosinophils, and macrophages to this site (85, 108, 118,

119). The activated fifth component of complement (C5a), along with

C5a receptor 1 (C5aR1), but not C5aR2, plays a role in the early phase
Frontiers in Immunology 04
of BP by promoting neutrophil standstill and leukotriene release in the

endothelium; in turn, this induces neutrophil migration to the

interstitial space via an autocrine/paracrine circuit (120, 121). C5-

and C4-deficient mice showed no blisters after mCol17 IgG injection

(118). Also, no BP lesions appeared in non-C1q-binding anti-hCol17

IgG1 mutation COL17 humanized mice (21). A targeted C1s inhibitor

is under evaluation as a BP treatment in a clinical trial (122).
3 Interactions among immune cells

3.1 Clinical heterogeneity may
be associated with different
types of pathogenesis

The mechanism of blister formation in BP is unclear. Some BP

patients primarily show eczema lesions for several years (123), and

others have BP autoantibodies but not lesions (124, 125). Some BP

patients present with blisters and bullous without obvious erythema,

whereas others show patchy erythema with few or no blisters (126). In

most BP patients, autoantibodies can be detected using commercial

products, although in a small proportion of patients, the tests are

negative (125). Most infiltrating immune cells in BP are eosinophils,

along with some neutrophils (127, 128) and other cell types. Some BP

patients respond well to topical steroids, whereas others need systemic

steroids and immunosuppressants. Also, refractory BP patients

respond differently to rituximab, dupilumab, and omalizumab (11,

129). Different immune cells induce inflammation in various BP

models (89, 96, 130). Whether autoantibodies or inflammatory cells

are more important in the pathogenesis of BP is unclear. The

pathogenesis of BP may involve several immune pathways and

infiltrating cell types; clinical presentations and the response to

different treatment regimens vary (131–133).
3.2 Crosstalk among immune cells

Autoantibody binding to pathogenic antigen cause the

separation of the BMZ in a complement-dependent or

-independent manner (5, 21, 85, 118) (Figure 1). Antigen–IgG1

binding to the BMZ triggers complement activation. C3a and C5a

induce neutrophil and eosinophil chemotaxis, as well as mast cell

degranulation, which in turn induce inflammation and blister

formation (21, 109, 118, 121).

Antigen–IgG4 induced the separation of the BMZ through a

complement-independent pathway (5, 22, 134). The antigen–

antibody combination leads to the recruitment of neutrophils and

eosinophils in BP, and, consequently, to the release of proteolytic

enzymes (5). Eosinophils trigger the separation of the BMZ in the

presence of IgE or IgG (84, 86, 89). The activation of intracellular

pathways leads to pyrolytic hemidesmosomes and attracts immune

cells, inducing the inflammatory cascade.

BP180 IgG autoantibodies modulate IL-6, IL-8, and tPA

expression in human keratinocytes (114). tPA activates plasmin

and MMP-9. Activated MMP-9 hydrolyzes the a1 protease

inhibitor, which is an NE inhibitor, thus enhancing NE activity
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(115, 116). Keratinocytes secrete TARC/CCL17, thereby activating

Th2 cells (111).

Tfh cells promote the production of high-affinity autoantibodies

by B cells in germinal centers. Activated Th2 cells in BP secrete IL-4,

which regulates IgG isotype and IgE switching, thereby amplifying

the production of IgG4 and IgE (56, 135, 136). IgE autoantibodies

induce BP180 internalization in basal keratinocytes, which reduces

their adhesion (30). IgE autoantibodies interact with eosinophils,

mast cells, basophils, and B cells via CD23 and FcϵRI (39–42). Mast

cells, activated by IgE, degranulate and release IL-5 to promote

eosinophil accumulation and activation (8, 104). Eosinophils are

attracted to the BMZ by IgG autoantibodies and complement

fixation (85) and degranulate after interacting with IgE (86).

Eosinophils secrete EETs and toxic granule proteins, such as ECP,

MBP, EPO, and MMP-9, after exposure to GM-CSF, IL-5, IFN-g,
eotaxin, and TSLP, which are involved in the local inflammatory

cascade (84, 88–91). In addition, activated mast cells release MCP-4,

which activates neutrophils. Activated neutrophils release cytokines

and proteases, including NE and MMP9, which degrade the

extracellular matrix and split dermal–epidermal junctions (81, 98,

99, 106). tPA, MMP-9, NE, and eosinophils can all lead to the

activation of the coagulation system, inducing possible thrombotic

and bleeding risks of skin and internal organs (137). Neutrophils also
Frontiers in Immunology 05
release NETs and stimulate autoantibody production by B cells (9,

107). Neutrophils, lymphocytes, monocytes, andmast cells release IL-

17 and IL-23, thereby significantly enhancing MMP-9 and NE

production by neutrophils (81, 138, 139). Mast cells express IgG

receptors (FcgRIII, FcgRIIa, and FcgRI), C3a, and C5aRs, which

interact with complement and IgG (108, 109).

In conclusion, a variety of immune cells and cytokines are implicated

in the pathogenesis of BP, including T cells, B cells, eosinophils, mast

cells, neutrophils, complement, and plasminogen/plasmin. However, the

underlying pathways require further investigation.
Author contributions

TY wrote the manuscript, and ZZ revised the article for

important intellectual content. All authors contributed to the

article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
FIGURE 1

Innate and adaptive immunity in bullous pemphigoid: B cells produce IgE, IgG1, and IgG4 autoantibodies to bind antigens to the BMZ. Antigen–IgG1
binding to the BMZ triggers complement activation. C3 activation at the dermal-epidermal junction leads to the formation of chemotactic peptides
(C3a and C5a), which recruit neutrophils and eosinophils and induce mast cell degranulation, thereby contributing to blister formation. Antigen–
IgG4 binding leads to the recruitment of neutrophils and eosinophils and, consequently, to the release of proteolytic enzymes. BP180-specific IgG
autoantibodies modulate IL-6, IL-8, and tPA expression in human keratinocytes. TARC/CCL17 secreted by keratinocytes can recruit and activate Th2
cells. IgE autoantibodies amplify the inflammation in BP by interacting with eosinophils, mast cells, and B cells. IgE autoantibodies could also induce
BP180 internalization in basal keratinocytes, thereby suppressing their adhesion. Tfh cells promote the production of high-affinity autoantibodies
from B cells via regulation by IL-21 and ICOS-ICOSL. Activated Th2 cells secrete IL-4, which regulates IgG isotype and IgE switching. Mast cells
activated by IgE degranulate and release IL-5 to promote eosinophil accumulation and activation. Eosinophils are attracted to the BMZ by IgG
autoantibodies and complement fixation, and degranulate after interacting with IgE. Eosinophils secrete EETs and toxic granule proteins, including
ECP, MBP, EPO, and MMP-9, which are involved in the local inflammatory cascade. In addition, activated mast cells release MCP-4, which activates
neutrophils. Activated neutrophils release cytokines and proteases, including NE and MMP-9, which degrade the extracellular matrix and split
dermal-epidermal junctions. Neutrophils also release NETs and stimulate autoantibody production by B cells. Neutrophils and mast cells release IL-
17 and IL-23, thereby significantly enhancing MMP-9 and NE production by neutrophils. tPA, a component of the plasminogen/plasmin system
secreted by keratinocytes, may interact with MMP-9 or NE to promote inflammation. What’s more, tPA, MMP-9, NE and eosinophils all could lead to
the activation of coagulation system, inducing thrombotic and bleeding risk of skin. BMZ, basement membrane zone; C3, complement 3; EETs,
eosinophil extracellular traps; MMP-9, matrix metalloproteinase-9; NE, neutrophil elastase; NETs, neutrophil extracellular traps; MCP-4, mast cell
protease-4; C3a, activated third component of complement; C5a, activated fifth component of complement; C3aRs and C5aRs, C3a and C5a
receptors, respectively; RBC, red blood cell; EOS, eosinophil; Th, helper T cell; Tfh, T follicular helper cell; Neu, neutrophil; B, B cell; Mast, mast cell;
MBP, major basic protein; ECP, eosinophil cationic protein; EPO, eosinophil peroxidase; TARC, thymus and activation-regulated chemokine; tPA,
tissue plasminogen activator.
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