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Background: Clear cell renal cell carcinoma (ccRCC) is the most frequently

occurring malignant tumor within the kidney cancer subtype. It has low

sensitivity to traditional radiotherapy and chemotherapy, the optimal treatment

for localized ccRCC has been surgical resection, but even with complete

resection the tumor will be eventually developed into metastatic disease in up

to 40% of localized ccRCC. For this reason, it is crucial to find early diagnostic and

treatment markers for ccRCC.

Methods: We obtained anoikis-related genes (ANRGs) integrated from

Genecards and Harmonizome dataset. The anoikis-related risk model was

constructed based on 12 anoikis-related lncRNAs (ARlncRNAs) and verified by

principal component analysis (PCA), Receiver operating characteristic (ROC)

curves, and T-distributed stochastic neighbor embedding (t-SNE), and the role

of the risk score in ccRCC immune cell infiltration, immune checkpoint

expression levels, and drug sensitivity was evaluated by various algorithms.

Additionally, we divided patients based on ARlncRNAs into cold and hot tumor

clusters using the ConsensusClusterPlus (CC) package.

Results: The AUC of risk score was the highest among various factors, including

age, gender, and stage, indicating that the model we built to predict survival was

more accurate than the other clinical features. There was greater sensitivity to

targeted drugs like Axitinib, Pazopanib, and Sunitinib in the high-risk group, as

well as immunotherapy drugs. This shows that the risk-scoring model can

accurately identify candidates for ccRCC immunotherapy and targeted

therapy. Furthermore, our results suggest that cluster 1 is equivalent to hot

tumors with enhanced sensitivity to immunotherapy drugs.
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Conclusion: Collectively, we developed a risk score model based on 12

prognostic lncRNAs, expected to become a new tool for evaluating the

prognosis of patients with ccRCC, providing different immunotherapy

strategies by screening for hot and cold tumors.
KEYWORDS

clear cell renal cell carcinoma, anoikis, immunotherapy, lncRNA, hot and cold tumors,
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Introduction

Renal cell carcinoma is a type of malignant tumor that develops

from the epithelial cells lining the renal tubules in the urinary system.

Among them, ccRCC is the most common, accounting for about 70%

-80% of all RCC, and the peak age of onset is 60-70 years old (1, 2). As

ccRCC is not sensitive to chemotherapy and radiotherapy, surgical

treatment remains the main treatment for ccRCC (3), but with

resection, up to 20% of ccRCC will be eventually developed into

recurrence with poor prognosis (4, 5). Despite the widespread use of

targeted drugs in the treatment of RCC, the median survival time

remains not as good as expected. Therefore, it is of vital necessity to

identify markers for early diagnosis and therapeutic targets of ccRCC

for individualized treatment.

Anoikis, a special type of programmed cell death, is triggered when

normal epithelial cells are deprived of connections to their extracellular

matrix (6), which ensures a dynamic balance of normal cell

proliferation, differentiation, and apoptosis. Anoikis-resistant tumor

cells are prone to facilitate regional or distant metastasis through blood

or lymph (7). The transformation and metastasis of malignant tumors

are premised on anoikis resistance, which is a characteristic of

malignant cells (7–9). Paoli et al. found that when cells adhere to

ECM, they can up-regulate the expression of anti-apoptotic proteins

such as Bcl-2 and NF-kB through the PI3K/AKT pathway, and down-

regulate the expression of pro-apoptotic proteins such as Bad and Bim,

thereby inhibiting the occurrence of anoikis (7). Ediriweera et al. also

pointed out that the activation of this signaling may be one of the main

mechanisms for tumor cells to resist anoikis (10). However, few studies

have systematically elucidated the influence of anoikis on ccRCC.

Long non-coding RNA (lncRNA) is closely related to cell

function and many diseases (11, 12). At present, studies have

demonstrated that lncRNAs are abnormally expressed in a variety

of cells and tumor tissues, and can participate in transcription, and

gene regulation, affecting tumor cell apoptosis, proliferation,

invasion, autophagy and epithelial-mesenchymal transformation

(13). Yue et al. reported that lncRNA DLEU1 is involved in the

invasion and metastasis of RCC by regulating Akt and EMT

pathways. Knockdown of DLEU1 suppressed the progression of

RCC (14). It was also investigated that the high expression of

lncRNA MALAT1 is significantly related to the malignant degree

of glioma and the poor prognosis of patients (15). Besides, Hu et al.

demonstrated that lncRNA PLAC2 can target the ribosomal protein
02
L36 of glioma and induce cell cycle arrest (16). However, the critical

role of anoikis-related lncRNAs in ccRCC has not been investigated.

Therefore, our study may elucidate the mechanism of anoikis and

lncRNAs in the prognosis, immune landscape, and drug treatment

of ccRCC.

Based on the complexity and role of immunosuppressive tumor

microenvironments, researchers have been committed to reversing

the “cold” tumors “hot” in recent years to create a more favorable

therapeutic environment for tumor immunotherapy and benefit

more patients (17). As lncRNA is highly evaluated as a new cancer

biomarker at present, we tried to reorganize patients based on

ARlncRNAs to effectively identify cold and hot tumors, improve

prognosis and increase accurate treatment in clinical practice.

In this study, we first explored the differential expression of

ARlncRNAs in ccRCC and their differential expression of potential

subtypes in ccRCC. Our model based on 12 ARlncRNAs can

effectively and accurately predict and judge the prognosis and drug

sensitivity of ccRCC patients. To effectively distinguish between hot

and cold tumors of ccRCC, we applied the R package

‘ConsensusClusterPlus’ to divide patients into 2 clusters. Different

clusters correspond to different immune microenvironments and

respond to different immunotherapy effects.
Methods

Data acquisition

The RNA-sequencing transcriptome data and corresponding

clinical information are available from the TCGA database (https://

portal.gdc.can-cer.gov/). After excluding patients with incomplete

clinical information and survival time less than 30 days from

further evaluation, 512 ccRCC patients were gathered for this study

in the aggregate, and randomly divided into train set and test set

according to proportion 1: 1. The characteristics of the 512 ccRCC

patients included in this study are shown in (Supplementary Table 1).

The disease-specific survival (DSS) or progression-free survival (PFS)

data of TCGA-ccRCC were downloaded from the UCSC Xena

platform (https://xena.ucsc.edu/public/). We obtained 640 anoikis-

related genes (ANRGs) integrated from Genecards (https://

www.genecards.org/) and Harmonizome (https://maayanlab.cloud/

Harmonizome/) dataset (Supplementary Table 2).
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Anoikis-related lncRNAs

Based on the 640 ANRGs obtained previously, 233 differentially

expressed genes in ccRCC were recognized by the limma R package

for subsequent analysis (Supplementary Table 3). As a final step, 3973

ARlncRNAs were further evaluated using correlation coefficient > 0.4

and p-value< 0.05 as the thresholds (Supplementary Table 4).
Construction of the ARlncRNA
signature model

Univariable Cox regression analysis was investigated to screen

out lncRNAs significantly related to the overall survival (OS) of

ccRCC patients. 10-fold cross-validation and LASSO Cox

regression was applied to reduce the possibility of overfitting.

Univariable Cox regression analysis was performed on the

ARlncRNAs screened by LASSO, and 12 ARlncRNAs related to

prognosis were obtained for modeling. Based on the median value

of the risk score, ccRCC patients were categorized into high-risk

and low-risk groups. Using the R software package survminer, we

calculated the Kaplan-Meier survival curve (https://CRAN.R-

project.org/package=survmine). To further evaluate the

independent prognostic value of the model, univariable and

multivariable analyses of age, gender and grade were further

performed. The established model’s ability to make accurate

predictions was primarily measured using the C-index.
Construction and verification of
predictive nomogram

Nomogram is a common and powerful tool for evaluating

prognosis in oncology and medicine. The nomogram was built

based on the R package “rms” (https://CRAN.R-project.org/

package=rms). 1-year, 3-year, and 5-year survival calibration

curves were drawn to determine whether the predicted and actual

results are consistent.
Tumor microenvironments and immune
checkpoint profile analysis

TIMER (18), CIBERSOR (19, 20), QUANTISEQ (21),

MCPCOUNTER (21), XCELL (20), and EPIC database (22) were

performed to estimate the relative infiltration abundance of

immune cells of ccRCC. And the immune cell proportion in

tumors was identified by performing CIBERSORT, a gene

expression-based deconvolution algorithm to describe the cell

constitution of tissues in a more detailed way, then we obtained

22 kinds of immune infiltrating cells, including B cells, neutrophils,

eosinophils, etc. Correlation coefficients were calculated for

correlation analyses between the immune cell infiltration and risk

score. The ESTIMATE algorithm was applied to further investigate

the infiltration of tumor cells and stromal cells by utilizing the

unique properties of the transcription profiles of cancer samples
Frontiers in Immunology 03
(23). SSGSEA algorithm in the GSVA package was performed to

identify distinct types of immune cells and immune-related

functions by transforming marker gene expression patterns into

quantities of immune cell populations in ccRCC samples (23, 24).

The scores in two groups were visualized in the boxplot generated

by the ggpubr package. The expression difference of immune

checkpoint genes between the low- and high-risk patient groups

was determined by applying “ggpubr” packages of R (https://

CRAN.R-project.org/package=ggpubr).
Drug sensitivity

The Genomics of Drug Sensitivity in Cancer (GDSC) database

was applied to explore the drug sensitivity, and the R package

“pRRophetic” was used to calculate half-maximal inhibitory

concentrations (IC50) for patients with ccRCC by constructing

the ridge regression model based on the data from the CCLE for the

inserted drugs (25, 26). In order to better individualize therapies in

specific tumor subgroups, we performed correlation analysis of risk

score and IC50 of four common compounds for ccRCC patients.
Cluster analysis

To explore the response of patients with ccRCC to

immunotherapy, we decided to classify patients into distinct

clusters based on CC R package (https://www.bioconductor.org/

packages/release/bioc/html/ConsensusClusterPlus.html). PCA,

Kaplan-Meier survival analysis, and t-SNE based on the R

package were carried out to demonstrate that the classification we

constructed can distinguish patients well (27, 28). The immune

correlation analysis and drug sensitivity were identified according

to the ggplot2 and pRRophetic R packages (26).
Statistical analysis

Spearman correlation coefficients were calculated for correlation

analyses to assess the relationship between drug sensitivity and risk

score. All analyses were performed based on R v4.1 software. All p-

values are two-tailed, and the threshold to define statistical significance

was established as p-value< 0.05 unless otherwise specified.
Results

Identification of anoikis-related lncRNAs in
patients with ccRCC

The flowchart of our study is shown in Figure 1. The ARlncRNAs

in ccRCC were detected by co-expression analysis, and a co-expression

relationship network diagram was constructed (Figure 2A). The

differentially expressed of lncRNAs were screened out, respectively,

with the p< 0.05, |log2FC| > 1 as the screening criteria, and the top 100

differentially expressed lncRNAs with |log2FC| values between normal
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and tumor tissues were plotted by a heat map (Figure 2B). Figure 2C

demonstrated the differential lncRNA volcano map of ccRCC. As

shown in Figure 2D and Figure 2E, combined with survival data of the

ccRCC samples, univariable Cox proportional hazards regression

analysis and the LASSO Cox regression analysis with 10 times cross

and verification were applied. Thenmulti-factor cox regression analysis

was performed to obtain the lncRNAs used for modeling and the

corresponding coefs in Supplementary Table 5.
1

Establishment of anoikis-related
lncRNA model

Based on regression coefficients obtained by the multivariable

Cox regression analysis, 12 lncRNAs were input to establish the

following risk score formula:

 Risk   Score   =   LINC02609�   (1:15935260279794)   +  AC007637:

�   ( −   1:13652029010858)   +   ELDR  �   2:00073479059889   )

+  AC107021:2  �   (   0:261485217934968   )   +  AL022238:2

�   (   0:691751913458257   )   +  AC005899:7  

�   (   0:916443655715418   )   +   LINC01522

�   (   1:51606402310246   )   +  MYOSLID

�   (   0:759701583473995   )   +  AC002070:1

�   (   −   0:691247797327996   )   +  AC135178:2

�   (   1:3815487184505   )   +  AL590822:3

�   (   0:93143791519371995   ) + AL355922:1

�(0:953715193317185)
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Patients with ccRCC were randomly assigned to the test and

train set and further separated into high- and low- groups based on

the median risk score. Figures 3A, E, I revealed that OS was

significantly higher in the low-risk group compared with the

high-risk subgroup in the overall, train, and test sets. The

distribution of risk scores and survival status showed that higher

risk scores indicated more deaths in these groups of patients with

ccRCC (Figures 3B, C, F, G, J, K). The heat map results showed that

except for AC007637.1 and AC002070.1, the other 10 lncRNAs

were well expressed in the high-risk group (Figures 3D, H, L). Next,

we analyzed the progression-free survival (PFS) and disease-specific

surv iva l (DSS) for both high- and low-r i sk groups

(Supplementary Figure 1).
Model validation

On behalf of exploring the predictive accuracy of the model for

prognosis, single-factor and multi-factor Cox regression analyses

were taken to indicate that the risk score is an independent factor in

predicting the prognosis of ccRCC patients (P< 0.001, Figures 4A,

B). Next, the ROC curves of the constructed risk score were plotted

combined with other clinical features, and it was proven that

especially risk score had the highest AUC (0.755) among these

factors, indicating that our constructed model had higher accuracy

for the prediction than other clinical features (Figure 4C). It was

revealed by the Figure 4D that 1-year, 3-year, and 5-year survival

with the AUC values of 0.755, 0.720, and 0.773, respectively,

performing a strong ability to predict. PCA and t-SNE analyses

were applied to verify that the risk score can significantly

distinguish patients (Figures 4E, F), demonstrating that the risk

model based on the expression profile of 12 ARlncRNAs was a
FIGURE 1

Flow chart of the whole design.
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potential prognostic marker. The C-index suggests that the risk

score outperformed other factors in predicting the outcome

(Supplementary Figure 2).
The model guides the clinical treatment of
different types of patients

We performed a score difference analysis of different ages, stages,

genders, and hematogenousmetastasis. Figures 5A–D revealed a higher

risk score degree in ccRCC patients older than 65 years old, male,

STAGE III-IV, and m1. The KM survival analysis demonstrated that

patients in the low-risk group, stratified by age, gender, stage, and

presence of metastasis (Figures 5E–L), had longer overall survival,

indicating that our model was applicable to patients with various

clinical characteristics of ccRCC.
Construction and verification of
predictive nomogram

In addition, we developed a prognostic nomogram that can

estimate the probability of patient survival. For instance, with a

score of 182, the predicted survival rates were 0.984, 0.955, and

0.924 for 1, 3, and 5 years, respectively (Figure 6A). The

calibration curves evaluated the good agreement with the ideal

model (gray curve) and nomogram prediction (Figure 6B). ROC

curve showed that nomogram had the strongest predictive value

(Figure 6C). Combined with clinical features, univariable and

multivariable Cox analysis were performed to demonstrate that
Frontiers in Immunology 05
Nomogram also had independent prognostic survival ability

(Figures 6D, E).
Risk score and Immune infiltration
landscape evaluation

The correlation of risk score and TME cell infiltration was

investigated by applying several algorithms (Figure 7A), showing

that the relationship between immune cells and high-risk groups on

different platforms is closer. We further analyzed the correlation

between immune cells and risk scores in the CIBERSORT platform.

From the performance in Figures 7B-I, T cell CD8 +, CD4 +

memory activated, Macrophage M0, Macrophage M1, and

Neutrophil were positively correlated with the risk score, while B

cell naïve, Macrophage M2 and Mast cell activated were negatively

correlated with the risk score.

The tumor and its environment are mutually interdependent

and antagonistic to one another. According to the TME score, the

low-risk group had a higher immune score and estimated score,

nevertheless, the stromal score did not significantly differ between

the two groups (Figures 8A-C). Based on the infiltration abundance

of the different immune cell populations in the ccRCC TME

quantified by ssGSEA analysis, the proportion of immune cell

subsets, such as CD8 + T cells, T helper cells, and TIL, increased

significantly in the high-risk group (Figure 8D). Several immune

pathways such as Type I IFN Response, T cell co-stimulation, and T

cell co-inhibition had significant differences in the high and low-

risk groups (Figure 8E). We further analyzed the differences in

immune checkpoint expression between the high- and low- risk
B

C D E

A

FIGURE 2

Anoikis-related lncRNAs. (A) The co-expression relationship network diagram of anoikis-related genes and lncRNAs. (B, C) The heat map and
volcano map of differentially expressed lncRNAs. (D, E) The LASSO regression was performed, using the minimum criterion.
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L

A

FIGURE 3

Construction of the ARlncRNA signature model in the train, test, and overall test. Overall survival analysis, risk score distribution, individual survival
status, and heat map of 12 ARlncRNAs expression in high and low-risk groups for (A-D) the overall set, (E-H) the train set, and (I-L) the test set.
D

A B

E F

C

FIGURE 4

The validation of 12 lncRNAs prognostic model. (A, B) Single-factor and multi-factor Cox regression analysis of the risk score combined with clinical
features. (C) Comparison of ROC curves for risk score and other clinical factors. (D) The ROC curves for 1-, 3-, and 5-year overall survival
predictions by the risk score model in the training set. (E, F), PCA, and t-SNE analyses of the train set.
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groups and found that only HAVCR2 and CD160 were highly

expressed in the low-risk group, and the rest were highly

expressed in the high-risk group (Figure 8F).
Exploration of an individualized clinical
treatment plan for two groups

The sensitivity analysis of three common targeted drugs

displayed that the IC50 of Axitinib, Pazopanib, and Sunitinib in

the high-risk group was lower (Figures 9A-C), indicating that the

targeted drugs may have a better therapeutic effect on high-risk

groups. There was valuable guiding significance for the medication

of patients with ccRCC in actual clinical practice.
Unsupervised cluster analysis distinguished
hot and cold tumors

Despite the important value of the risk score we established for

tumor prognosis and systemic treatment, it cannot effectively

identify hot and cold tumors. Several studies have proven that

cluster analysis can be applied to distinguish hot and cold tumors

and guide immunotherapy (29–32). Based on the expression levels

of Anoikis-Related lncRNAs, ccRCC patients were classified into

two clusters using consensus clustering analysis (Figure 10A,

Supplementary Figure 2). Survival curve analysis demonstrated

that cluster 1 was associated with a favorable prognosis
Frontiers in Immunology 07
(Figure 10B). Moreover, Cluster1 was associated with a low-risk

score, while cluster 2 was associated with high-risk score

(Figure 10C), indicating that the cluster may be strongly related

to the risk score. PCA and t-SNE analysis were carried out to

demonstrate that there were significant differences in the two

clusters (Figures 10D, E).

To better illustrate the role of a cluster in TME landscapes,

we also inspected the implication between cluster and immune

infiltration. Cluster 2 showed a high degree of an immune score,

stromal score, and estimated score (Figures 11A-C). Then, we

compared the ssGSEA score of immune cells and pathways using

the Wilcoxon test and found that immune cells such as Myeloid

dendritic cell and CD8 + T cells were significantly higher in the

cluster 1 (Figure 11D), and the immune functions such MHC

class I was significantly related to the cluster 1 (Figure 11E).

These analyses suggested that cluster 1 may be summarized as

the hot tumor, possibly featured by the good response to

immunotherapy, leading to individual immunotherapy

regimens in ccRCC.
Therapeutic drug treatments guided by
distinct clusters

By comparing drug sensitivity, we found that Dasatinib,

Bosutinib, and Nilotinib were more sensitive in cluster 2, and

Lapatinib was more sensitive in cluster 1, which can further help

guide the use of clinical targeted drugs (Figures 12A-D).
B C D

E F G H

I J K L

A

FIGURE 5

Risk score difference analysis of different clinical features. (A-D) Box line diagram and (E-L) Kaplan-Meier survival curves in groups stratified by
gender, age, stage, and M status.
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Discussion

In this study, a risk-scoring model was developed using 12

prognostic lncRNAs. The model’s accuracy was assessed through

ROC curve analysis, as well as univariable and multivariable

analyses. In addition, we found that the survival rate was lower

for individuals in the high-risk group than the low-risk group.

However, people in the high-risk group had a lower IC50 of targeted

drugs, meaning they were more sensitive to drugs. In addition,

previous research has demonstrated that immune cell infiltration

was associated with immune efficacy (33, 34). Our findings

demonstrated that there are significant variations in immune cell

infiltration observed between the high and low-risk groups. It shows

that the model we established can provide some thinking and help

for immunotherapy of patients with ccRCC.

We established a novel signature based on 12 prognostic

ARlncRNAs. Among the 12 ARlncRNAs in the signature,

LINC02609, ELDR, AC107021.2, AL022238.2, AC005899.7,

LINC01522, MYOSLID, AC135178.2, AL590822.3 and
Frontiers in Immunology 08
AL355922.1 were highly expressed in the high-risk group. The

high expression of LINC02609 not only easy to appear in advanced

and graded tumor tissues with distant metastasis but also had

significant prognostic potential (35). The human ELDR gene

highly expressed in neuronal stem cells (36). Subhayan et al.

proved the important role of lncRNAs ELDR in cancer, interacted

with RNA binding protein ILF3, and enhanced ILF3-Cyclin E1

signaling to enhance cancer growth (37). Previous studies have

shown that MYOSLID was a new serum response factor-dependent

lncRNA that regulated VSMC proliferation, apoptosis and

differentiation (38, 39). Zhao et al. suggested that MYOSLID

played a vital role in vascular remodeling, the basis of the

pathogenesis of vascular diseases (38). Ac007637.1 and

Ac107021.2 had been proven to be prognostic factors of cancer in

several studies, and the risk model respectively based on two

lncRNAs that could reliably forecast the prognosis of patients had

been successfully constructed (40, 41). The mechanism of

AL022238.2, AC005899.7, LINC01522, AC002070.1, AC135178.2,

AL590822.3, and AL355922.1 in cancer have not been reported.
B

C

D E

A

FIGURE 6

Construction and Verification of Predictive Nomogram. (A) The nomogram for predicting 1-year, 3-year, and 5-year survival rates (‘***’ p< 0.001). (B)
The calibration curves of the nomogram. (C) ROC curve of risk score and clinical features. (D, E) The univariable and multivariable Cox analysis of
nomogram. **p < 0.01; ***p < 0.001.
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Although the risk group has important value for tumor prognosis

and systemic treatment, it cannot identify hot and cold tumors. The

infiltration of immune cells in cold and hot tumors is different, and

the efficacy of immunotherapy is also different. Therefore, it is crucial

to distinguish between cold tumors and hot tumors and convert the

former into the latter. It has been reported that different clusters are

related to different tumor immune microenvironments and can

distinguish hot and cold tumors (29–32). Therefore, we divided the

patients into 2 clusters based on the R package CC, and the results

indicated that the higher CD8 + T immune cells infiltration of cluster

1. Previous studies have shown that CD8 + T cells are the main driver

of anti-tumor immunity (42). Additionally, the most prevalent

stromal cell type in TME, cancer-associated fibroblasts, promote

immunosuppression and support an environment that encourages

tumor growth as important elements of anti-tumor immunity (43,
Frontiers in Immunology 09
44). Our results show that cluster 2 Cancer-associated fibroblast is

higher. So, we speculate that c1 is a hot tumor. Previous studies have

shown that immunotherapy is effective against hot tumors but

ineffective against cold tumors (45, 46). Therefore, patients with

cluster 1 may have better efficacy in immunotherapy. This shows that

our classification can guide personalized treatment, based on this

lncRNA as a liquid biopsy, can be more convenient and effective to

distinguish between hot and cold tumors.

At present, renal CT and B-ultrasound are the most commonly

used auxiliary examination methods for the diagnosis of renal cell

carcinoma in China. RCC lacks obvious clinical symptoms in the

early stage, and there are no typical tumor markers for early

diagnosis. Some patients with RCC are in the late stage of RCC at

the first visit, unable to undergo surgery, and have a poor prognosis.

At present, receptor tyrosine kinase inhibitors represented by
D
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FIGURE 7

Risk score and Immune infiltration landscape evaluation. (A) Evaluation of immune cell infiltration in two groups. The correlation between the risk
score and infiltration of CD8+T cells (B), CD4+T cells (C), neutrophils (D), M1 macrophages (E), M0 macrophages (F), naïve B cells (G), M1
macrophages (H), and activated mast cells (I) was examined.
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FIGURE 8

Prediction of immunotherapy. (A-C) Differences in TME scores between high- and low-risk groups. (D, E) Analysis of immune cells an
checkpoint in two groups. **p < 0.01; ***p < 0.001.
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sunitinib have been widely used in clinical practice. However, data

analysis of 1059 patients showed that about 15% of patients with

advanced renal cell carcinoma were congenitally resistant to

targeted drugs, and the remaining patients often developed

resistance after 6 to 15 months of sunitinib treatment (47). Qu

et al. showed that LncARSR transmitted by exosomes competitively

binds to miR-34/miR-449 and leads to the formation of sunitinib

resistance (48). Therefore, it is particularly important to study

lncRNA in-depth and find drug-sensitive markers for renal clear

cell carcinoma. Our results showed that high-risk groups were more

sensitive to Axitinib, Pazopanib, and Sunitinib. In summary, we

established a large scoring model to provide a reference for drug

selection in patients with renal clear cell carcinoma.

Although our risk model showed promising potential in terms

of predictive power and distinguishing hot and cold tumors, it was

important to note that this study also had limitations that need to be
Frontiers in Immunology 11
considered. First, the data of this study are from public sources,

lacking evidence for further in vivo and in vitro experiments.

Secondly, we only verify internally, like He et al. (32). We tried to

download the information of patients with ccRCC from the

International Cancer Genome Consortium or GEO database, but

due to the lack of lncRNA expression data in these databases, we

could not calculate the corresponding risk score.
Conclusion

We established a prognostic model based on lncRNAs of 12 anoikis-

related genes that can be used as prognostic markers for patients and

guide targeted immunotherapy. In addition, the established classification

can distinguish hot and cold tumors. This provides some reference for

the clinical treatment of patients with ccRCC.
A B C

FIGURE 9

The differences in drug sensitivity of patients. (A) Axitinib, (B) Pazopanib, and (C) Sunitinib.
D
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FIGURE 10

Using consensus clustering analysis, patients can be grouped into two clusters. (A) Consensus Cluster Plus divides patients into two categories. (B),
Kaplan-Meier survival analysis. (C) Correspondence between typing and high and low risk groups. (D, E) PCA and t-SNE analyses were performed for
the two clusters.
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FIGURE 11

Infiltration of different immune cells in two clusters. (A-C) The degree of the immune score, stromal score, and estimated score in distinct clusters.
(D) A Heat map of immune cells in two clusters based on different platform algorithms. (E) The immune-related functions of two clusters were
analyzed by ssGSEA analysis. *p < 0.05; **p < 0.01; ***p < 0.001.
DA B C

FIGURE 12

IC50 of Dasatinib (A), Bosutinib (B), Nilotinib (C), and Lapatinib (D) targeted drugs in distinct clusters.
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