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Raptor, a key component of mTORC1, is required for recruiting substrates to

mTORC1 and contributing to its subcellular localization. Raptor has a highly

conserved N-terminus domain and seven WD40 repeats, which interact with

mTOR and other mTORC1-related proteins. mTORC1 participates in various

cellular events and mediates differentiation and metabolism. Directly or

indirectly, many factors mediate the differentiation and function of

lymphocytes that is essential for immunity. In this review, we summarize the

role of Raptor in lymphocytes differentiation and function, whereby Raptor

mediates the secretion of cytokines to induce early lymphocyte metabolism,

development, proliferation and migration. Additionally, Raptor regulates the

function of lymphocytes by regulating their steady-state maintenance

and activation.

KEYWORDS

Raptor, mTORC1, T cell, B cell, immune
Abbreviations: Raptor, regulatory-associated protein of mTOR; rictor, rapamycin-insensitive companion of

mTOR; mTOR, Mammalian target of rapamycin; PIKK, PI3K-related kinase; 4E-BP1, 4E-binding protein 1;

p70S6k, p70 S6 kinase; mTORC1, mTOR complex 1; mTORC2, mTOR complex 2; EGF, epidermal growth

factor; IGF, insulin-like growth factor; MAPK, mitogen-activated protein kinase; BM, bone marrow; IgH, Ig

H chain; IL, Interleukin; WT, Wild type; Th cell, T helper cell; NK cells, Natural killer cells; Eomes,

Eomesodermin; SP, single-positive; DP, double-positive; iNKT, Invariant Natural killer T cells; CXCL12, C-

X-C motif chemokine 12; WAVE2, WASp family verprolin homologous protein 2; ALF, Arctium lappa L;

PLZF, promyelocytic leukemia zinc finger.
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Background

Mammalian target of rapamycin (mTOR) is a serine/threonine

protein kinase that belongs to the PI3K-related kinase (PIKK)

family. mTOR mediates phosphorylation of eukaryotic initiation

factor 4E-binding protein 1 (4E-BP1) and p70 S6 kinase (p70S6k),

which is essential in regulating daily metabolism, including

mediating protein synthesis, cell differentiation, aging, and

autophagy (1–4). The phosphatidylinositol-3-kinase (PI3K)-Akt-

mTOR signaling pathway is a core pathway in many forms of

human cancers (5), in which it is usually activated at abnormal

levels. mTOR's role in cancer demonstrates its importance as a

therapeutic target for cancer treatment (6–9). However, mTOR

plays a vital role in normal physiological conditions as well, where it

partic ipates and mediates basic cel l metabol ism and

differentiation (10).

ThediscoveryofmTORdates back to the 1960s. Its discovery came

after that of rapamycin, which was identified as themammalian target

of Rapamycin (mTOR). Rapamycin, discovered in 1962, inhibits the

autoimmune response and suppresses tumor growth (11). Rapamycin

interacts with mTORC1 (12) and is an inhibitor of Raptor-mTORC1.

Rapamycin can bind FKBP12 and form the complex, rapamycin–

FKBP12, which is a specific inhibitor of Raptor- mTORC1 (13). The

mTOR-FKBP12 complex, discovered in 1992, mediates mTOR anti-

proliferative functions (14), and was identified in mammalian cells by

genetic screening for Rapamycin-resistance in 1994 (15).

mTOR has two protein complexes and acts as a core component

in the mTOR complex 1 (mTORC1) and mTOR complex 2

(mTORC2), which have different functions and are characterized

by two different proteins: regulatory-associated protein of mTOR

(Raptor) and rapamycin-insensitive companion of mTOR (Rictor)

(1, 16). Since mTORC1 but not mTORC2 can be specifically

inhibited by rapamycin, most studies have focused on mTORC1

and its role in metabolism. Previous studies have demonstrated

mTORC1 as a central regulator of anabolism and catabolism, which

features responding to nutrition condition (4). The function of

mTORC1 is more focused on cell growth and survival, and

mTORC2 is more inclined to cell proliferation and cytoskeletal

remodeling. However, deciphering the mechanism of the function

of mTORC2 is more chal lenging for lack of specific

pharmacological inhibitors (17). mTORC1 is composed of three

main components: mTOR (core component), Raptor (a regulatory

protein), mLST8 (mammalian lethal with sec13 protein 8) (10, 18,

19) and two inhibitory subunits: PRAS40 (20), and DEPTOR

(21) (Figure 1A).

Raptor, a crucial part of mTORC1, recruits substrates to

mTORC1 by binding to specific canonical substrates, which

contributes to the subcellular localization of mTORC1 (22, 23).

Raptor has a conserved domain in the N-terminus and sevenWD40

repeats. This distinctive domain is expected to contribute to the

interactions with mTOR and mTORC1-associated proteins (1, 19).

The official name of Raptor gene is RPTOR, KOG1 as well as Mip1,

and the gene ID is 57521. The human RPTOR gene locates in

Chromosome 17 and starts from 80544838 to 80966368. The gene

structure of mTORC1 and other related molecules has been clearly
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summarized by Tatebe, H. and Shiozaki, K (24). Growth factors,

amino acids, lipids and cholesterol regulate the function of

mTORC1 and lysosomes are the primary target (25, 26).

Growth factors such as epidermal growth factor (EGF) and

insulin-like growth factor (IGF) bind to their receptors to mediate

mTORC1-related signaling pathways like the PI3K-PDK1-Akt

signaling pathway. As a core part of mTORC1, Raptor is also a

target, which when phosphorylated, activates mTORC1 (27). For

example, the activation of the mitogen-activated protein kinase

(MAPK) pathway, ERK/RSK/ICK, leads to phosphorylation of

Raptor, which activates mTORC1 (28–30). Raptor mediates

mTORC1 functions such as cell metabolism, which consequently,

affects cell growth and development. There are many studies

demonstrating that Raptor/mTORC1 regulates lymphocyte

function and differentiation through control of basic metabolism

and finally influences the immunity (31, 32). The role of Raptor is

different in various kinds of lymphocytes, and this review we

systematically summarize the role of Raptor in them.
Raptor’s role in B cells

The developmental process of B cells is tightly regulated, which

has many checkpoints during gene arrangement, positive selection

and negative selection (31, 33). Looking at the expression of

immunoglobulin chains and some cell surface proteins, the

development and maturation process of B cells can be divided

into the following stages: pre-pro B cell stage, pro B cell stage, early

pre B cell stage, late pre B cell stage, immature and mature B cell

stage, and the developing positions (BM or fetal liver) of B cell. If

errors occur in the differentiation process, clonal deletion will

happen (16, 34, 35). In order to avoid this interference when

studying the function of Raptor-mTORC1, researchers knocked

out the Raptor gene at specific stages. They found that Raptor-

mTORC1 not only affects early B cell differentiation stages, but also

B cells after the pre-B cell stage. Raptor was found to have many

critical roles, including promoting B cells to produce Ig H chain

(IgH), contributing to the maintenance of pre-B cell homeostasis

and survival, and regulating the intracellular respiration and

glycolysis of B cells to promote antibody production (16). In B-

cells, Raptor regulates B cell differentiation and function, although it

is more critical for regulating differentiation (36). Raptor impacts

the differentiation process via cellular bioenergetics in B cells (16,

34). Interleukin-7 (IL–7) is an essential cytokine for B cell

maturation (37, 38) and deletion of Raptor causes a decline in the

production of IL–7, which causes a blockage in B cell development.
Raptor mediates the transition from
pro-B cells to pre-B cells in an IL-7R
signaling and Myc expression
dependent way

By using Raptorfl/fl mice, and crossing Raptorfl/fl mice with

transgenic Mb1-Cre mice to generate B cell lineage Raptor deletion
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mice, researchers examined the expression levels of mTORC1

pathway associated signaling proteins including Raptor, B220,

CD43, HAS, BP1, IgH2, and Ig L chain (IgL) in KO and WT

mouse bone marrow. They also aimed to determine the necessary

expression conditions in the WT mouse group. The final result was

that the expression level of Raptor was higher in large and small

pre-B cells, while lower in small dormant immature and mature B

cells. Not only the expression of proteins in mTORC1 related

signaling pathway such as mTOR and Raptor is at higher levels,

but also downstream proteins in the mTORC1 signaling pathway,

p-S6R and p-4EBP1, are expressed at higher levels. These results

suggest that in pro B and pre B cell stages, the mTORC1 signaling

pathway and the expression of Raptor is more active. The reduced

Raptor level in the late B cell stages corresponded with IgM and IgD

expression (16). Looking further into the increased expression of

Raptor in pro B to pre B stages by examining the expression of
Frontiers in Immunology 03
related proteins in WT and RaptorKO mice revealed that in B cell

progenitors of RaptorKO mice, Raptor, mTOR, p-S6K1, p-S6R, and

p-4EBP1 all had a significant decrease compared to the WT group.

This strongly suggests that the lack of Raptor greatly disrupts the

mTORC1 signaling pathway. The researchers also used flow

cytometry and other techniques to detect the number of B cells in

the RaptorKO group, and found that immature and mature B cells

in the bone marrow of the RaptorKO group were largely absent

relative to the WT group. Also, it was found that in peripheral

tissues, there were decreased quantities of B220+ splenic B cells, B2

cells, and CD5+IgM+ B1a cells (16). Overall, Raptor plays an

important role in B cell differentiation and the production of B

cell surface markers; and the deficiency of Raptor causes a block in

pro B to pre B stages. To explain this further, based on the fact that

the proto-oncogene Myc is essential for B cell development (39–41),

mTORC1 plays an irreplaceable role in IL-7 induced Myc
A

B

FIGURE 1

(A) mTORC1 is composed of mTOR, Raptor, mLST8, PRAS40 and DEPTOR. mTOR is the core component of mTORC1. Raptor and mLST8 are the
two other main components and PRAS40 DEPTOR are two inhibitory subunits of mTORC1. (B) In T cell, mTORC1 is sensitive to three kinds of signals
including immune signals, nutrients and environmental cues and mTORC1 can promote translation initiation and protein synthesis by directly
phosphorylating ribosomal protein S6 kinases (S6Ks) and eIF4E-binding proteins (4E-BPs). Raptor-mTORC1 signaling pathway play crucial roles in
cell signaling, metabolism and autophagy.
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expression in pro-B cells (42) (Figure 2A). Other studies also

demonstrated that deficiency of Raptor inhibits early B cells’

ability to properly respond to early BCR stimulations or express

BCR (16), thus, the deficiency of Raptor inhibits the B cell

development process.
Raptor in immature osteoblasts blocks
IL- 7 expression and then mediates B
cell differentiation

B cells develop and mature in bone marrow (BM), so the

bioactive components in the BM microenvironment impacts B

cell differentiation (43). Furthermore, it has been already shown

that mTORC1 regulates cell metabolism and proliferation as well as

differentiation. The blockage of the mTORC1 signaling pathway in

bone lineage cells causes reduced bone production in mice (44), and

it has also been shown that Raptor deficiency in some osteolineage

cells affects B cell differentiation (36). Moreover, early osteoblasts

can produce C-X-C motif chemokine 12 (CXCL12) and IL-7, which

are necessary in regulating B cell differentiation (45–47).
Frontiers in Immunology 04
IL-7 is a crucial cytokine for various signaling pathways. For

example, STAT5a/b, PI3 Kinase, STAT5 and SRC kinases can all be

activatedby IL-7,which is essential for immunity (48).Relevant studies

have shown that IL-7 is necessary for the development andmaturation

of lymphocytes and that IL-7 mediates B cell development via

activation of stromal derived factor1 (SDF1), and fms-related

tyrosine kinase 3 ligand (FLT3LG) (49, 50). Osterix is a zinc finger-

containing transcription factor proved to be essential for osteoblast

differentiation (51). Studies have found that Raptor deficiency in

Osterix-expressing cells leads to a decreased number of total B cells

and suppresses pro-B cell transform into pre-B cells. Furthermore, it

was also detected that the apoptosis rate of pre B cells is abnormally

higher in Raptor deficiencymice thanWT (36). In all, the deficiency of

Raptor causes a block in the mTORC1 signaling pathway and inhibits

IL-7 expression.Despite other pathways related to IL-7, what has been

demonstrated is that Raptor deficiency in mice causes an increased

level of phosphorylated Stat5 in pro B cells, which prevents

development into pre B cells and then into immature B cells (36, 52,

53) (Figure 2B).

Interestingly, after providing RaptorKO mice with recombinant

murine IL-7, the quantity of B cells in all developmental stages is
FIGURE 2

(A) Raptor mediates the transition from pro B cells to pre-B cells. The absence of raptor causes the inactivation of mTORC1, which is a downstream
effector of IL-7R signaling and essential for Myc expression and consequently blocks the transition from pro-B cells to pre-B cells. (B) IL-7 receptors
are increased in pro-B cell and large pre B cell stages, which is essential for B cell fate. IL-7 is a crucial cytokine in B cell differentiation process, and
the absence of Raptor down-regulates the expression of IL-7 in immature osteoblasts, which leads to abnormal IL-7/Stat5 signaling and thereby
prevents pro B cells transforming into pre B cells.
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close to normal (36, 54). Additionally, although CXCL12 is essential

for B cell maturation and is expressed by osterix-expressing cells

too, the quantity of CXCL12 is unaffected under the condition of

Raptor gene specific knockout (36).
The role of raptor in T cells

Originating from the bone marrow and mature in the thymus, T

cell is an essential part of the immune system to every Individual

organism (55). In the thymus, T cells multiply and transit into helper,

regulatory, cytotoxic, and memory T cells (56, 57). The transition

process can be mediated by multiple factors and one of the factors is

mTOR signaling pathway, which is sensitive to three kinds of signals

including immune signals, nutrients and environmental cues (4, 58,

59) (Figure 1B). T cells are more dependent on Raptor than B cells.

BothCD4+, CD8+ subsets and gd,ab subsets are regulated byRaptor
(60). According to relevant studies, mTOR related signaling pathways

regulateT cells’differentiation and functionbymediate theirmetabolic

programing, which has intimate connections with membrane

molecules expression and macromolecule synthesis (4, 61–63).

CD4+ (helper) T cells play an irreplaceable role in immunity. T

helper (Th) cells produce crucial cytokines that activate cytotoxic T

cells in response to specific immunological challenges (64).

Additionally, the cytokines produced by the Th lineage cells are

crucial for immunity (65). As with other lymphocytes, mTORC1 can

also regulates T helper cell metabolism, which including mediates the

expression of glycolytic enzymes in these cells, thereby influencing

their proliferation and function (66). It has been discovered that

inhibiting mTOR with rapamycin influences naïve T cells to

transform into Th1, Th2, and Th17 cells etc (67–69).
Raptor inhibits memory CD8 T cell
differentiation via downstream
effectors like S6K1 and eIF4E

CD8+ T cells, also known as cytotoxic T lymphocytes (CTLs), are

the core component of cellular immunity. Thus, the activation of CD8

+ T cells is the aim of improving many vaccines (70). Rapamycin can

suppress interleukin-2-stimulatedTcell proliferation.Thus, it iswidely

used to treat autoimmune diseases, particularly after organ

transplantation (3, 12, 71). In a surprising study, after treating acute

lymphocytic choriomeningitis virus infected mice with rapamycin, it

was found that the amount of virus-specific CD8+ T cells increased.

This phenomenon was undoubtedly controversial to previous

perceptions. In this study, four biomarkers were used to testify the

quantity and quality of memory CD 8 + T cells in rapamycin treated

mice, including CD127, CD62L, KLRG1 and Bcl2, which are all

relevant to long-lived protective immunity (72, 73). In order to

explain this abnormal phenomenon, researchers specifically knocked

down Raptor gene using a retrovirus based RNA interference (RNAi)

system and demonstrated that rapamycin essentially inhibits memory

CD8 T cell differentiation. While particularly in memory CD8 T cells,

there is an unusual inhibition of the differentiation process caused by
Frontiers in Immunology 05
Raptor-mTORC1 signaling pathway intrinsically (60). Researchers

finally found that the mechanism of Raptor-mTORC1 signaling

pathway inhibition is via S6K1 and eIF4E, which are mTORC1

downstream effectors that down-regulate memory CD 8 + T cell

differentiation (Figure 3) (60).

Additionally, other researchers reported that rapamycin can

also suppress the proliferation of memory CD8 + T cells in

intestinal and vaginal mucosa. Over all, these findings found both

a new role of Raptor and rapamycin in lymphocyte functions (74).
WAVE2 maintains T cell homeostasis
and function via binding to Raptor
and mTOR

By regulating TCR-stimulated actin cytoskeletal dynamics,

WASp family verprolin homologous protein 2 (WAVE2) can

mediates T cell functions (75). According to some research,

WAVE2 is expressed more in hematopoietic cells and the

deficiency of WAVE2 causes abnormal activation of T cells. It has

also been reported that WAVE2-related signaling pathways play

crucial roles in the invasion process and metastasis keeping of

cancer cells and may be a novel target for cancer therapy in future

(76–78). Scientists have found that WAVE 2 KO mice have severe

autoimmune disease and inflammatory response compared to the

WT controls (79, 80). The WAVE KO mice suffered from

splenomegaly, lymphadenopathy, multi-organ lymphocytic

infiltration, and died early. It was also found that AKT-mTOR

activation and metabolic reprogramming are dysregulated in

WAVE 2 KO mice, which leads to overactivation of T cell and

autoimmune disease. Furthermore, WAVE2 also acts as a signal

coupling regulator between the antigens and cytokines of T cells.

The compromised antigen-specific T cell immune response and

greater apoptosis rate of T cells also occurs in WAVE 2 KO mice.

The mechanism is that WAVE2 colocalized with mTOR in the

cell perinuclear region and can directly bind to mTOR which will

coimmunoprecipitate mTOR in T cells and MYC-tagged mTOR in

transfected cells. Furthermore, WAVE2 can also binds to Raptor,

and then cause a coimmunoprecipitation, which leads to the

reduction of the amount of mTOR and Raptor in T cells. The

final result is that WAVE2 can reduce the amount of mTORC1 and

consequently cause a reduction in mTORC1 activation. Moreover,

in WAVE2 KO condition, it has been tested that there was an

increased coprecipitation of mTOR with Raptor which means that

WAVE2 actually suppresses the function of mTORC1. Above all,

WAVE2 leads to a “mTOR equilibrium” which lays a solid

foundation of T cell homeostasis and function (Figure 4) (80).
Raptor regulates T cell metabolism
and promotes the differentiation into
Th2 cells

According to studies, Raptor participates in naïve T cell-cycle

priming and promotes the differentiation into Th2 cells (81). And
frontiersin.org
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the deficiency of Raptor inhibits naïve T cells from entering cell-

cycle (82). The mechanism is that Raptor-mTORC1 mediates T cell

glycolytic and lipogenic programs, which lays the foundation of the

entry into the active cell cycle. Furthermore, the glycolytic and

lipogenic condition and Raptor-mTORC1 pathway also intimately

associated with cell fate decisions (83, 84). It is worth noting that

Th2 cell differentiation have the highest rate of glycolysis among all

effector T cells (85, 86).

T cell activation requires CD98 and CD71 (an iron intake

receptor), which Raptor KO mice showed a decreased expression

of, meaning Raptor mediates the cell-cycle required nutrient uptake.

Further studies also demonstrated that the deficiency of Raptor

inhibits the expressions of cell-cycle-related genes and the
Frontiers in Immunology 06
production of cell-cycle-related proteins such as cyclins D2 and E,

CDK2, CDK4 and CDK6. Thus, Raptor regulates the cell-cycle

machinery (81). Interestingly, it should be noted that Raptor is not

essential for T cell proliferation when proliferation has already

begun, which means that Raptor-mTORC1 signaling pathway plays

a minor role in the subsequent cell division process.

Raptor can also mediate T cell metabolism and then indirectly

regulates the proliferation of T cells. Hk2, Ldha, and Tpi1 are

glycolytic enzymes, and the expression levels of their messenger

RNA are decreased in Raptor KO T cells. What is more, the

expression of c-Myc, which is an important transcription factor

of T cell glycolysis (87) is decreased in Raptor KO T cells. Studies

also concluded that Raptor can help T cells’ interactions with CD28
FIGURE 3

Raptor inhibits memory CD8 T cell differentiation via downstream effectors like S6K1 and eIF4E. The deficiency of Raptor leads to the abnormal
activation of CD8 + T cells.
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and TCR stimulation signals and then mediates the production of T

cell proliferation-related cytokines including IL-4 and IL-2, which

then finally affects the proliferation of T cells. Studies also

concluded that the role of Raptor in promoting the differentiation

into Th2 cells irrelevant to Rheb, mTORC2, or AKT, which are

mTORC1 up-stream effector molecules (81, 88, 89).
Raptor mediates Th 1 and Th 17 cell
differentiation via binding to mTOR

The mechanism of cell differentiation is very complex and often

influenced by multiple signaling molecules in complex signal

transduction pathways (90). In Th 1 cell differentiation process, IL-

12 and IFN-g stimulate naïve T cells to express T-bet and STAT4,

which mediates naïve T cell transform to Th1 cells (91, 92). There are

alsomany factors that regulateTh17 cell differentiation.Whathas been

knownclearly is that IL-6and transforminggrowth factor (TGF)-b can
upregulate the level of retinoic acid-related orphan receptor gt
(RORgt), which subsequently promotes the conversion of naive T

cells to Th17 cells and initiate CD4+ T cell differentiation process (93–

95). Furthermore, phloretin is a dihydrochalcone structural flavonoid

compound, which possesses many bioactive characteristics and

mediates the AMPK signal pathway and consequently regulates the

Th17 cell differentiation balance (96). Th17 cell differentiation is also

influenced by glycolysis metabolic reprogramming. Pyruvate Kinase

M2 (PKM2) is a glycolytic enzyme that translocates into the cell

nucleus and activates STAT3 to promoteTh17 cell differentiation (97).

Moreover, in a STAT3-dependent way, Th17 cells are stabilized by IL-

21 and IL-23 according to a related study (98).

Arctium lappa L (ALF) belongs to traditional Chinese medicine,

which is used in treating inflammatory disorders, rheumatic pain

and even fever. Arctigenin is a component of ALF that may be valid

in treating ulcerative colitis via inhibiting Th 1 and 17 cell functions

(99, 100). The mechanism of this traditional Chinese medicine is

that it suppresses Th cell differentiation. In various CD4+ T cells,

Arctigenin can selectively inhibit the activation of Th1 and Th17

cells (especially Th17 cells) by disturbing the stability of the mTOR1

complex. Arctigenin suppresses the formation of mTORC1 and the
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activation of the mTORC1 pathway (101) that further affects

downstream molecules. In previous research, rapamycin blocks

the combination of Raptor and mTOR (102, 103). It has been

proven that Arctigenin does not interfere with the production of

mTOR and Raptor, but also suppresses the binding of Raptor and

mTOR, which consequently suppresses the phosphorylation of the

mTORC1 signaling pathway downstream molecules such as

p70S6K and RPS6 (101). Meanwhile, the overactivation of Raptor

and mTOR can be relieved by the function of Arctigenin. This fully

demonstrates the role of Raptor in Th17 cell development.

In addition, Raptor also regulates Th1 cell differentiation and

function via other unknown mechanisms. Researchers have found

that the decreased Th1 T cell response in the s.c. TME was observed

in tumor-bearing Raptor conditional knockout (cKO) mice while

the detailed mechanism still requires further research (104).

Ulcerative colitis (UC) is known to be a chronic nonspecific

colonic mucosa inflammatory disorder (105). Although there is

much debate about the cause of UC, more and more evidence

demonstrates that the mechanism is an innate autoimmune

response caused by Th1 and Th17 cells subsets and Treg cells

(106, 107), which means that Raptor may be a new target of

intestinal inflammation therapeutic strategy with strong clinic and

therapeutic possibility (108–110).
Raptor regulates gd T1 and gd T17 cell
differentiation and function

LikeabTcells, gdTcells are innate-likeT cells that are essential for

fighting infections and tumors (111–115).Though thenumberof them

is far less thanabT cells, they play an irreplaceable role in the immune

function. Raptor not only mediates gd T cell differentiation, but also

regulates their immune functions. The regulatory effect of Raptor on

the differentiation of gdT cells is alsomainly through the regulation of

cytokine secretion. Interleukin-17 (IL-17)–producing gd T (gdT17)
and interferon-g (IFN-g)–producing gd T (gdT1) cells have different
metabolic requirements with being more dependent on glycolysis and

phosphorylation respectively (116). Other researchers also found that

CD27 is a unique regulator of gd T1 and gd T17 cell development.

According to the studies, CD27+ gd T cells will transform into gd T1
cells,while theother typewoulddifferentiate into the gdT17cells (117).
Further studies have demonstrated that Raptor-mTORC1 can even

regulate T cell glycolysis to guide the direction of differentiation (118).

In a study, Raptor and rictor gene knockout mice were used to

quantify gd t1 and gd T17 cells. They found that the rate of gd t1
and gd T17 cells were notably decreased in Raptor KO mice, while

only the gd T17 cell rate decreased in rictor KO cells. This

phenomenon indicate that Raptor mediates both gd T1 and gd
T17 cell differentiation, while rictor only participates in gd T17 cell

differentiation (118). Additionally, they further found that

mTORC1 promotes IL-17 expression in gd T cells (118).

Also, in a previous study, it was demonstrated that gd T cells

provide a cytokine environment, such as IFN-g, NKG2D, to regulate
immunity (112, 119). The researchers found that the deficiency of

Raptor in gd T cells leads to a decreased IFN-g and NKG2D
FIGURE 4

WAVE2 maintains T cell homeostasis and function via binding to
Raptor and mTOR, which will cause a coimmunoprecipitation and
lead to the reduction of the amount of mTOR and Raptor in T cell.
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expression. Consequently, the immunological effector capacity of

Raptor KO gd T cells is significantly decreased (118).
The role of Raptor in NK cells

Natural killer cells (NK cells) are an integral part of the body’s

immune system. Derived from hematopoietic stem cells, they mainly

focused on antivirus-infection and tumor cell elimination. Moreover,

NK cells are particularly involved in hypersensitivity reactions and

autoimmune diseases (120). As for NK cells, Raptor can participate in

regulating the early reprogramming process mediated by IL-15R

indirectly (121). IL-15 has already been proved to be crucial for NK

cell development and effector functions by binding with IL-15Ra
(CD215) (122–124), and IL-15R can initiate the PI3K-p110d/p85a in

NK cells, which is a upstream signaling pathway and can trigger

mTORC1 pathway (125). Studies have found that Lack of Raptor

(mTORC1) resulted in decreased quantity of mature NK cell.

Furthermore, Raptor-mTORC1 is required for the expression of

effector molecules such as Eomesodermin (Eomes) and plays critical

roles the transition from CD27 single-positive (SP) to double-positive

(DP) NK stage. Additionally, reduced DP and CD11b SP NK cell

populations can be observed in RaptorKO mice (126).

The differentiation process of NK cells includes many stages

including common lymphoid progenitor stage (CLP stage), NK

progenitor stage (NKp stage), immature NK stage (iNK stage), and

mature NK stage (mNK stage) (127). Moreover, iNK cells can be

grouped into three subsets by the expression of cell surface markers

including CD27 and CD11b. The subsets are: CD27− CD11b− (DN,

double negative, also refers as iNK stage), CD27+ CD11b−(single

CD27 positive), CD27+ CD11b+ and CD27− CD11b+(double

positive and single CD11b positive). The expression of CD11b

marks the maturation of NK cells, so researchers put CD27

+CD11b+ and CD27−CD11b+ subsets into one category (127). In

some studies, it has been found that the deficiency of Raptor causes

a blockage between the CD27+CD11b- stage and CD27+CD11b+

stage (128). Researchers also found that the development of NK

cells are both regulated by mTORC1 and mTORC2. By generating

Rptorfl/fl/CD122Cre/+and Rictorfl/fl/CD122Cre/+ mice to delete

Raptor and Rictor, respectively, and comparing the phenotype of

NK cells in Mtorfl/fl/CD122Cre/+ mice, researchers demonstrated

that the absence of Raptor suppressed the differentiation process of

immature NK cells (CD27+CD11b−) to mature NK cells while the

absence of Rictor limited the differentiation of CD27−CD11b− early

immature NK cells. Moreover, the specific deletion of Raptor can

affect the process of NK cell terminal differentiation (129, 130).

Additionally, mediating factors such as E4 promoter-binding

protein 4 (E4BP4), Eomesodermin (Eomes), T-bet as well as Tsc1

all mediate NK cell development and maturation (121, 131, 132). As

have been demonstrated by other studies, E4BP4 and Eomes can

maintain IL-15, which is of great importance to NK cell

differentiation (133). The interaction between NK cells and IL-15

depends on the level of CD122 expressed on the NK cell surface

(129, 134).

After examining and comparing the expression condition of

E4BP4, Eomes, and T-bet in Rptorfl/fl/CD122Cre/+and Rictorfl/fl/
Frontiers in Immunology 08
CD122Cre/+ mice it was found that Eomes and T-bet were less

expressed in Raptor KO NK cells, suggesting that Raptor plays an

important role in inducing the production of E4BP4 and T-bet and

consequently mediating NK cell early and late-stage differentiation

(129) (Figure 5).

As for the terminal maturation process of NK cells, researchers

generated Rptorfl/fl/Ncr1-CreTg and Rictorfl/fl/Ncr1-CreTg mice.

After comparing the amount and related subset phenotypes of

NK cell (CD27+CD11b+ and CD27−CD11b+) between Mtorfl/fl/

Ncr1-CreTg and Rptorfl/fl/Ncr1-CreTg and the conclusion is that

mTORC1(Raptor) is a key molecule for the terminal differentiation

stage of NK cells (129).
The role of Raptor in iNKT cells

Invariant Natural killer T cells (iNKT) are a unique lymphocyte

lineage that are also regarded as CD1d-restricted cells. With the

help of CD1d and TCR, iNKT cells can identify glycolipid antigens

are not identified by other kinds of T cells (135–138). iNKT cells are

regarded as typeINKT cells for their unique TCR a chain, which is
FIGURE 5

(A) The deficiency of Raptor downregulated the amount of CD122
on the NK cell surface. Raptor-mTORC1 signaling pathway play its
role in NK cell differentiation via downstream effectors including
E4BP4, T-bet, and IL-15, which is essentially needed during NK cell
differentiation process. (B) mTORC1 is essential for early and late-
stage development of NK cells via regulating E4BP4 and T-bet,
while mTORC2 is only necessary for very early NK cell development
through regulating T-bet.
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encoded by Va14Ja18 and Va24Ja18 in mice and humans,

respectively, while the b chain of the TCR is not invariant (139–

141). Though the amount of iNKT cells is small compared to other

types of T cells, iNKT cells are essential in cancer, autoimmunity,

infection, allergy and even obesity (142–145). Mature iNKT cells

can participate in innate immunity and are essential for adaptive

immunity, which also have interactions with B cells (146). INKT

cells play a part by producing cytokines such as IL-4, IL-17, IFN-g
and TNF-a after stimulation by the synthetic ligand a-galactosyl
ceramide(a-GalCer) (147–149). a-GalCer is separated from the

marine sponge Agelas mauritianus, and it can stimulate and activate

the cytotoxic capacity of iNKT cells (150, 151). Raptor’s role in NKT

cells is similar to that of B cells in that it controls development and

function, and just like B cells, Raptor is more critical for cell

differentiation than function. It affects both the level of CD

molecules expressed on the NKT cell surface and the production

of various cytokines, which play roles in signal transduction. Many

scientists have been working in this field and this review

summarizes their important findings.

iNKT cells can be grouped into categories according to

differentiation stages represented by the expression levels of the

surface markers CD24, CD44 and CD161 and they are grouped as

follows: (CD24+CD44-CD161-), (CD24-CD44–), (CD24-CD44

+CD161-), and (CD24-CD44+CD161+) named stage 0 to 3 in turn.

Moreover, the expressionofCD161 represents thematurationof iNKT

cells (138, 140). The differentiation process and function of iNKT cells

can be mediated by several transcription factors like RORgt, T-bet,
Gata3, andpromyelocytic leukemia zincfinger (PLZF) (138, 152–154),

which have direct or indirect relationships with Raptor. The quantities

of iNKT cells in different stages changed significantly in Raptor KO

mice compared to the WT group. Specifically, the number of iNKT

cells in stage 0 and 1 is within the normal range, while the number of

iNKT cells in stage 2 and 3 is significantly decreased, indicating that

Raptor-mTORC1 is needed during the stage 2 transformation and is

essential in iNKT cell maturation (155, 156). Also, by further

comparing the number of iNKT cells in stage 2 and 3, it can be

concluded that Raptor also mediates the differentiation process of

iNKT cells from stage 2 to 3.

As has been proven, PLZF is a crucial mediator of iNKT cells

(157), and according to some studies, Raptor contributes to the

localization of PLZF into the iNKT cell nucleus. The deficiency of

Raptor suppresses the ability of PLZF to access differentiation-

related gene promoters of iNKT cells (156), which causes a

differentiation blockage between stage 1 and 2. This may be one

of the reasons for the phenomenon above.

Furthermore, injecting mice with a-GalCer activates iNKT cells

and leads to severe hepatitis caused by the overexpression of TNF-a
(158, 159). However, in Raptor KO iNKT cells, this phenomenon is

absent, which reveals that Raptor participates in regulating the

production of TNF-a in iNKT cells. The expression levels of other

cytokines such as IL-4 and IFN-g decreased and the proliferation of

iNKT cells was also abolished in Raptor KO mice after stimulating

iNKT cells (156).

The deficiency of Raptor also causes reduced iNKT1, increased

iNKT2, and normal iNKT17 cell ratios in mice. The explanation

may be that Raptor can regulate the production of transcription
Frontiers in Immunology 09
factors of iNKT cells, although the deeper mechanism still needs to

be explored (155, 156, 160).
Conclusion and future outlook

Raptor is a core component ofmTORC1andplays an essential and

complex role in the differentiation processes and functions of

lymphocytes. However, there are conflicting results on Raptor‘s role

in regulating immune processes, which is specifically seen in studies

using Raptor knockouts. With further technical and scientific

advancements, researchers will be able to explore deeper into the

specific roles of Raptor. The most current studies on Raptor are based

on the findings of new phenomena, but none are linked to metabolic

diseasemodels such as gastric cancer, colon cancer, diabetes, etc. Since

mTORC1plays a role in theproliferationandmetastasis of cancer cells,

the regulation of Raptor in the proliferation and differentiation of

cancer cells may be a direction worth exploring in the future. Finally,

Raptor related studies are being conducted in mouse models, which

have been limited to early stages of lymphocytes that only involve a few

studies. In short, there is still a longway togo frombasicmedical theory

to clinical application, and it is often very difficult to transition from

mouse models to humans, thus if Raptor is to be used as clinical

medicine, more efforts need to be made in its research. This review

summarizes the current studies on theeffectsofRaptoron lymphocytes

and aims to help researchers find new directions for clinical discovery.
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