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Background: Immunogenic cell death (ICD) is a result of immune cell infiltration

(ICI)-mediated cell death, which is also a novel acknowledgment to regulate

cellular stressor-mediated cell death, including drug therapy and radiotherapy.

Methods: In this study, TCGA and GEO data cohorts were put into artificial

intelligence (AI) to identify ICD subtypes, and in vitro experiments

were performed.

Results: Gene expression, prognosis, tumor immunity, and drug sensitivity

showed significance among ICD subgroups, Besides, a 14-gene-based AI

model was able to represent the genome-based drug sensitivity prediction,

which was further verified in clinical trials. Network analysis revealed that PTPRC

was the pivotal gene in regulating drug sensitivity by regulating CD8+ T cell

infiltration. Through in vitro experiments, intracellular down-regulation of PTPRC

enhanced paclitaxel tolerance in triple breast cancer (TNBC) cell lines.

Meanwhile, the expression level of PTPRC was positively correlated with CD8+

T cell infiltration. Furthermore, the down-regulation of PTPRC increased the level

of TNBC-derived PD-L1 and IL2.
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Discussion: ICD-based subtype clustering of pan-cancer was helpful to evaluate

chemotherapy sensitivity and immune cell infiltration, and PTPRC was a potential

target to against drug resistance of breast cancer.
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1 Introduction

During the multi-stage development process of cancer, immune

surveillance, an immune process that recognizes and kills numerous

precancerous or cancerous cells, is generally considered to regulate the

normal cell differentiation, cancer cell proliferation, and cell death

modalities (1). With the development of cancer, cancer cells gradually

develop a variety of different strategies (such as acquiring defects in

antigen presentationmechanism) to escape the immune surveillance and

create an environment suitable for their proliferation, which is also

termed as the tumor microenvironment (TME) (2). The complex TME

ecosystem is composed of various immune cells and cancer cells. The

infiltration of immune cells plays a key role in tumor development and

therapeutic response. Some types of the immune cells in the TME can

lead to tumor immune escape by inhibiting the anti-tumor immune

response (3, 4).

Immunogenic cell death (ICD) is a type of regulated cell death with

different functions, which refers to the secretion and exposure of damage-

related molecular patterns (DAMPs) from dying tumor cells in the

tumor microenvironment (TME) to the immunosuppressed TME to re-

establish the immune surveillance. And it can engage both the innate and

adaptive immunities to activate tumor-specific immune responses (5–9).

DAMPs include the cell surface exposure to calreticulin (CRT), heat-

shock proteins (HSP70 and HSP90), extracellular ATP, high mobility

group box-1 (HMGB1) and type I interferons (IFNs), etc. (2, 10). During

ICD, the released DAMPs can bind to specific pattern recognition
02
receptors (PRRs) expressed by dendritic cells (DCs) and initiate a

cellular cascade, eventually leading to the activation of both innate and

adaptive immune responses (5, 11, 12).

Therefore, in the context of anti-cancer treatment, triggering ICD

is clinically significant based on its inherent role to enhance the

therapeutic effect by recruiting anti-tumor immune cells (7).

Clinically, drug-induced ICD is reported to positively correlate with

therapeutic response and is associated with immune enhancement of

TME (7, 13–16). However, most of the current studies focus on the

possibility and mechanism of using ICD to treat pan-cancer, and the

use of ICD in TME to predict drug sensitivity and prognosis in pan-

cancer treatment has not been well studied (7).

In this study, we aimed to construct a drug-sensitivity and

prognosis model for pan-cancer and analyze its relationship with

TME and ICD. Furthermore, we identified PTPRC as a pivotal ICG-

associated tumor driver gene (ICD-TDG) in regulating the CD8+ T

cell infiltration-mediated anti-tumor effect.

2 Materials and methods

This study explored the significance of immunogenic cell death

(ICD)-related genes (IRGs) in identifying breast cancer subgroups

with different drug sensitivity in chemotherapy and anti-endocrine

therapy. The whole research process of this study was shown in

Figure 1. The whole data analysis process was performed by two

researchers, respectively.
FIGURE 1

Technology roadmap of study. 32 ICD-associated genes were collected from previous studies and used to construct a prognosis model in the TCGA
cohort and the GEO cohort; 14 IRGs-related TDGs were used to construct AI models based on IRGs-based clustering; 14 IRGs-TDGs-based and
genome-based drug sensitivity prediction; The role of PTPRC in regulating CD8+ T cells infiltration-mediated chemotherapy sensitized.
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2.1 Data collection

Gene expression profiles and clinical characteristics of pan-

cancer were collected from UCSC Xena (http://xena.ucsc.edu), and

9593 samples were finally included. Breast cancer gene expression

profiles were collected from The Cancer Genome Atlas (TCGA,

https://portal.gdc.cancer.gov) and Gene Expression Omnibus

(GEO: https://www.ncbi.nlm.nih.gov/geo/), amongst which 1089

samples with follow-up data were collected from TCGA, and 409

samples with follow-up data were collected from GSE58812,

GSE7390, GSE42918. Besides, gene expression profiles of 1084

samples without subtypes division were collected from GSE51561,

GSE20685, GSE20711, GSE25066, GSE29431, and GSE61304, and

gene expression profiles of 517 triple negative breast cancer (TNBC)

samples were collected from GSE18864, GSE58812, GSE76124,

GSE83937, GSE97500. 1548 clinical trial sample data involved in

drug sensitivity were collected from GSE25066, GSE25055,

GSE25065, GSE32646, GSE50948, GSE66305, GSE22093,

GSE25066, GSE20194, GSE20271, GSE42822, and GSE23988.

Verified cohorts of ACC were from GSE10927, GSE19750,

GSE33371, GSE76019, and GSE76021, a verified cohort of CESC

was from GSE44001, a verified cohort of KIRP was from

International Cancer Genome Consortium (ICGC, http://

dcc.icgc.org), a verified cohort of LAML was from GSE37642, a

verified cohort of LGG were from mRNAseq_693/325 (Chinese

Glioma Genome Atlas, CGGA, http://www.cgga.org.cn), verified

cohorts of PAAD were from GSE21501, GSE28735, GSE57495, and

GSE62452, a verified cohort of PRAD was from GSE116918, and

verified cohort of SARC was from GSE21050. Data cleaning and

data combination were performed in online tools (Sangerbox 3.0

(17), http://vip.sangerbox.com/home.html). 32 ICD-related genes

were obtained from previous research (gene list: ATG5, BAX,

CALR, CASP1, CASP8, CD4, CD8A, CD8B, CXCR3, EIF2AK3,

ENTPD1, FOXP3, HSP90AA1, IFNB1, IFNG, IFNGR1, IL10,

IL17A, IL17RA, IL1B, IL1R1, IL6, LY96, MYD88, NLRP3, NT5E,

P2RX7, PDIA3, PIK3CA, PRF1, TLR4, TNF) (18). 586 tumor driver

genes were collected from Lopez-Bigas N’s research (19). The

relationship between gene expression and prognosis in BRCA was

obtained from online tools (Kaplan Meier-plotteR: http://

kmplot.com/analysis/index.php?p=background). The PTPRC-

related genes were collected from The University of Alabama at

Birmingham Cancer data analysis Portal (UALCAN: http://

ualcan.path.uab.edu/index.html) and GeneMANIA (http://

genemania.org/search/homo-sapiens).
2.2 Bioinformatic analysis

2.2.1 IRGs-based subgroups identification
ConsensusClusterPlus package in R4.2.0 was used to perform

consensus clustering analysis, based on the IRGs (parameter:

maxK=5, reps=50). Consensus cumulative density function (CDF)

and delta area showed 4 subgroups division was the best outcome

(Figure S1). R codes were showed in the “S1” file.
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2.2.2 Principal co-ordinates analysis
PCoA was performed in OEBIOTECH online tools (https://

cloud.oebiotech.com/task/), which platform supplied biotechnical

support for lots of great research (20–22).

2.2.3 Tumor immune index calculation
Infiltration immune cell fractions were predicted in

CIBERSORT in R4.2.0, and the immune score was predicted by

the estimate package in R4.2.0. R codes were showed in the “S2” file.

2.2.4 ICD-TDGs-based artificial intelligence
model of ICD stratification

Firstly, the limma package was performed to identify different

expression genes between different ICD subgroups (p<0.05 and |

logFc|>1.5). Then, the upset package was performed to identify genes

that were differentially expressed between any two ICD subgroups.

Following, put those above-identified genes into a univariate cox

regression analysis to identify the prognosis-related one. Finally,

making intersection between those genes and 568 cancer driver

genes, by which 14 genes (tumor driver genes involved in ICD,

ICD-TDGs) were identified (BIRC3, CCR7, CD79B, CR1, FLT3,

IKZF1, IKZF3, JAK3, LTB, PRKCB, PTPRC, TNFAIP3, TP63,

VAV1). AI modeling for ICD stages was developed by six AI

functions, including extreme gradient boosting (XGboost, xgboost

package in R4.2.0), support vector machine (SVM, e1071 packages in

R4.2.0), multi-logistic (nnet packages in R4.2.0), random forest (RF,

randomForest package in R4.2.0), deep learning (DL, h2o package in

R4.2.0) and K-Nearest Neighbor (KNN, kknn package in R4.2.0). All

R codes were showed in the “S3” file. During the model construction,

randomly select 75% as the training cohort, and randomly select 25%

as the testing cohort. Gene expression value was standardized to

range “0~1” with preProcess function (caret and tidyverse packages).

2.2.5 Drug sensitivity prediction
Drug sensitivity prediction was performed with genome or

ICD-TDGs by the oncoPredict package in R4.2.0, which was used

in the previous study (23, 24).
2.3 Biological experiments

2.3.1 Clinical sample collecting
5 breast cancer and 3 adjacent fresh frozen samples were

collected from 2022-06.01 to 2022-12.31, and 17 breast cancer

tissue and 3 adjacent tissue paraffin sections were collected from

2022-06.01 to 2022-12.31. All of the above experiments were

approved by the Medical Ethics Committee of The First People’s

Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of

Wenzhou Medical University. All patients with breast cancer

were confirmed by at least two pathologists.

2.3.2 RNA sequence assay
Breast cancer tissues and adjacent tissues were collected from the

surgical operation, and they were washed with 0.9% normal saline
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within 15 mins, which was followed by liquid nitrogen quick freezing

for 20 mins, finally, tissues were stored at -80°C. RNA sequence assay

was performed by GENE DENOVO (Guangzhou, China).

2.3.3 Multiple immune fluorescence staining
Experiments procedure of paraffin embedding, tissue section,

and immunohistochemistry for PTPRC and CD8 expression level

were performed as previously described (PMID: 23200678 and

20571492). What’s more, the work concentration of antibodies

against PTPRC (Proteintech, Wuhan, China) and CD8 (Abcam,

shanghai) was 1:150. The protein expression level was assessed by

Mean of Integrated Option Density (IOD) with Image-Pro Plus.

Briefly, area of Interesting (AOI) and detect IOD to gain Mean of

IOD (IOD/AOI, MI).

2.3.4 Reagents
Paclitaxel was purchased from CSNpharm (CSN19486, USA),

and dissolved in DMSO. Antibodies against GAPDH (5174, CST),

CD8 (GB15068, Servicebio), PTPRC (GB113885, Servicebio), PD-

L1 (66248-1-Ig, Proteintech), IL2 (60306-1-Ig, Proteintech), and

IL6 (21865-1-AP, Proteintech) were used for western blot.

2.3.5 Cell culture
Triple-negative breast cancer cell lines (MBA-MD-231, MBA-

MD-453) were gained from the cell bank of the Chinese Academy of

Science in 2022 with STR matching analysis. The culture media of

MBA-MD-231 was DMEM within 10% fetal calf serum and 100

units/mL penicillin and streptomycin. The culture media of MBA-

MD-231 was L-15 within 10% fetal calf serum and 100 units/mL

penicillin and streptomycin.

2.3.6 Cell cytotoxicity assays
The cell proliferation was quantified by standard curve (0.1, 0.2,

0.4, 0.8, 1.0, 1.5, 2.0, 3.0×104 cells were detected optical density

(OD) via CCK-8 after 24h transplanted into 96-wells plates, and

then fit linear standard curve between log [cell quantity] and OD),

cell cytotoxicity assays were performed via CCK8 assay, and the

detailed protocol described in our previous study (PMID29331423

and PMID29800682).

2.3.7 Quantitative real-time PCR
Trizol RNA isolation system (Invitrogen, USA) was used for

total RNA extraction. The cDNA templates were synthesized

through PrimeScript RT Reagent Kit (TaKaRa, China), and qRT-

PCR was performed with a 7500 Fast™ System (Applied

Biosystems, USA) using the Sensi Mix SYBR Kit (Bio-Rad, USA).

The mRNA level was calculated via using (=2-DDCt), and

normalized to GAPDH. All of the sequences of primer were

designed by Primer 5 soft:
Fron
PTPRC-QF: CTTCAGTGGTCCCATTGTGGTG

PTPRC-QR: CCACTTTGTTCTCGGCTTCCAG

GAPDH-QF: GTCTCCTCTGACTTCAACAGCG

GAPDH-QR: ACCACCCTGTTGCTGTAGCCAA
tiers in Immunology 04
2.3.8 Small interfering RNA experiments
5 × 105 breast cancer cells were transplanted into 6 wells plates

for 24h, and then cells were transfected with three different

sequences PTPRC siRNA (GenePharma, Shanghai, China) for

48h, 72h, and 96h with Lipofectamine 3000 reagent (Invitrogen,

USA) and Opti-MEM (Life Technologies, USA), according to the

manufacturer’s instructions for gaining the best transfection

efficiency. Three siRNA sequences for PTPRC were listed in

the following:
siRNA-1: 5 ’-3 ’ GACAGGGCAAAGCCCAACAtt; 3 ’-5 ’

UGUUGGGCUUUGCCCUGUCtt

s iRNA-2 : 5 ’ -3 ’UUGGCAUUUGGUUUGCCUtt 3 ’ -5 ’

AGGCAAAGCCAAAUGCCAAtt

siRNA-3:5 ’-3 ’ CUUAGGGACACGGCUGACUtt 3 ’-5 ’

AGUCAGCCGUGUCCCUAAGtt

Recombinant plasmid transfection assay
Primers of PTPRC is inserted into plasmid pcDNA 3.0

(Addgene), were designed with Primer 5 soft. Briefly, cDNA

templates were synthesized through PrimeScript RT Reagent Kit

(TaKaRa, China); CDS of genes were amplified with PrimeSTAR®

GXL DNA Polymerase (TaKaRa, China); thirdly, products were

purified through SanPrep Column DNAGel Extraction Kit (Sangon

Biotech, China); fourthly, the purified products and plasmid were

treated with restriction endonuclease (Xho1, EcoR5, and Xba1 were

purchased from NEB, USA) respectively; fifthly, recombination of

plasmids was performed through homologous recombination with

Hieff CloneTM Plus One Step Cloning Kit (Yeasen Biotech, China).

5 × 105 cells were transplanted into 6 wells plates for 24h, and

then cells were transfected with RP for 48h, 72h and 96h with

Hieff TransTM Liposomal Transfection Reagent (Yeasen Biotech,

China) for the best transfection efficiency, according to the

manufacturer’s instructions.
2.3.9 Western blot
Total protein extraction: Cells were harvested by cytology

brush, and lysed with RIPA lysis buffer (Sigma, USA)

supplemented with phosphorylase and protease inhibitor mixture

(Thermo, USA), quantified by the BCA assay.

Cytoplasmic and nucleus protein extraction: Cells were

harvested by Tyrisin (Invitrogen), then cytoplasmic and nucleus

protein was extracted by Cytoplasmic and Nucleus Protein

Extraction Kit (Thermal Scientific, USA) according to its

protocol, quantified by the BCA assay.

The standard detailed experimental process of the western blot was

the same as our previous study (PMID29331423 and PMID29800682).
2.4 Statistical analysis

All data analyses were performed in R4.2.0. Pearson’s test was

used to calculate the correlation between different genes. Wilcox

rank sum test and Kruskal Wallis rank sum test were used for
frontiersin.org
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assessing differences for continuous variables. Univariate Cox

regression was performed to calculate the hazard ratio (HR) and

the log-rank test was used to compare survival differences. Heatmap

was performed by the pheatmap package in R4.2.0. Receiver

operating characteristic (ROC) curves and the AUC value were

performed by the pROC package in R4.2.0. GO and KEGG analyses

were performed by the clusterProfiler package in R4.2.0. PTPRC-

correlated genes were identified in the online tool (GeneMANIA:

http://genemania.org/search/homo-sapiens/mtdh). P<0.05 was

considered to indicate a statistically significant difference.

3 Results

3.1 ICD subgroups division in pan-cancer

Amongst the 31 types of cancer, multivariate Cox regression

was used to construct prognosis prediction models, based on ICD-

related genes (IRGs) in the TCGA cohort. Results showed that in

ACC, CESC, KIRP, LAML, LGG, MESO, PRAD, SARC, and THCA,

the c-index of the model was greater than 0.700 (Figures 2A, B,

p<0.05). The AUC value was 1.00, 0.93, 0.91, and 0.92 for overall

survival time at 1, 3, 5, and 7 years in ACC (Figure 2C). Kaplan-

Meier (K-M) analysis displayed that higher ICD-gene-based multi-

genes riskscore predicted worse prognosis in above mentioned eight

types of cancer (Figure 2D, p<0.01). Subsequently, GEO data

cohorts were used for verification. For example, in ACC, the

AUC value of the IRGs-based multi-genes model at overall

survival time of 1, 3, 5, and 7 was 0.75, 0.76, 0.76, and 0.76,

respectively (K-M p<0.0001; HR=1.229[1.140-1.326], log-rank

p=9e-15; c-index=0.703, p=0.036; Figure 3A). The last

independent verifications of GEO data were displayed in Figure 3.
Frontiers in Immunology 05
3.2 IRGs-based immune subgroup division
and features identification

The impact of IRGs on prognosis in pan-cancer was explored.

As the Figure 4A showed, MYD88, IL17RA, PIK3CA, CASP1,

LY96, IFNGR1, IL10, HSP90AA1, IL1B, CASP8, IL6, IFNB1,

NT5E, CALR, BAX, IL17A, P2RX7, TNF and NLRP3 were risk

factors, while IFNG, TLR4, CD8A, CXCR3, CD8B, EIF2AK3,

PDIA3 and ENTPD1 were protective factors. Next, IRGs-based

consensus clustering was performed to divide pan-cancer into 4

subgroups (ICD1: 753 samples, ICD2: 3835 samples, ICD3: 2565

samples, ICD4: 2440 samples). The Gene expression profile map

showed expression features of IRGs amongst four subgroups, and it

represented the biological characteristics of hierarchical stages of

ICD (Figures 4B, C). In fact, visualization of consensus clustering

and PCoA displayed the IRGs-based subgroup division (Figures 1D,

E). Although the ICD subgroup spanned pan-cancer, its proportion

in each cancer species was significantly different (Figure 4F). At the

same time, the proportion of pan-cancer in different ICD subgroups

was also significantly different (Figure 4G).

In order to explore the effects of the ICD subgroup on clinical

features, prognosis differences, immune cell infiltration (ICI),

and molecular signaling pathway were described. Pan-cancer

survival analysis displayed that pan-cancer of different ICD

subgroups has different overall survival (OS) time (4-way

long-rank p<0.0001, Figure 5A), while no significant difference

in OS was seen between ICD1 and ICD2 only in intro-subgroups

analysis (Figure 5A). Besides, ICD subgroups displayed obvious

differences in the progression-free interval (PFI) (p<0.001,

Figure 5B), disease-free interval (DFI) (p<0.001, Figure 5C),

and in disease-free survival (DSS) (p<0.001, Figure 5D).
A

B

D

C

FIGURE 2

IRGs-based prognosis training model in pan-cancer. (A) Technology roadmap of study; (B) Prognosis prediction efficiency in pan-cancer, and C-
index of models in ACC, CESC, KIRP, LAML, LGG, MESO, PAAD, PRAD, SARC, and THCA were greater than 0.7 (labelled by blue); (C) ROC curves of
ACC, CESC, KIRP, LAML, LGG, MESO, PAAD, PRAD, SARC, and THCA; (D) Kaplan-Meier survival curves of ACC, CESC, KIRP, LAML, LGG, MESO, PAAD,
PRAD, SARC, and THCA.
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Collectively, all survival analyses showed the same result that

samples in ICD1 had the worst prognosis.

Then, tumor immunity was explored in four ICD subgroups. As

Figure 5E showed, genomic instability (microsatellite instability)

was explored, and the results showed that HOL, LST1, AI1, and

HRD were kept at different levels in ICD subgroups (p<2e-16,

Figure 5E). Immune score showed a similar tendency with genomic

instability in ICD subgroups, in which the immune score’ ranking

was ICD4>ICD2>ICD3>ICD1 (p<2e-16, Figure 5F). Furthermore,

the CIBERSORT analysis was used to explore the ICI amongst ICD

subgroups. 20 types of immune cells showed different disturbances

in different ICD subgroups (Figure 5G), such as CD8+ T cells in the

ICD subgroups showed a gradual upward trend, while Macrophage

M2 (M2) cells in the ICD subgroup showed a gradual downward

trend. Further, the ICI-related prognosis analysis was performed,

and it revealed that “B cells memory, NK cells resting, macrophages

M0, macrophages M2, Dendritic cells activated and Mast cells
Frontiers in Immunology 06
activated” were risk factors in pan-cancer, while “B cells naïve,

plasma cells, T cells CD8, T cell CD4 naïve, T cells follicular helper,

dendritic cells resting and mast cell resting” were protective factors

in pan-cancer (Figure 5H). In order to explore the correlation

between ICD stratification and T-cell immunity, T-cell exhaustion

(TEX) score and TEX-related factors expression were explored. As

Figure 5I showed, the TEX score varied from ICD subtypes likewise

the expression of IL2, IL6, PD-L1, and CTLA4 (Figure 5I).

Furthermore, from phenotype into molecular pathways, GO and

KEGG analysis was performed to reveal the features of the molecular

signaling pathways in ICD subgroups. Firstly, different expression

genes between ICD subgroups (p<0.05 and |logFc|>1.5) were

identified, which was followed by upset function analysis to identify

408 genes that held different expressions between any two ICD

subgroups (Figure 5I). Then, univariate cox regression was

performed to identify prognosis-related genes amongst those above

408 genes. Next, 14 genes were identified as ICD-related cancer driver
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FIGURE 3

IRGs-based prognosis verifying models in eight types of cancer. GEO cohorts were used to verify TCGA-based IRGs-based prognosis models in
(A) ACC (n=132, GSE10927, GSE19750, GSE33371, GSE76019, GSE76021), in (B) CESC (n=300, GSE44001), in (C) KIRP (n=136, ICGC), in (D) LAML
(n=553, GSE37642), in (E) LGG (n=970, mRNAseq_693, mRNAseq_325), in (F) PAAD (n=315, GSE21501, GSE28735, GSE57495, GSE62452), in
(G) PRAD (n=248, GSE116918), and in (H) SARC (n=140, GSE215050).
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genes (ICD-TDGs) (Figure 5I). Through GO analysis, we found those

14 genes were correlated to immunity (such as B cell differentiation,

negative regulation of IL-2/12 production, immune response, and

regulation of RSP via JAK/STAT), apoptosis, and membrane receptor

signaling pathways (such as complement component C3b binding,

external side of plasma membrane) (Figure 5J). Besides, KEGG

analysis displayed that ICD-TDGs were related to immunity (such as

chemokine signaling pathway, B/T cell receptor signaling pathway, NK-

cell-mediated cytotoxicity), tumor cell death (necroptosis, TNF signaling

pathway), tumor invasion (focal adhesion) and other pathways in

cancer (Figures 5K, L).
3.3 ICD-TDGs-based AI modeling

In order to explore the impact of 14 ICD-TDGs in the

identification of ICD subgroups, artificial intelligence (AI) was used

in modeling. Firstly, 75% of the pan-cancer data was randomly

selected as the training cohort, and the left 25% was randomly

selected as the testing cohort. In the following step, different

machine learning functions were performed to identify the best

one. As Figure 6A showed, ICD-TDGs-based XGboost showed the

best modeling performance, for its training AUC was 1.000, and for

testing AUC was 0.9666 (single ICD subgroup prediction AUC was

0.998, 0.951, 0.915, and 0.988 for ICD1-4, respectively, Figure 6B),

while the values in Deep Learning (DL) was 1.000 and 0.9657, in
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Random Forest (RD) was 1.000 and 0.9627, in support vector

machine (SVM) was 1.000 and 0.9433, in multi-logistics was 0.9304

and 0.9083, and in K-Nearest Neighbor (KNN) was 0.8632 and

0.8664 (Figure 6A). After that, univariate cox regression analysis was

performed to assess the effects of ICD-TDGs-based AI modeling. The

results showed that all six AI function-mediated modeling held

significance in identifying prognosis differences in the training

cohort (Figure 6C). Amongst the above six AI-mediated models,

XGboost was finally selected for further analysis, and the ICD

subgroups identification quality was 0.998 for ICD-1, 0.951 for

ICD-2, 0.915 for ICD-3, and ICD-4 for 0.988 (Figure 6B). Then,

independent cohorts were used for model verification. As Figure 6D

showed, 14 ICD-TDGs displayed obvious expression characteristics

in the pan-cancer cohort (data from PWWAG), with ICD1 with the

lowest expression feature of 14 ICD-TDGs, while ICD4 with the

highest expression feature (Figure 6D). In addition, pan-cancer

model was explored in breast cancer. In order to avoid different

independent groups of data bias caused by different RNA sequencing

methods and batches, we transformed the gene expression value into

the range of 0 to 1 (more details were shown in the method), and we

defined this way as standardized ICD-TDGs-based AI model (s-AI

model). As Figure 6E showed, the ICD1 group had the worst

prognosis while the ICD4 group held the best prognosis in breast

cancer (data from TCGA, p=0.041, Figure 6E). GEO data was used

for independent verification in the breast cancer cohort. Collectively,

the same results were observed (p=0.0077, Figure 6F).
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FIGURE 4

Consensus-clustering-based ICD subgroup division. (A) Prognosis hazard ratio (HR) of ICD-related gene in pan-cancer, calculated by univariate cox
regression in R (data from TCGA). (B, C) Expression feature map of ICD-related genes amongst ICD subgroups, and the expression differences of
ICD-related genes. (D) Visualization of consensus clustering. (E) PCoA analysis of ICG subgroups; (F) Proportion characteristics of ICD subgroups in
pan-cancer. (G) Proportion characteristics of pan-cancer in ICD subgroups. ****p value < 0.0001.
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3.4 ICD-TDGs-based s-AI model predicted
drug sensitivity

Differences in ICI in tumor environment were involved in

tumor immune therapy. Recently, some studies linked ICI to drug
Frontiers in Immunology 08
tolerance, such as macrophage-mediated drug tolerance (DT) in

pancreatic cancer (25, 26). So, the potential correlation between the

ICD subgroups and DT was worth exploration. Firstly, TCGA

genome data was used to predict drug sensitivity in BRCA by

OncoPredict in R4.2.0. The results showed that the ICD1 and ICD3
B C D
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FIGURE 5

Phenotype features of ICD subgroups. Prognosis differences, including (A) overall survival (OS, p<0.001), (B) progression free interval (PFI, p<0.001),
(C) disease free interval (DFI, p<0.001) and (D) disease free survival (DSS, p<0.001), amongst four ICD subgroups were calculated by 4-way log-rank.
(E) Genomic instability was assessed by the level of (E) HOL, LST1, AI1, and HRD; (F) Immune score in ICD subgroups; (G) Immune cell infiltration
(ICI) was predicted in CIBERSORT, and all of 20 types of immune cells in tumor filtration held significant differences amongst ICD subgroups.
(H) Prognosis hazard ratio (HR) of immune cell infiltration in pan-cancer, which calculated by univariate cox regression in R. (I) T-cell exhaustion
(TEX) score was calculated by ssGSEA based on GEPIA (TEX2) or literature (TEX) supplied TEX-related markers. (J) Firstly, different expression genes
between ICD subgroups (p<0.05 and |logFc|>1.5) were identified, followed by upset function analysis to identify 408 genes which held different
expression between any two ICD subgroups. Then, univariate cox regression was performed to identify prognosis-related genes. Next, 14 genes
were identified as ICD-related cancer driver genes (ICD-TDGs). (K) GO and (L) KEGG analysis.
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group manifested higher drug scores (epirubicin, EPI;

cyclophosphamide, CTX; paclitaxel, PTX; Docetaxel, DTX;

tamoxifen, TAM), while the ICD2 and ICD4 possessed lower

drug scores (higher drug score means worse drug sensitivity,

Figure 7A). Besides, we assessed the effects of 14 ICD-TDGs as

background genes in predicting drug sensitivity. Unexpectedly, the

results of 14 ICD-TDGs-based drug sensitivity predictions held the

same trend as the genome-based drug sensitivity prediction. That

was the ICD1 and ICD3 group obtained higher drug scores while

the ICD2 and ICD4 got lower drug scores (Figure 7A). In order to
Frontiers in Immunology 09
verify the above results, we performed the same analysis in GEO

cohort, included whole BRCA cohort and TNBC cohort. As

Figure 7B indicated, in the whole BRCA cohort, the ICD1 and

ICD3 group still got higher drug scores while the ICD2 and ICD4

ended with lower drug scores, in the above two gene backgrounds

drug prediction (Figure 7B). As Figure 7C showed, in TNBC cohort,

ICD1 and ICD3 subgroups still held higher drug scores while ICD2

and ICD4 with lower drug scores, in the above two gene

backgrounds drug prediction (Figure 4C). This unexpected

phenotype implied that there was a probability of using ICD-
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FIGURE 6

ICD-TDGs-based AI modeling identified ICD subgroups. (A) Randomly selecting 75% as the training cohort and 25% as testing cohort, followed by
six machine learning functions (XGboost, Deep Learning, RandomForest, SVM, multi-logistics and KNN) to modeling ICD subgroups, amongst which
(B) XGboost held best performance (training AUC=1.000, testing AUC=0.9666); (C) Prognosis differences between ICD subgroups modeled by
XGboost (p=0.013), Deep Learning (p=0.031), RandomForest (p=0.024), SVM (p=0.046), multi-logistics (p=0.0025) and by KNN (P=0.00011). (D) ICD
stratification in PCWAG data based on TCGA-based XGBoost model. (E) Gene expression feature and prognosis difference of breast cohort based on
TCGA data. (F) Gene expression feature of ICD-TDGs and prognosis difference of ICD subgroups in GEO breast cancer cohort (n=408, GSE58812,
GSE7390, GSE42918).
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TDGs replaced genome to predict drug sensitivity in

clinical assessment.

To further verify our conjecture, we used clinical drug trials to

explore the relationship between ICD subgroup division and drug

sensitivity in breast cancer. Firstly, combing ICD-TDGs expression

features and the results of drug sensitivity prediction, we re-defined

the ICD subgroup naming, that was defining ICD4 as drug

complete sensitivity (DCS) subgroup, ICD2 as drug partial

sensitivity (DPS) subgroup, ICD3 as drug partial tolerance (DPT)

subgroup, and ICD1 as drug complete tolerance (DTT) subgroup.

The comprehensive treatment outcome was first used to assess the

above AI model, and the analysis results showed that the DCS group

with the best outcome while the DTT group with the worst outcome

(p<0.001, Figure 8B). Same results were observed in GEO data

(p<0.05, Figure 8C). Furthermore, 22 independent breast cohorts

(N=4037) from GEO database were used to verify the s-AI model.

Excitingly, genome-based drug sensitivity prediction showed

hierarchical drug sensitivity in identified ICD subgroups, that was

drug score (EPI, CTX, DTX, PTX, TAM) ranking was

DCS<DPS<DPT<DTT (p<2e-16, Figure 8D). Meantime, 14 ICD-

TDGs-based same drug sensitivity trend in identified ICD

subgroups in the same cohort, that was drug score (EPI, CTX,

DTX, PTX, TAM) ranking was DCS<DPS<DPT<DTT (p<2e-16,

Figure 8E). Following, we verified the above phenotype in Kaplan-

Meier Plotter breast cancer cohort, in which it displayed the drug

score ranking was DCS<DPS<DPT/DTT (p<2e-16, Figure 8E).
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In order to further verify the s-AI model, we used a non-

standardized 14 ICD-TDGs expression value to construct the AI

model (defined as an ns-AI model) and to assess the ability about

identifying drug sensitivity stratification in ICD subgroups. The

results showed that the ns-AI model identified three ICD

subgroups (n=488; DCS=38, DPS=286, DPT=164, DTT=0;

Figure S1A) and the trend of drug sensitivity was collective

with the above s- AI model (Figure S1A). Besides, combing with

clinical trial results, the ns-AI model identified hierarchical

pathological complete remission (pCR) ratio in ICD subgroups

(DCS>DPS>DPT, p=0.000384, Figure S1B). In another breast

cohort (with different chemotherapy regimens), the ns-AI model

identified four ICD subgroups with hierarchical drug sensitivity

(n=1578; DCS=131, DPS=105, DPT=282, DTT=1060; Figure S1C),

and the trend of drug sensitivity was collective with the above s- AI

model (Figure S1C). Collectively, the ns-AI model identified

hierarchical pCR ratio in ICD subgroups (DCS>DPS>DPT>DTT,

p=0.006, Figure S1D).
3.5 Impact of immune cell infiltration in
regulating drug sensitivity in breast cancer

Although previous evidence revealed that ICI was correlated

with drug tolerance, there was still without convincing evidence to

support its phenotype in breast cancer. Combining with the TCGA
frontiersin.o
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FIGURE 7

Genome-based and ICD-TDGs-based drug sensitivity prediction. (A) Drug sensitivity prediction, including epirubicin (EPI), cyclophosphamide (CTX),
paclitaxel (PTX), docetaxel (DTX) and tamoxifen (TAM), in BRCA with TCGA data, amongst which green background represented genome-based drug
sensitivity prediction while yellow background represented ICD-TDGs-based drug sensitivity prediction. (B) Drug sensitivity prediction in whole BRCA
cohorts, in which data from GEO (GSE51561, GES20685, GSE20711, GSE25066, GSE29431, GSE613041); (C) Drug sensitivity prediction in TNBC
cohorts, in which data from GEO (GSE18864, GES58812, GSE76124, GSE83937, GSE975001).
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cohort and GEO cohort, we found “T cell CD8 (CD8 T cell), T cells

CD4 memory activity (am-CD4 T cell), Tregs, gd T cells, NK cells

activity (a-NK cell), monocytes, M0, M1, and M2” held different

infiltration proportion in different drug sensitivity subgroups

(p<0.05, Figure 9A). Following, Pearson-correlated test was

performed to identify that “am-CD4 T cell, CD8 T cell, and gd T

cell” were negatively correlated with drug score, which means higher

infiltration of those cell enhanced drug sensitivity (p<0.001,

Figure 9B). On the contrast, “M0, a-NK cell and Tregs” were

positively correlated with drug score, which means those cell

infiltrations enhanced drug tolerance (p<0.001, Figure 9B). Then,

we verified the relationship between those above six immune cells

with drug score. As the results showed, “CD8 T cell, am-CD4 T cell,

gd T cell, and M0” were different expressions in breast cancer,

amongst which “CD8 T cell, gd T cells, and M0” were correlated with

drug score (Figures 9C, D).
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3.6 PTPRC correlative with CD8+
T cell infiltration

To further cleared the pivotal genes in the regulation of immune

cell infiltration-mediated drug tolerance, multiple Pearson’s tests

were performed in multiple independent data cohort. As

Figure 10A showed, BIRC3, CCR7, CD79B, IKZF3, and PTPRC

were finally identified from 14 ICD-TDGs, which were positively

correlated with gd T cell and CD8 T cell infiltration while they were

negatively correlated withM0 infiltration (Figure 10A). Meanwhile,

those five genes were negatively correlated with drug score.

Following, impact ranking analysis was performed to identify the

key gene in AI modeling. As Figure 10B implied, PTPRC was the

most important gene, and it was selected for further analysis.

Following, PTPRC-associated genes were explored, including

interaction, co-expression, and co-localization. Those genes were
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FIGURE 8

AI modeling identified drug sensitivity stratification in breast cancer. (A) AI modeling identified ICD subgroups were renamed as drug complete
sensitivity (DCS, also named ICD4), drug partial sensitivity (DPS, also named ICD2), drug partial tolerance (DPT, also named ICD3), drug complete
tolerance (DTT, also named ICD1). (B) Comprehensive therapy outcome in ICD subgroups, and NR mean no response, PR mean partial response, CR
mean complete response; (C) Clinical trial therapy effects in ICD subgroups (data from GSE41988, n=279), and NR mean no response, PR mean
partial response, CR mean complete response; (D) 22 independent breast cancer cohort from GEO database were merged into a 4037 samples
cohort, followed by 14 ICD-TDGs-based AI modeling and genome-based drug prediction; (E) 14 ICD-TDGs-based AI modeling and 14-ICD-TDGs-
based drug prediction (n=4037, GEO); (F) Breast cancer cohort from Kaplan-Meier Plottor was performed 14 ICD-TDGs-based AI modeling and drug
prediction (n=2976).
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related to immune response, T cell receptor signaling pathway,

cytokine-mediated signaling pathway, etc. (Figure 10C). Besides,

PTPRC was predicted to interact with CD3D, CD3E, and CD3G,

and those were markers of CT8 T cells (Figure 10D). In order to

explore the relationship between PTPRC and CD8 T cell infiltration,

the Pearson test was performed, and the results showed that PTPRC

was closely correlated with the expression level of CD8 (R=0.79,

p<2e-16), CD3D (R=0.74, p<2e-16), CD3E (R=0.82, p<2e-16) and

CD3G (R=0.93, p<2e-16) (Figure 10E).

Effects of PTPRC in the regulation of prognosis were explored. The

results showed that a higher expression level of PTPRC was

accompanied by the better outcome in OS and DFS in the whole

BRCA cohort (data from Kaplan Meier-plottR), and the same result

was observed in the TNBC cohort (data from Kaplan Meier-plottR)

(p<0.05, Figure 10F). Furthermore, the effects of PTPRC in the

regulation of prognosis in different drug regimens cohorts were

revealed, and the results showed that higher expression level of

PTPRC was accompanied with better prognosis, no matter in cohort

with single chemotherapy strategy or in cohort with comprehensive

therapy regimens (anti-endocrine and chemotherapy) (Figure 10F).
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3.7 PTPRC promoted CD8+ T cell
infiltration and enhanced PTX-induced
tumor death

In order to further verify the ability of 14 ICD-TDGs-based s-AI

models in predicting drug sensitivity, and to verify the impact of

CD8+ T cells in regulating drug sensitivity in breast cancer, in vitro

experiments were performed. Firstly, we collected breast samples to

perform an RNA sequence assay to gain a genome expression

profile, which was further used to calculate drug score and obtain

the expression level of CD8+ T cell markers. As the results

displayed, markers of CD8+ T cells were closely correlated with

the expression of PTPRC (p<0.05, Figure 11A), and drug score

(TAM, CTX, EPI, DTX, and PTX) were negatively related with the

expression of PTPRC (p<0.05, Figure 11A). Then, multiple immune

fluorescence staining (MIF) of breast cancer tissue sections showed

that the infiltration ratio of CD8+ T cells was positively closely

related with the expression level of PTPRC (R=0.85, P=1.7e-05,

Figures 11C, D), while there was no obvious relationship between

CD8+ T cells and IKZF3 (R=0.24, P=0.35, Figures 11C, D). To
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FIGURE 9

The correlation between immune cell infiltration and drug sensitivity. (A) Differences of ICI amongst ICD subgroups, in which T cell CD8, T cell CD4
memory activity, Tregs, gd T cell, NK cell activated, monocytes, macrophages M0, macrophages M1 and macrophages M2 held different infiltration
proportion in BRCA (p<0.05) (data from TCGA, GEO cohort-4037 and GEO cohort-TNBC). (B) Pearson test identified T cell CD4 memory activity
(am-CD4 T cell), T cell CD8 (CD8 T cell) and gd T cell were negative correlated with drug score (p<0.05), while macrophages M0 (M0), NK cell
activated (a-NK cell) and Tregs were positive correlated with drug score (p<0.05) (data from TCGA, GEO cohort-ALL and GEO cohort-TNBC).
(C) Differences of ICI amongst ICD subgroups, in which CD8 T cell, am-CD4 T cell, gd T cell and M0 held different infiltration proportion in BRCA
(p<0.05) (data from GEO cohort-1 and cohort-2). (D) Pearson test identified CD8 T cell and gd T cell were negative correlated with drug score
(p<0.05), while M0 was positive correlated with drug score (p<0.05) (data from GEO cohort-1 [n=488] and GEO cohort-2 [n=1578]).
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further explore the effects of PTPRC in regulating T cell immunity,

we applied siRNA system and recombination plasmid to decrease or

increase the expression of PTPRC, respectively. As the results

showed, the down-regulation of PTPRC increased the tumoral

(MBA-MD-231) expression of PD-L1 about 1.53-fold as

compared to NC group, while the expression level of tumor-

derived IL2 was down-regulated (Figures 11H, I). Meantime, the

tumor-derived IL6 and PD-L1 were down-regulated as the up-

regulation of PTPRC (Figures 11J, K).
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Next, we explored PTPRC in regulating PTX sensitivity. As

results showed, intracellular expression of PTPRC was obviously

decreased by siRNA sequence1 (SH1) in TNBC cell lines (MBA-

MD-231, MBA-MD-453) (Figures 11E–G). Following, cell

cytotoxicity assays were performed, and the results displayed that

the down-regulation of intracellular expression of PTPRC was

accompanied by up-regulation of cell viability (p=0.009,

PTX=0mM, Figures 12A, C). Meantime, down-regulation of

intracellular expression of PTPRC led to PTX tolerance in TNBC
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FIGURE 10

PTPRC was pivotal in CD8 T cell infiltration in BRCA. (A) Identifying both drug score related and immune cell infiltration related ICD-TDGs in four
independent cohort (TCGA-BRCA, GEO cohort-4037, GEO cohort-TNBC, GEO cohort-1, GEO cohort-2), then identifying BIRC3, CCR7, CD79B,
IKZF3 and PTPRC were the common feature genes in four data cohorts. All of those five genes were positively corelated to CD8 T cell and gd T cell,
while they were negatively corelated to M0. (B) Impact analysis in XGBoost Modeling; (C) GO analysis of PTPRC-related genes; (D) Molecular
pathways of PTPRC-related genes (GeneMANIA: http://genemania.org); (E) Linear curve between PTPRC and markers of CD8+ T cells (CD8, CD3D,
CD3E, CD3G); (F) Roles of the PTPRC expression level in prognosis of breast cancer with or without drug treatments.
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in a dose of 50mM, 200mM, and 500mM (p<0.05, Figures 12A, C).

Alive&death assay was applied to detect the proportion of alive cells

and dead cells after siRNA treatment, PTX treatment, or the

combination treatment in TNBC cell lines. Collectively, down-

regulation of PTPRC decreased the proportion of dead cells

induced by PTX (Figures 12B, D).
3.8 ICD-TDGs and clinical features-based
prognosis model in breast cancer

Recently, ICD-associated genes were used to construct a

prognosis model in melanoma, lung cancer, and ovarian cancer

(27–29). So, we explored the ICD-TDGs in constructing a prognosis

model with clinical features in breast cancer. Multivariate cox

regression identified BIRC3, CCR7, FLT3, IKZF3, PRKCB,

PTPRC, and VAV1 to construct multi-gene risk-score (MGRS)

(C-index=0.68, p=1.1838e-5, Figure 13A). Then, clinical stage, age,

and MGRS were identified to construct nomogram (C-index=0.75,

p=5.0e-14, Figures 13B, C). And the AUC value of 6-month

survival, 1-year survival, 2-year survival, 3-year survival, and 5-

year survival was 0.94, 0.90, 0.82, 0.76, and 0.72, respectively (data

from TCGA, Figure 13D). Next, GEO data was set as verification

cohort, and the AUC value of 6-month survival, 1-year survival, 2-
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year survival, 3-year survival, 5-year survival, 7-year survival, and

10-year survival was 0.62, 0.66, 0.82, 0.81, 0.80, 0.78, and 0.78,

respectively (data from GSE20685, Figure 13E). To further verified

the prediction accuracy of the above nomogram, calibration assay

was performed, and the results were displayed in Figures 13F, G.
4 Discussion

Breast cancer is the most common type of cancer among

women, and also the main cause of tumor-related deaths in

women (30). Drug therapy is important for cancer elimination,

and also a major strategy to save advanced breast cancer. Although

combing treatment of surgical operation and drug therapy, more

than 30% of early breast cancer has developed into advanced breast

cancer, which results in a 5-year overall survival rate of less than

20% (31). ICD is reported to be positively related to clinical drug

therapy response, especially for immune therapy (7). Besides, ICD-

associated genes are related to survival prognosis in multiple

cancers (27–29). So it is worth exploring the ICD in constructing

a prognosis prediction model and ICD-mediated drug sensitivity

prediction model.

In previous studies, IRGs-based prognosis models were

explored in melanoma, lung cancer, and ovarian cancer (27–29),
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FIGURE 11

PTPRC regulated CD8 T cell infiltration and TEX. (A) Local TNBC cohort was performed 14-ICD-TDGs-based drug sensitivity prediction, and the
relationships between PTPRC and markers of CD8+ T cells, and between PTPRC and drug scores were explored; (B) Multiple immune inflorescence
staining was performed in breast cancer tissues, amongst which pink represented IKZF3, green represented CD8, red represented PTPRC. And the
results displayed the quantity of (C) IKZF3+ cells were not related with CD8+ T cells, while (D) PTPRC+ cells were positively related with CD8+ T
cells (R=0.85, p=1.7e-5); TR-qPCR assays of siRNA experiments in TNBC cell lines, included (E) MBA-MD-453 and (F) MBA-MD-231; (G) Western blot
assays displayed siRNA explements results, and sequence 1(SH1) and sequence-2 (SH2) were both efficient in decreased the intracellular expression
level of PTPRC in TNBC cell lines; (H, I) siRNA and (J, K) recombination plasmid were applied to decrease the expression of PTPRC to explore the
roles of PTPRC in regulating IL2/6 and PDL1. *p < 0.05; **p < 0.01; ***p < 0.001.
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while in our study pan-cancer, the bioinformatic analysis showed

IRGs-based prognosis models held relatively better prediction

ability in ACC, CESC, KIRP, LAML, LGG, MESO, PRAD, SARC,

and THCA (C-index of the model was greater than 0.700,

Figures 2A, B, p<0.05). Furthermore, models in SARC and PRAD

displayed better prediction ability in a testing cohort (data from

GEO, Figures 3G, H). Those results imply that IRDs-based

prognosis models may be more useful to be applied in PRAD and

SARC in clinical treatment. Further to explore the roles of ICD in

identifying pan-cancer subgroups, artificial intelligence (AI) was

applied in the following work.

AI was wildly applied in medical fields, such as automatic

diagnosis (medical image, electrocardiograph, etc.), drug

discovery, and clinical outcome prediction (32, 33). Recently, AI

was applied in the identification of tumor subgroups and drug

sensitivity prediction. For instance, T-cell exhaustion-related genes

were used to identify immunity subgroups in pan-cancer, and it

contributed to making anti-immunity therapy strategy in

melanoma (34). Interestingly, in this study, we found IRGs-based

AI modeling (XGBoost, deep learning, random forest, SVM, multi-

logistics, and KNN) identified prognosis subgroups (Figures 6A–C),

which was verified in the testing cohort in breast cancer

(Figures 6E, F).

ICD was reported to regulate chemotherapy sensitivity in

bladder cancer, lung cancer, and pancreatic cancer (35–37), and it

was also related to anti-PD1 therapy and chemotherapy in breast

cancer (38, 39). Although IRGs were already used to construct a
Frontiers in Immunology 15
prognosis model in breast cancer before (40–42), IRGs-based drug

sensitivity stratification was not clear yet now. In our study,

OncoPredict package was applied to predict drug sensitivity, which

showed the trend of genome-based drug sensitivity prediction was

as same as 14-ICD-TDGs-based drug sensitivity prediction

(ICD1>ICD3>ICD2>ICD4), and this phenotype was verified in the

TCGA cohort (n=1089), GEO cohort (n=406, breast cancer without

subtypes), and TNBC GEO cohort (n=517) (Figure 7). The above

drug sensitivity stratification was re-defined as DTT (ICD-1), DPT

(ICD-3), DPS (ICD-2), and DCS (ICD-4), amongst which DCS and

DPS subgroups were recommended to accept drug treatment, while

DPT subgroup was recommended to accept advanced clinical

assessment for drug treatment, and DTT subgroup was

recommended to change treatment strategy (excluded AC-T

regimen) (Figure 8A). Those drug therapy strategies were verified

in clinical trials and big data bioinformatic analysis. Both of TCGA-

derived clinical cohort (1089) and GEO-derived clinical trial cohort

(GSE41988, N=279) showed similar drug sensitivity trend in ICD

subgroups as 14-ICD-TDGs-based drug sensitivity prediction

(Figures 8B, C). Furthermore, in 22 independent breast cancer

cohorts (4037 samples), the same results were observed (14-ICD-

TDGs-based drug sensitivity prediction represented genome-based

drug sensitivity prediction) (Figures 8D–F). The above results implied

that 14 ICD-TDGs were worth being applied in clinics to assess drug

sensitivity to make drug therapy regimens for patients with breast

cancer, which was like the role of the 21-gene test in clinical drug

therapy for breast cancer.
B

C D

A

FIGURE 12

PTPRC regulated PTX sensitivity in TNBC. Decreasing of PTPRC by siRNA was followed by PTX treatment in MBA-MD-231 (A) and MBA-MD-453 (C),
and viability was detected by CCK8. (B, D) Alive&death assay was performed to detect proportion of alive or dead cells with different treatments
(orange means dead cells, while green means alive cells).
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To further uncover the mechanisms of ICD-mediated regulation

of drug sensitivity, tumor immunity differences were explored.

Genomic instabilities, including tumor mutation burden (TMB),

genomic alteration fraction, and microsatellite instability, were

related to tumor immunity (43). We found there were significant

differences in microsatellite instability between ICD subgroups, and the

scoring trend of them was ICD1<ICD3<ICD2/ICD4 (Figure 5E).

Collectively, immune score ranking in ICD subgroups was

ICD1<ICD3<ICD2<ICD4 (Figure 5F). Interestingly, the trend of

immune score amongst ICD subgroups was as same as that in drug

sensitivity prediction. That implied ICD-mediated regulation of tumor

immunity was probably related with ICD-mediated regulation of drug

sensitivity. In fact, previous studies had reported immune cell

infiltration was closely related to chemotherapy. To our knowledge,

CD8+ T cell infiltration was important in regulating immune therapy

(anti-PD1 therapy) (44–46) and chemotherapy resistance (47, 48). In

breast cancer, the maintenance of functional T-cell responses was

reported as a critical requirement for neoadjuvant-chemotherapy-

induced pCR (49). In our study, impact analysis showed PTPRC was

the pivotal gene in AI modeling of ICD subgroup identification

(Figure 10B), and it was positively related to the CD8+ T cell

infiltration (Figure 10A) and markers of CD8+ T cell in breast

cancer (TCGA data, Figure 10E; local cohort, Figure 11A). In

addition to bioinformatic analysis, MIF assays also showed that the

expression strength of PTPRC in breast cancer cells was positively
Frontiers in Immunology 16
related to CD8 expression strength in breast cancer tissue section

(R=0.85, p=1.75e-5, Figures 11B, D). Meantime, the expression level of

PTPRCwas positively related to drug sensitivity (EPI, CTX, DTX, PTX,

TAM) (TCGA data, Figure 10A; local cohort, Figure 11A), and it was

also a protective factor in the clinical treatment of breast cancer patients

with neoadjuvant therapy or anti-endocrine therapy (Figure 10F). To

our knowledge, PTPRC mutation was related to the sensitivity of

selective JAK inhibitor in acute lymphoblastic leukemia (50), and

combined drug treatment (JQ1 and GSK2801) made synergistic

proliferation inhibition by probable interaction with PTPRC in a

molecular modeling study in TNBC (51). Those phenotypes implied

PTPRC probably regulated drug sensitivity through CD8+ T cell

infiltration in breast cancer. Excitingly, in vitro experiments displayed

that down-regulation of intracellular expression of PTPRC exactly

enhanced the PTX tolerance in TNBC cell lines (Figures 12A–D).

Besides, down-regulation of PTPRC lead down-regulation of tumor-

derived IL2 and up-regulation of tumoral PD-L1 (Figure 11H). Those

above results implied that PTPRC played pivotal roles in regulating T-

cell immunity-mediated chemotherapy sensitivity in TNBC.
5 Conclusion

Through bioinformatic analysis and in vitro experiments, some

interesting and unexpected phenotypes are revealed: (1) 14 ICD-
B
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G

A

FIGURE 13

ICD-TDGs combined with clinical features to construct nomogram. (A) Multivariate cox regression identified BIRC3, CCR7, FTL3, IKZF3, PRKCB,
PTPRC, and VAV1 to construct multi-gene riskscore; (B, C) Riskscore, clinical stage and age constructed nomogram; (D, E) AUC values of training
cohort (TCGA-BRCA) and testing cohort (GEO20685); Calibrations of nomogram based on (F) TCGA data and (G) GEO data. *p < 0.05; **p < 0.01;
***p < 0.001.
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TDGs-based AI model identified hierarchical prognosis in pan-

cancer, and it was also consistent with genome-based drug

sensitivity stratification in breast cancer; (2) Immune cell

infiltration is related with drug tolerance, amongst which CD8+ T

cell infiltration was pivotal in regulating ICI-induced drug tolerance

in breast cancer; (3) PTPRC is a protective factor in regulation CD8

+ T cell-mediated drug sensitivity in breast cancer; (4) ICD-TDGs

and clinical features constructed a nomogram which held the ability

to predict prognosis in breast cancer.

However, the mechanisms of PTPRC-mediated promotion of

CD8+ T cell infiltration were still not clear, and further work was

needed to uncover this night veil.
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(C, D) Similar results were observed in GEO cohort-2, in which different

independent cohorts with different chemotherapy regimens.
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