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C1q is a crucial component of the complement system, which is activated

through the classical pathway to perform non-specific immune functions,

serving as the first line of defense against pathogens. C1q can also bind to

specific receptors to carry out immune and other functions, playing a vital role in

maintaining immune homeostasis and normal physiological functions. In the

developing central nervous system (CNS), C1q functions in synapse formation

and pruning, serving as a key player in the development and homeostasis of

neuronal networks in the CNS. C1q has a close relationship with microglia and

astrocytes, and under their influence, C1q may contribute to the development of

CNS disorders. Furthermore, C1q can also have independent effects on

neurological disorders, producing either beneficial or detrimental outcomes.

Most of the evidence for these functions comes from animal models, with some

also from human specimen studies. C1q is now emerging as a promising target

for the treatment of a variety of diseases, and clinical trials are already underway

for CNS disorders. This article highlights the role of C1q in CNS diseases, offering

new directions for the diagnosis and treatment of these conditions.

KEYWORDS
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1 Introduction

The complement system is a sophisticated protein response system consisting of over

30 components that are present in serum, tissue fluids, and cell surfaces. It possesses a

complex regulatory mechanism (1). These components exist in a non-activated form in

body fluids and are activated through a cascade of enzymatic reactions that produce various

biological effects. There are three complement activation pathways, each with a common

end-reaction process (2). The classical pathway involves a cascade of enzymatic reactions in

which activators, mainly IgG and IgM bound to antigen, bind to C1q and sequentially

activate C1r, C1s, C2, and C3, forming C3 convertase (C4b2a) and C5 convertase

(C4b2a3b), ultimately leading to the formation of the C5b6789n complex, the

membrane attack complex (MAC), at the cell membrane (Figure 1). The alternative

pathway directly activates C3 by microorganisms or exogenous xenobiotics to form C3
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convertase (C3bBbP) and C5 convertase (C3bBb3b), with the

involvement of B-factor, D-factor, and P-factor. The lectin

pathway, also known as the MBL pathway, involves a cascade of

enzymatic reactions in which mannose-binding lectin (MBL) and

ficolin (FCN) in plasma directly recognize the glycan structure on

the surface of the pathogen, sequentially activating MBL-associated

serine protease (MASP), C4, C2, and C3, ultimately forming the

same C3 convertase and C5 convertase as in the classical pathway.

C1q is a crucial component of the complement system,

produced mainly by myeloid cells such as monocytes,

macrophages, and immature dendritic cells. It is composed of

three genes (C1q A, B, and C) that encode proteins with a

collagen-like region and a globular domain. The A, B, and C

chains are assembled into trimers, and six trimers form a

hexamer with a total of 18 polypeptide chains. The resulting

complex molecule has multiple interaction sites on C1q. The

crystallographic model revealed that the binding site of the

immunoglobulin to C1q is located on the outer surface of

the head, while the apoptotic cells bind on the inner surface of

the sphere (10). C1q can act as a biomolecule recognized by

pathogen-associated molecular patterns (PAMPs) and danger-

associated molecular patterns (DAMPs) to perform immune

functions (11). It has an essential role in removing foreign

substances and pathogens, as well as maintaining internal

stability. C1q is well known for its involvement in the classical

activation pathway of complement. When the globular head of C1q

binds to the Fc segment of IgM or IgG in the immune complex, the
Frontiers in Immunology 02
C1q conformation changes, leading to the sequential activation of

C1r and C1s, initiating the classical activation pathway of

complement. C1q has four main types of receptors, including Clq

receptor for phagocytosis enhancement (ClqRp), complement

receptor 1 (CR1), calreticulin (CRT), and C1q globular head

binding protein (gClqbp) (12). By interacting with supracellular

receptors, C1q stimulates variety of cells such as phagocytes and

endothelial cells to secrete a variety of cytokines, exacerbating local

inflammatory responses (8, 9, 11). Recent research has shown that

the interaction of C-type lectin SIGN-R and C1q head can promote

the maturation and differentiation of immature DCs(iDCs) cells (3).

Additionally, the regulation of DC differentiation and function is

through C1q binding to cell surface SIGN and gC1qR-specific

molecules on the DC plasma membrane to form a trimolecular

complex (4). In pneumococci, the SIGN-R1 receptor on

macrophages binds directly to C1q replacing the Ig normally used

in the classical pathway, forming C3 convertase, subsequently

activating the rest of the pathway (13). CR1 binds to C1q and is

involved in phagocytic activity (5), CR1 is widely expressed and is

also found on CNS microglia (14). CRT binds to the C1q globular

domain, enhances phagocytosis of apoptotic cells, and triggers an

immunogenic response (6, 15). C1qRp binds to the C1q collagen tail

and globular head sites and induces phagocytosis of apoptotic cells

(7). C1q also has anti-cancer effects through immunosurveillance

(16, 17), Antigen-presenting cancer-associated fibroblasts (apCAFs)

in lung malignancies produce C1q, which binds to T cells C1qbp to

inhibit T cell apoptosis and promote tumor killing by immune cells
FIGURE 1

C1q is involved in the immune process. Upon antigen-antibody binding, C1q is activated and subsequently activates C1r and C1s, leading to the
formation of C3 convertase C4b2a, C5 convertase C4b2a3b, and ultimately the formation of the membrane attack complex with the involvement of
C6 to C9. The globular domain or collagen-like tail of C1q binds to cell surface receptors to produce various physiological effects. The globular
domain of C1q binds to SIGN/gC1qR, which regulates the differentiation of immature dendritic cells (3, 4). The tail of C1q binds to the phagocyte
surface receptor CR1, promoting the phagocytosis of pathogens (5). Additionally, the globular domain of C1q interacts with the phagocyte surface
receptor CRT to promote phagocytosis of apoptotic cells, while binding to gC1qR on the surface of apoptotic cells induces phagocytosis (6, 7).
Furthermore, C1q interacts with phagocytes and endothelial cells, increasing cytokine secretion (8, 9).
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(18). The presence of C1r2s2 increases the stability of C1q-IgG and

has a positive effect on the elimination of foreign substances and

tumor cells (19). Apart from normal physiological immune

responses such as the removal of foreign substances and

abnormal cells, C1q also has an important impact on the

development of other diseases. C1q can act in conjunction with

ApoE to cause atherosclerotic plaque formation (20), can be present

alone to participate in the early development of atherosclerosis (21).

C1q complexes with vWF increase platelet rolling and adhesion and

promote hemostasis (22). C1q binds to discoidal domain receptor 2

(DDR2) to regulate metalloproteinase expression for wound healing

due to its specific collagen-like structure (23). The structure of the

C1q collagen region binds to the sequence of fibronectin-binding

protein B (PfbB) on the surface of Streptococcus pneumoniae and

promotes the adhesion of Streptococcus pneumoniae to host cells

and participates in the process of pneumococcal infection (24).

Complement activation is well documented in the progression of

autoimmune diseases and is especially important in the

development, diagnosis and prognostic monitoring of lupus

nephritis (25, 26). C1q blocks aberrant effector CD8+ T cell

responses by recognizing activated CD8+ T cells through globular

structural domains and affecting their mitochondrial metabolism,

and such aberrant effector CD8+ T cells are known to be involved in

the development of systemic lupus erythematosus (SLE) (27). A

recent study by Zheng et al. in Behçet’s disease showed a significant

pro-inflammatory effect of monocytes with high expression of C1q

(C1qhi) in the cell membrane by single cell RNA sequencing

(scRNA-seq) technology (28). This highlights the importance of

understanding the role of C1q in autoimmune diseases and

other inflammatory.
2 Neural development

A growing body of research has identified C1q as a key

substance involved in neuronal network development and

homeostasis within the central nervous system. Specifically, C1q

serves as a pruning function during synapse development and

synaptogenesis (29, 30). Microglia are extremely delicate and

strict on synaptic pruning processes in the nervous system,

and C1q and C3 may act as phagocytic signals for microglia-

dependent phagocytosis of synapses (31, 32). Multiple EGF-like

domains 10 (Megf10), a class F scavenger receptor expressed on

astrocytes, binds to C1q with high affinity and induces phagocytosis

of apoptotic cells (33). In developing mice, exposure to

phosphatidylserine (PS) functions as a neuronal “eat-me” signal

involved in C1q-mediated pruning with the microglia receptor

TREM2 (34). PS is not exposed on the intact cell surface, but is

exposed upon apoptosis (35). In a study of visual neurons in mice,

C1qa was found to be critical in the formation of synapses between

retinal ganglion neurons and dorsal lateral geniculate nucleus

neurons in the visual thalamus, but C1qa did not affect synaptic

density and microglia phagocytosis in the developing visual cortex

(36). It indicates that different complement components are

inconsistent at different developmental periods and regions, and

their complex relationships need further study.
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The role of the complement pathway in the brain is complex,

and there is now evidence that complement plays an important role

in neurological disorders in adulthood (37, 38). Complement

activation may contribute to neurological disorders through the

binding of C3b (iC3b)-CR3 to phagocytes for neuronal damage

(39), or through the destruction of neurons by binding to specific

allergenic toxin receptors on local glial cells (40). C1q on the one

hand gives rise to the classical complement pathway and on the

other hand is involved in several functions that may be independent

of the complement cascade, including regulation of synaptic

pruning (31, 32), protection against neurotoxicity (41) and

promotion of angiogenesis (42). In neurological disorders, it may

have many deleterious effects as well as some beneficial effects, while

evidence for these effects primarily comes from animal models,

there is also some evidence from human specimen studies. Overall,

an in-depth understanding of the effects of C1q on the nervous

system’s development and function can provide insight into the role

of C1q in neurological disorders and may offer potential diagnostic

and treatment strategies (Figure 2). This article revolves around a

review of recent research advances on C1q in recent years, which

are expected to provide new ideas for the diagnosis and treatment of

neurological disorders.
3 Relationship between C1q and
microglia and astrocytes

C1q, which is produced by microglia, astrocytes, and neurons,

plays different roles in the CNS. Microglia and astrocytes are crucial

cells in CNS disorders related to C1q. Astrocytes, as the most

abundant glial cells, are a vital component of the blood-brain barrier

and exhibit incredible complexity in different brain regions (49, 50).

Microglia, as the brain’s resident macrophages, participate in

various neuroimmune and non-immune processes (51). Microglia

and astrocytes have important roles in neural repair, growth,

homeostasis, and interneuronal signaling. Abnormalities in both

will result in the development of a variety of diseases. During

nervous system development, microglia interact with C1q and C3 to

regulate synapse pruning. When stimulated by foreign C1q,

microglia produce C1q to activate more microglia, creating a

positive feedback loop and promoting inflammation (52).

However, complement activation can also mediate pathological

synaptic loss in microglia during aging, leading to degenerative

diseases (31). Astrocytes can respond to various stimuli and

undergo changes in gene expression, function, and morphology,

resulting in “reactive astrocytes” that can have both protective and

harmful effects on neurons (53). Inflammatory mediators secreted

by microglia, such as IL-1a, C1q, and TNF, can induce astrocytes to

become reactive astrocytes (A1s) (54). The pro-inflammatory

factors TNF, IL1a and complement pathway component C1q are

able to induce a deleterious response state in astrocytes that are

distinct from healthy astrocytes (46). A1s are cells that have lost

their typical astrocyte functions (promoting neuronal survival and

growth, facilitating synapse formation, phagocytosis of synapses

and myelin debris, etc.) (55–57). Studies with rodent and human
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astrocytes suggest that activated microglia are not sufficient to kill

neurons, but rather induce A1s by inducing the secretion of IL-1a,
TNFa, and C1q together, and that A1s are capable of secreting

neurotoxins and releasing a variety of complement components

that denature synapses, leading to neural deformation and death

(46, 58). A1s can denature synapses, leading to neural deformation

and death, and are implicated in several neurodegenerative diseases

such as Alzheimer’s, Huntington’s, Parkinson’s, Amyotrophic

Lateral Sclerosis, and Multiple sclerosis. Transcriptomic analysis

reveals that the transcriptional profiles of reactive astrocytes (A1s)

and inflammatory microglia (MIMS) overlap with those of other

neurodegenerative glial cells. C1q has been identified as a crucial

mediator of A1s and MIMS activation (59), which will be further

analyzed in subsequent sections.
4 Relationship to degenerative
diseases in the central nervous system

Neurodegenerative diseases are a group of chronic and

progressive diseases that cause damage to tissues such as the

central nervous system or peripheral nervous system, and their

underlying mechanisms are not yet fully understood. These diseases

include Alzheimer’s disease (AD), Amyotrophic Lateral Sclerosis

(ALS), Parkinson’s disease (PD), among others. Recent studies

utilizing single-cell RNA sequencing have revealed significant

differences in gene expression in patient cells, and have identified

the accumulation of complement C1q as a central factor underlying

most proteotype-related functional synaptic dysfunction (60).

C1q plays a crucial role in the development of degenerative

diseases, and the following section provides a brief overview of
Frontiers in Immunology 04
the relationship between C1q and the aforementioned diseases in

recent years (Table 1).
4.1 Alzheimer’s disease (AD)

Alzheimer’s disease (AD) is a common neurodegenerative

disorder that affects the elderly, but its underlying mechanisms

are still not fully understood. The cognitive impairment observed in

AD is associated with synaptic loss and morphological changes in

the brain (93). A study of cerebrospinal fluid from patients with AD

pathology (beta-amyloid (Ab) and tau subtypes) but not yet

symptomatic or in pre-dementia found elevated YKL-40,

sTREM2, sAXL, sTyro3, MIF, complement factors C1q, C4 and

H, ferritin, and ApoE inflammatory markers (61). C1q has been

found to induce excessive phagocytosis and synapse clearance by

microglia, leading to synapse loss in AD patients (93, 94). Carpanini

et al. conducted experiments on AD model mice and discovered

complement dysregulation, with C1q significantly increased in the

nervous system of ADmice (62). Yin et al. studied the inflammatory

response in the choroid plexus (ChP) of AD patients and found a

specific interaction between ApoE and C1q. They observed that the

high-affinity binding of ApoE to C1q inhibits the initiation phase of

the classical complement cascade reaction (CCC), with the ApoE

isoform binding to the activated form of C1q in a Ca2+-dependent

manner (20). These findings suggest a close relationship between

C1q and neurodegenerative lesions in AD. Liddelow et al. used a

mouse model of AD and found that reactive astrocyte A1 (A1s)

plays an important role in AD progression (46). A1s-reactive

astrocytes can also cause neurological damage via astrocyte-

derived exosomes (ADE) and deliver them to other CNS cells via

ADE (95). Another study found that the transcription factor
FIGURE 2

Mechanism of C1q in nervous system diseases. (A) Activation of glutamatergic neuronal mGluR1 receptors leads to increased expression of C1q
mRNA (43). (B) The mGluR5 silent alteration modulator (SAM) inhibits C1q-mediated microglial phagocytosis (44). (C) The ubiquitin ligase COP1
regulates the transcription process of microglial inflammatory genes by controlling CCAAT/enhancer binding protein b (c/EBPb) (45). (D) LPS
(lipopolysaccharide) can bind to TLR4 receptors on microglia, triggering the secretion of C1q, Il-1a, and TNFa by microglia, and inducing A1 in
astrocytes (46). (E) C1q prevents the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes by inhibiting the Wnt/b-
catenin signaling pathway (47). (F) C1q interacts with MAG to reduce MAG inhibitory effect on neuronal signals, thereby promoting axonal growth
(48). (G) The binding of ApoE to C1q inhibits the initiation of the classical complement cascade reaction (20).
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TABLE 1 The effect of C1q in neurological disorders.

Disease Object Research conclusion C1q effect References

Alzheimer’s
disease

CSF of AD patients Elevated inflammatory markers such as C1q in pre dementia Detrimental (61)

C1qa–/–, C6–/–,Cd59a–/–, AppNL–G–F and
3xTg-AD mice

C1q increased significantly in the nervous system of AD mice Detrimental (62)

Choroid plexus in AD patients C1q ApoE complex may play a physiological role in normal brain
homeostasis

Beneficial (20)

Sprague Dawley rat, TNFa -/-,C1q(a) –/–,Il-
1a –/– TNFa –/– and Il-1a –/– TNFa –/–
C1q –/– mice

C1q induced A1s Detrimental (46)

Cop1fl/fl,Cebpb-/-,Rosa26-CreERT2,Cx3cr1-
CreERT2-eYFP, and Tau(P301S) mouse

C1q activation caused by COP1 inactivation Detrimental (45)

Sprague-Dawley rats,Tg-APPsw/PSEN1DE9
(APP/PS1) mice and Metabotropic glutamate
receptor 1 mutant mice

MGluR1 increases the expression of C1q mRNA and enhances the
phagocytosis of microglia

Detrimental (43)

MAPT
gene KI AD mouse model and a TG
amyloidogenic mouse model

SAM Prevents Synaptic Localization of C1q and Synaptic
Phagocytosis of Microglia in AD Mice

Detrimental (44)

Amyotrophic
Lateral
Sclerosis

Spinal cord and motor cortex in ALS C1q deposition Detrimental (63)

SOD1G93A mice and ALS necropsy C1q Deposition on the Moving End Plate Detrimental (64)

hiPSC- astrocytes
and SOD1 G93A in mice

C1q as inducer Detrimental (65)

SOD1G37R ALS mice and C1qa KO mice C1q does not contribute significantly in the pathogenesis of ALS Neutral (66)

Parkinson PD patients, healthy controls serum 4R-Tauopathies complement levels are lower than those of PD
patients and HC patients, which is useful for disease differentiation

—— (67)

MPTP mouse model C1q may act here as a mediator of extracellular debris removal by
microglia

Beneficial (68)

The nigrostriatal in PD and control cases C1q mediates microglia clearance of extracellular debris Beneficial (69)

MSA donor brain samples a-syn can be recognized by C1q, which initiates the classical
complement pathway and forms a membrane attack complex to
induce cell death

Detrimental (70)

Multiple
Sclerosis

MS Autopsy Increased expression of C1qA Detrimental (71)

MS patient’s brain C1q labeled synapse Detrimental (72)

MS Dead Seahorse Area C1q impairs cognitive function Detrimental (73)

CPZ mice C1q activation of MIMS Detrimental (59)

Plasma from MS patients C1q participation in MS prominently lost Detrimental (74)

crEAE mouse model C1q continues to increase Detrimental (75)

EAE mice, C1q cKO mice Targeted C1q therapy to mitigate disease progression Detrimental (76)

CPZ mice C1q prevents oligodendrocyte progenitor cells from differentiating
into mature oligodendrocytes

Detrimental (47)

Huntington’s
disease

HD patients and control group Complement C mRNA expression in the brain of HD patients Detrimental (77)

NPA induced in Wistar rats Cytokine IL-1a, TNFa and C1q expression in the striatum,
hippocampus and cerebellum are upregulated, further causing
neuronal damage

Detrimental (78)

striatum in HD patients and controls Astrocyte proliferation and microglia with marked hyperplasia and
increased complement expression

Detrimental (79)

(Continued)
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CCAAT/enhancer binding protein b (c/EBPb) promotes

inflammatory gene transcription in microglia, and that microglia

c/EBPb expression can be regulated by the ubiquitin ligase COP1.

Microglia knocked out of COP1 produce c/EBPb-dependent
neurotoxicity mainly through C1q activation of the classical

complement pathway. This suggests that the activation of C1q

caused by COP1 inactivation plays an important role in AD

progression (45). Previous reports have found a strong link

between glutamate and the development of AD, so how is C1q

produced and regulated in the brain, and what is the link between it

and glutamate? Mouse astrocyte glutamate transporter 1 (GLT1)

maintains intersynaptic glutamate concentration homeostasis by

removing glutamate from the synaptic gap via active transport via

H+-K+ or Na+-K+ pumps or by synthesizing glutamine for reuse via

glutamine synthetase. This suggests that abnormal function or

reduced number of the astrocyte glutamate transporter GLT1

may be responsible for the occurrence of AD (96). Bie et al. (43)

concluded from their mouse model studies that metabotropic

glutamate receptor 1 (mGluR1), when induced by amyloid,

activates mGluR protein phosphatase 2A (PP2A), which causes

dephosphorylation of fragile X messenger ribonucleoprotein

(FMRP), resulting in increased expression of C1qmRNA and
Frontiers in Immunology 06
enhanced phagocytosis of microglia. Spurrier et al. confirmed this

mechanism in the treatment of aged AD mice with metabotropic

glutamate receptor 5 (mGluR5) silent alteration modulator (SAM).

SAM restored synaptic density and prevented synaptic localization

of C1q and synaptic phagocytosis of AD mice by microglia. It also

prevented abnormal synaptic signaling induced by b-amyloid

oligomers, while maintaining physiological glutamate responses

and reducing the accumulation of phospho-TAU. This suggests

the possibility of treating AD specifically by targeting mGluR5 for

modulation (44).
4.2 Amyotrophic lateral sclerosis (ALS)

ALS is the most common adult motor neuron disease,

characterized by the progressive loss of upper and lower motor

neurons leading to muscle atrophy and eventual death (97). The

mechanism underlying the development of ALS is still unclear, and

mutations in approximately 30 genes have been identified as

causative factors of ALS, including C9orf72, SOD1, FUS,

TARDBP, and VCP (98). While most of ALS cases are sporadic,

familial cases are also present, with mutations in the gene encoding
TABLE 1 Continued

Disease Object Research conclusion C1q effect References

Nerve injury C57BL/6J mice, BCKO mice, C3 –/–mice C1q deposition at the site of axonal pathology and demyelination Detrimental (80)

BUB/BnJ mice, C1q KO mice C1q can mediate oligodendrocyte death Detrimental (81)

C57BL/6J mice, TBI mouse model C1q causes a strong follow-up reaction to TBI Detrimental (82)

mTBI mouse model C1q causes further damage to the thalamus Detrimental (83)

C57B6/J mice, cortical impact or sham
surgeries

C1q impairs cognitive function Detrimental (84)

Cerebrospinal fluid in TBI patients C1q subunit B is present in released microvesicles and exosomes
(MV/E)

Detrimental (85)

Serum of TBI patients C1q was significantly correlated with GCS score and Rotterdam
CT classification

Detrimental (86)

Sprague Dawley rat、C1q KO BUB/BnJ mice C1q decreases the effect of MAG on neuronal inhibitory signals
and thus promotes axonal growth

Beneficial (48)

C57BL/6Jmice, 129Smice,C1q A chain
KOmice,C3 KOmice,CD11b KOmice

C1q has a reparative role in nerve injury Beneficial (87)

Guillain-
Barré
syndrome

EAN-induced Lewis rat model Antibody binding to C1q causes complement activation and
exacerbates demyelination

Detrimental (88)

Gliomas Primary isolation and cell culture of human
brain

RXFP1 - CTRP8 may also promote the increase of glioblastoma
migration through STAT3 signal mediated actin cytoskeleton
remodeling and fibropodia formation

Detrimental (89)

GBM tumor tissue Deposition of C1q and C3 was observed in the tumor tissue Detrimental (90)

GEPIA Database CTRP1 can regulate the expression of CCL2 to promote tumor
progression

Detrimental (91)

Onomine database, UALCAN and CGGA
database analysis

There is a positive correlation between the level of C1q expression
and different grades of glioma

Detrimental (92)
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copper-zinc superoxide dismutase-1 (SOD-1) being more common.

As such, many studies on ALS have been conducted on mice with

SOD1 mutations. Ferraiuolo et al . used laser capture

microdissection and microarray to analyze motor neuron changes

in SOD1 G93A mice, revealing significant transcriptional

repression, metabolic function decline, upregulation of

complement components, and increased expression of cell cycle

proteins involved in the cell cycle during the late stage of the disease,

indicating the crucial role of complement components in ALS

development (99). In ALS, complement components have been

found at multiple nerve sites, with deposition of C1q and C4

observed in both the spinal cord and motor cortex of ALS

patients, along with higher levels of inflammatory response and

microglia activation in patients with rapidly developing ALS (63,

99). Bahia El Idrissi et al. studied immunofluorescence staining of

SOD1G93A gastrocnemius and ALS donor intercostal muscle tissue

and found that deposition of complement activation products C3/

C3b and C1q in the motor endplates during the early stages of ALS

symptoms. C1q deposition on the motor endplates of ALS donor

intercostal muscles in the SOD1G93A mouse model was detected

before the appearance of clinical signs, indicating that complement

activation is an early event. C1q immunoreactivity is present in

most intercostal muscle tissues of ALS donors, in addition to C1q

deposition on motor nerve terminals and terminal Schwann cells of

ALS donor intercostal muscles. The study also explored regulatory

factors such as CD55 and CD59, which protect tissues from

complement system attack and could provide new therapeutic

approaches for ALS (64). C1q not only destroys neurons via the

classical complement system, but also acts as an inducer of reactive

astrocytes, as has been briefly suggested above in AD patients.

Among the damaged astrocyte mechanisms, damaged astrocyte

glutamate uptake was found to cause excitotoxicity and has been

suggested to play an important role in motor neuron

hyperexcitability and death in ALS (100). In the ALS mouse

model astrocytes were compared to A1s astrocytes with respect to

glutamate uptake and subsequent toxic response and there was a

great similarity. As seen by gene expression analysis of ALS

astrocytes versus protective astrocytes, multiple genes appear

opposite (65), signaling pathway analysis revealed that

inflammatory pathways such as JAK-STAT, NF-kB and TNF are

significantly increased in mouse ALS models, but C1q is able to

inhibit the activation of these inflammatory pathways in phagocytes

(101–103). Peng showed that TDP-43 is required to maintain the

protective properties of astrocytes, and TDP-43-deficient astrocytes

exhibited increased immunoreactivity but did not affect the

proliferation of astrocytes or microglia. At the transcriptome

level, TDP-43-deficient astrocytes resembled A1-responsive

astrocytes and induced increased C1q expression in microglia

(104). Interestingly, Lobsiger et al. found that the induction of

complement pathway activation by C1q did not significantly

contribute to the ALS pathogenesis in SOD1 G37R mutant mice

(66). The role of C1q in ALS has been recognized by most

researchers, and although some studies are inconsistent, we still

cannot deny the important role of C1q in ALS, a disease that

requires continued efforts to explore and study to find more
Frontiers in Immunology 07
treatments. Clinical trials about C1q inhibitors in ALS have

emerged(NCT04569435)(EUCTR2021-000325-26-FR) (Table 2).
4.3 Parkinson’s disease (PD)

PD is the most prevalent movement disorder of the nervous

system and the second most common neurodegenerative disease

after AD. The lesions are found in the substantia nigra-striatal

area and are characterized by the loss of nigrostriatal neurons,

striatal dopaminergic deficiency, and the buildup of alpha-

synuclein (a-syn) in intraneural inclusions (105). The

incidence of PD tends to increase with age, which is

significantly associated with age (106). Initially, PD was

thought to be a movement disorder without dementia, with

major symptoms in the motor system such as bradykinesia

(slow movement), rigidity, and resting tremor. However, with

the growing awareness of Parkinson’s disease, PD also affects

other extrapyramidal dopaminergic , chol inergic , and

serotonergic bundles, leading to non-motor symptoms,

including loss of smell, sleep disturbances, and constipation, as

well as cognitive and psychiatric symptoms, such as dementia

and depression (107). Cognitive impairment is six times more

prevalent in individuals with PD than in the healthy population

(108). It is one of the most significant non-motor manifestations

of PD, and cognitive impairment can significantly impair the

quality of life and function of PD patients, with the majority of

patients developing dementia within 20 years of diagnosis (109).

The pathogenesis of PD is still unknown, and clinical data

suggest that PD has a genetic origin, with mutated genes

including those encoding alpha-synuclein, DJ-1, PINK,

LRRK2, and others (110). Numerous studies have highlighted

the involvement of both innate and adaptive immune systems in

the development of PD (111, 112). Clinical studies have

demonstrated that non-steroidal anti-inflammatory drugs

(NSAIDs), including ibuprofen (non-aspirin), may reduce the

risk of PD and have a protective effect, particularly in long-term,

regular users (113, 114). The difficulty in distinguishing early PD

from some Four-repeat (4R-) Tauopathies arises from the lack of

specificity in clinical presentation. To address this issue,

Khosousi investigated serum C1q and C3 levels and found that

4R-Tauopathies had lower levels of complement compared to

PD patients and healthy controls (67). Mice models of

nigrostriatal pathway injury induced by MPTP have confirmed

microglia activation and increased expression of C1q in the

nigrostriatal system. However, in the subchronic MPTP model,

C1q may act as a mediator of extracellular debris removal by

microglia and did not affect nigrostriatal injury (68). These

findings were also confirmed in the nigrostriatal SNc in the

Depboylu study of PD and control cases (69). PD is characterized

by the accumulation of alpha-synuclein (a-syn) in intracellular

Lewy bodies (115), a-syn can activate the classical complement

pathway by acting at an early step of the complement cascade. a-
syn is secreted extracellularly through the formation of

transmembrane pores or released as vesicles to bind to cell
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surface receptors (115, 116). a-syn can be recognized by C1q,

which initiates the classical complement pathway and forms a

membrane attack complex to induce cell death (70). The

relationship between a-syn and the innate immune system

could open new avenues for PD treatment.
4.4 Multiple sclerosis (MS)

MS is a chronic autoimmune demyelinating disease of the

central nervous system, characterized by lesions in the white

matter, gray matter, brainstem, spinal cord, and optic nerve (117).

Pathologically, the disease is associated with increased
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demyelination of white matter, inflammatory response, and gliosis

(117, 118). Demyelination is not unique to the white matter, but

also involves the gray matter (119, 120). The disease is characterized

by recurrent episodes of inflammatory demyelination, which can

lead to neurodegeneration, accompanied by a relapse-remission

process (121). MS not only leads to physical disability, but also

cognitive impairment and a decline in quality of life (122), and an

in-depth understanding of the pathogenesis of MS can provide new

directions and ideas for its treatment. Several genetic variants,

including single-nucleotide polymorphisms and mutations have

been identified in complement genes (123). Previous studies have

found that genetic abnormalities in the complement pathway are

more likely to cause retinal neurodegeneration or increased
TABLE 2 Anti-C1q clinical trials on neurological disorders.

Identifier Recruiting
status

Study
subjects

Age Country Sample
size

Intervention Primary outcome Access link

NCT04514367 Completed Hunting’s
Disease

≥18
years

United States 28 ANX005 Safety and tolerability
of intravenous
ANX005 administered
for up to 22 weeks in
subjects with, or at
risk for, manifest
Huntington’s Disease

https://clinicaltrials.gov/
ct2/show/NCT04514367

NCT04035135 Completed Guillain-
Barré
Syndrome

≥18
years

Bangladesh,
Denmark

14 ANX005 and
IVIg

Pharmacokinetics of
ANX005 when
administered in
combination with
IVIg

https://clinicaltrials.gov/
ct2/show/study/
NCT04035135

NCT04569435 Recruiting Amyotrophic
Lateral
Sclerosis

≥18
years

Canada,
United States

24 ANX005
IV Infusion

Number of
Participants Who
Experienced
Treatment-Emergent
Adverse Events

https://clinicaltrials.gov/
ct2/show/study/
NCT04569435

NCT04701164 Recruiting Guillain-
Barre
Syndrome

≥18
years

National
Institute of
Neurosciences
and Hospital
(NINS)
Bangladesh

180 ANX005 and
Placebo

1.GBS Disability Score
(GBS-DS)
2.Number of
Participants with
Adverse Events

https://clinicaltrials.gov/
ct2/show/NCT04701164

EUCTR2021-
000325-26-FR

Authorised Amyotrophic
Lateral
Scelrosis
(ALS)

≥18
years

EUCTR 25 ANX005 Main Objective: To
assess the safety and
tolerability of
ANX005 administered
for up to 12 weeks in
subjects with ALS
Secondary Objective :
To assess the
pharmacodynamic
(PD) effects of
ANX005 in blood and
CSF through the
assessment of NfL and
pNFH

https://trialsearch.who.int/
Trial2.aspx?
TrialID=EUCTR2021-
000325-26-FR

NCT04489160 Recruiting Traumatic
Brain Injury

≥18
years
and <
65
years

Netherlands 106 C1 Inhibitor
and Placebo

1. Therapy Intensity
Level (TIL) Scale
2. Glasgow Outcome
Scale Extended
(GOSE)
3. Complication rate

https://
www.clinicaltrials.gov/ct2/
show/NCT04489160?
term=C1&cond=Traumatic
+Brain
+Injury&draw=2&rank=1
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susceptibility to visual loss in MS patients (124). A study by

Vilariño-Güell analyzed the DNA of 132 MS patients and

identified 12 genetic variants in genes associated with the

immune pathway, providing further evidence that immunity

drives MS development (125). Ingram shows that inflammation

progression in the MS CNS is not dependent on infiltrating cells;

inflammation can be driven by innate immune mechanisms such as

complement (126). Complement activation occurs universally in

MS, where complement proteins (C1q, C3) persist in MS plaques,

and C1q is present in all MS plaques and plays a dominant role in

the classical cascade response (126). Watkins analyzed complement

expression and activation in the MS deceased organization and

found C1qA expression in neurons and glial cells in the MS cortex

and deep gray matter, and an increase in the upregulation and

number of microglia allergenic toxin receptors in the damaged

cortical gray matter area (71). C1q and C3 are deposited at synapses

in the MS brain, and microglia phagocytosis of labeled synapses

leads to a significant decrease in synaptic density (72). Human

cadaveric samples have shown the accumulation of early

complement components, including C1q, C4d, Bb, C3b-iC3b,

C3d, and MAC in the cortical, hippocampal, and thalamic gray

matter of MS patients (72, 127). Ramaglia et al. found a significant

increase in C1q expression in the CA2 region of the hippocampus,

suggesting a link between cognitive dysfunction and C1q deposition

in hippocampal CA2 in MS patients (73). Interestingly, in a study

by Hammond et al. using MOG 35-55 induced experimental

autoimmune encephalomyelitis (EAE), they found that C1q was

not significant in causing hippocampal synapse loss and microglia

activation (128). Inflammatory microglia (MIMS) and reactive

astrocytes were also found in the MS nervous system.

Extracellular vesicles (EVs) of astrocytes containing high levels of

C1q, C3, and other complement proteins have been detected in the

plasma of MS patients, which are involved in the synaptic loss

process in MS (74). A positive correlation has been observed

between the number density of C1q+ cells and tissue damage

(129). In an experimental analysis of the spinal cord of a mouse

model of chronic recurrent experimental autoimmune

encephalomyelitis (crEAE), C1q expression increased throughout

the disease progression phase, but complement expression

decreased during the early and remission phases (75). By

knocking out C1q receptors on microglia in a mouse model of

MS, Absinta’s team showed that microglia proliferation indicators

were largely attenuated, suggesting that C1q inhibition may be a

potential way to treat MS (76). However, the Vanguri study

recognized that damage to myelin phospholipids can also occur

in the absence of antibodies (130). Gao demonstrated in a

demyelinating mouse model that C1q may be involved in

demye l ina t ion by prevent ing the d i ff e rent ia t ion o f

oligodendrocyte progenitors into mature oligodendrocytes

through Wnt/b-catenin signaling activation (47).
4.5 Huntington’s disease (HD)

Huntington’s chorea (HD) is an autosomal dominant inherited

neurodegenerative disorder (131). It is caused by an abnormally
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expanded CAG repeat near the N terminus of the Huntington

protein gene (HTT), which produces mutant Huntington proteins

upon translation(mHTT) (132). HD patients are indistinguishable

from normal individuals before the onset of clinical symptoms

(133). which usually start with mental changes such as personality,

cognition, irritability, forgetfulness, and anxiety. As the disease

progresses, motor limb incoordination appears (131, 134). HD

patients are often also suicidal (135), and there is a pressing need

for more tools and methods to treat this disease. Early recognition

of potential suicidal ideation and symptom improvement are

imperative. Complement C expression was higher in the brain of

HD patients with early disease compared to controls (77), especially

in the primary lesion area (136). Francis et al. suggested that C1q

may co-mediate with Huntington’s protein to cause HD by

inducing apoptosis in the caudate nucleus (136). Lopez-Sanchez

et al. injected 3-Nitropropionic acid (NPA) into adult Wistar rats to

induce an animal model of HD (137). Protein blotting and

immunohistochemical analysis of brain sections from these rats

showed an increase in the C3a subunit, a marker of neurotoxic A1

astrocytes, and an upregulation of cytokine IL-1a, TNFa and C1q

expression in the striatum, hippocampus and cerebellum, leading to

neuronal damage (78). Singhrao analyzed the complement profile of

striatum in HD patients versus normal subjects and observed

significant astrocyte and microglia proliferation in the caudate

nucleus and internal capsule of HD, with increased complement

expression, further confirmed by the increased inflammatory

response in HD (79). ANX005 is a monoclonal antibody that

inhibits C1q, and the safety and tolerability of ANX005 are

currently being risk assessed in subjects with significant HD

(NCT04514367) (134) (Table 2).
5 Relationship to inflammatory
diseases in the nervous system

C1q acts as an ancient substance in the innate immune response

and is naturally indispensable for its value in inflammatory diseases

of the nervous system. In many diseases of the nervous system, the

inflammatory response plays an important role in the pathology of

neurological lesions.
5.1 Nerve injury

Injuries to the central nervous system, such as brain and spinal

cord, trigger a robust inflammatory response, with non-adaptive

immunity being the first line of defense. Numerous studies have

emerged with the goal of understanding the mechanisms of nerve

injury, reducing injury, improving patient outcomes, and enhancing

their quality of life. Research on spinal cord injury (SCI) patients

have identified polymorphonuclear leukocytes (PMNs) as the first

immune cells to infiltrate the CNS following SCI, and these cells are

believed to contribute to subsequent damage after CNS trauma

(138). Studies have detected the expression of mRNAs encoding

C1q, C3, and C4, as well as the complement proteins C1q and C3, in
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PMN cells in a rat model of SCI (139). Deposition of C1q was also

found at the site of axon pathology and demyelination in SCI model

mice (80). Moreover, C1q has been shown to mediate

oligodendrocyte death, leading to demyelination and axonal loss

(81). Peterson et al. found in myelin isolated from Sprague Dawley

rat brain that C1q interacts with myelin-associated glycoprotein

(MAG) to reduce MAG’s inhibitory effect on neurons and promote

axonal growth (48). MAG is a protein associated with myelin that is

produced after nerve injury and can inhibit nerve growth by

binding to a common receptor complex composed of NgR,

LINGO-1, and p75 ntr (140).

Traumatic brain injury (TBI) is a mechanical injury that

results in rupture of brain parenchyma and blood vessels, which

can be divided into primary and secondary injuries (141). The

complement system promotes secondary injury in TBI, and

circulating complement components can enter the brain

through the injured blood-brain barrier (BBB), locally reactive

microglia can activate complement-producing neurons in

response to injury (142). At the site of brain injury, C1q

accumulates in microglia/macrophages and neurons, and the

brain can also produce a strong subsequent response to TBI by

activating the local synthesis of classical and lectin complement

pathway activators (82). In the TBI mouse model, it was found

that the extensive connection between the thalamus and the

cerebral cortex can cause secondary brain damage to the

thalamus, leading to inflammation, chronic neurodegeneration,

disruption of sleep spindle waves, and the occurrence of epileptic

brain waves. C1q was found to accumulate around the thalamus,

causing further damage through cascade reactions (83), instead,

anti-C1q antibodies were used to treat TBI mice and improve

their prognosis. TBI not only presents with physical motor and

sensory impairment, but also has a strong correlation with the

risk of dementia, especially as age increases and the degree of

brain damage becomes more severe (143). Study of long-term

memory deficits in aged mice with TBI may depend on the

accumulation of early complement cascade components (C1q,

C3, and CR3) in the brain, and inhibition of complement

responses reduces cognitive impairment, and the presence of

these complements may be a potential modifier of cognitive

decline in the aged damaged brain (84). Manek et al. found an

increased number of released microvesicles and exosome (MV/

E) from human TBI cerebrospinal fluid, which is rich in

cytoskeletal proteins, synaptophysin, C1q subunit B, etc. This

specific MV/E causes complement activation, axonal damage,

cell death and other processes (85). The level of serum C1q

correlates significantly with the severity of trauma as indicated

by the GCS score and the Rotterdam CT classification, and

serum C1q may be a biomarker for predicting the prognosis of

TBI (86). Clinical trials for complement inhibitors in TBI

treatment are ongoing (NCT04489160), with promising

potential for future therapies in this area (Table 2).

In cases of neurological injury, the complement system

activation triggers an inflammatory response that worsens the

injury, but complement can also attract phagocytes to promote

repair and regeneration effects after CNS injury (144, 145). In a

mouse model of optic nerve injury, C1q was found to play a role in
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nerve injury repair by interacting with microglia to phagocytose the

myelin sheath of the injured optic nerve, thereby facilitating repair

(87). Clinical trials examining the use of C1 inhibitors for traumatic

brain injury are currently underway (NCT04489160). There are

conflicting opinions on the role of C1q in nerve injury, and more

research is necessary to determine how to regulate C1q in a way that

benefits us.
5.2 Guillain-Barré syndrome

Guillain-Barré syndrome (GBS) is an acute autoimmune disease

involving peripheral nerves, characterized by symmetrical

progressive flaccid paralysis of the extremities, diminished

neurological reflexes, and sensory abnormalities (146). GBS is

mainly divided into acute inflammatory demyelinating

polyneuropathy (AIDP) (which is the most common type of

Grinbarism), acute motor axonal neuropathy (AMAN) and

Miller-Fischer syndrome (MFS), depending on the site of onset.

The etiology of the disease is still unclear, and the more

authoritative factors are molecular mimicry and Campylobacter

jejuni infection-related (147). Infection produces cross-reactive

antibodies to human peripheral gangliosides, and complement

plays important role in its pathogenesis (148). Human ganglioside

GM1 antibodies accumulate mainly at the node of ranvier nerve

fibers and cause their destruction. Studies on the mechanism of

GM1 antibodies in model membranes have revealed that GM1

antibodies form a hexameric ring in the membrane, which can be

inhibited by staphylococcal protein A binding between CH2 and

CH3, and that binding of the GM1 antibody hexameric CH2

structural domain to each spherical head of C1q causes

complement activation, indicating that complement is involved in

an important step in the development of Grimballi syndrome

disease (149). Experiments using anti-C1q antibodies in a mouse

model have shown a reduction in demyelination (88). Treatment of

AMAN model mice with C1q antibody can reduce the level of

serum C1q and also prevent progressive development of respiratory

function and neurological damage in MFS mouse model and

prevent further deterioration of the disease (150). The use of anti-

C1q antibodies in the treatment of GBS patients is currently being

studied in clinical trials (NCT04035135)(NCT04701164)

(151) (Table 2).
6 Relationship to glioma

Glioma is the most common type of brain cancer (152),

glioblastoma(GBM) is the most malignant form. Currently, the

standard treatment for glioblastoma involves surgical resection

followed by radiotherapy and temozolomide chemotherapy (153).

However, due to its rapid growth rate and poor treatment

outcomes, effective management of the disease remains a

challenge for clinicians seeking to improve survival time and

quality of life for glioma patients. With increasing understanding

of the tumor microenvironment, there is growing recognition of the

role played by surface-associated proteins in tumor signaling, both
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between tumor cells and between tumor cells and non-tumor cells.

One such protein is complement C1q, which is expressed in the

human tumor microenvironment and appears to play a variety of

biological roles. Recent studies have identified that complement

C1q appears as an immune tolerance and immunosuppressive

marker in cells of macrophage populations of healthy and tumor

tissues, called tumor-associated macrophages (TAM), which can

suppress cellular immunity and promote tumor growth (154, 155).

Deposition of C1q and C3 was observed in tumor tissues, suggesting

a role for complement in the pathogenesis of GBM (90).

Complement act ivat ion has been shown to promote

carcinogenesis and support the basic needs of malignant cells by

maintaining proliferative signaling, angiogenesis, and anti-

apoptosis, while also regulating anti-tumor immunity and

promoting invasion and migration (156). There is also emerging

evidence of the important role played by C1q/TNF-related proteins

(CTRPs) in glioblastoma. CTRPs have been identified because they

all contain a C1q globular domain, also known as the C1q/TNF

superfamily, and the family includes 16 members that have been

shown to have a wide range of effects on metabolism, food intake,

tumor metastasis, apoptosis, vascular disease, ischemic injury,

inflammation (157). Binding of the leucine-rich G protein-

coupled relaxin receptor RXFP1 to C1q-tumor necrosis factor-

related protein 8 (CTRP8) ligand mediates increased GBM cell

migration, protein kinase C pathway activation, and lysosomal

protease cathepsin B production in glioblastoma progenitor cells

(158–160). Additionally, RXFP1-CTRP8 promotes actin

cytoskeletal remodeling and filopodia formation through STAT3

signaling, further enhancing glioblastoma migration (89). C1q/

TNF-related protein 1 (CTRP1), a member of the CTRP family, is

strongly correlated with glioblastoma multiforme (GBM) and can

regulate CCL2 expression, promoting tumor progression (91).

Moreover, the expression level of C1q is positively correlated with

different grades of glioma, and its expression may serve as a

prognostic indicator. Large deposits of C1q were found in the

stroma around tumor vessels, indicating that C1q may promote

angiogenesis and nutrient supply to tumor cells, facilitating tumor

growth (92). C1q plays a role in promoting glioma disease

progression, especially through its membrane-bound form, which

provides a new idea that C1q can be used as a potential target for the

treatment of glioma.
7 Summary

C1q, as the first initiator of the classical complement response,

plays an important role in the immune process in the normal

physiological state, and is essential for our organism to face

microbial invasion, tumor cell elimination and abnormal cell

apoptosis, etc. However, if the complement regulation balance is

disrupted, uncontrolled activation of C1q can lead to inflammatory

and progressive damage to the host organ, generating new

pathological effects, and causing various diseases. C1q plays a
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crucial role in neurodevelopment and neurological diseases,

contributing to the development of disease progression and

cognitive impairment. There are already C1q antibodies used in

animal testing, and there are various types of antibody designs, and

continued research is needed on how to produce the best antibodies.

Additionally, regulating the activation of microglia may also

provide a direction as it has been mentioned that microglia and

C1q work together to produce an inflammatory effect. However, a

few studies have suggested that C1q plays an active role in the repair

of neurological damage, so we still need to further understand the

role of C1q in the development of the disease and target

interventions to fully utilize the role of C1q. In-depth exploration

of the relationship between C1q and the nervous system has shown

that C1q has a high potential clinical value in the diagnosis of more

neurological diseases, and the amount of complement markers may

be a valuable evaluation indicator for the severity and activity of the

disease. As research on neurological tumors progresses, the

relationship between C1q and neurological tumors continues to

be confirmed, providing new directions for the treatment of

neurological tumors. Although most of the current studies on the

mechanism of C1q and its role in the CNS are performed in animal

models, they provide many clues to the understanding of the

relationship between C1q and neurological diseases, laying the

foundation for the physiological functions played by C1q in

the CNS and providing new ideas for the direction of treatment

of related diseases. However, there is still a lack of clinical studies on

C1q, its potential as a therapeutic target for neurological diseases,

and the safety and efficacy of C1q inhibitors in clinical trials. C1q as

a new target provides new directions for doctors and

pharmaceutical companies to explore new treatment modalities,

but more experiments are needed to investigate how C1q can be

better applied in the clinic.
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