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uninfected people admitted to
hospital with COVID-19: An
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The SARS-CoV-2 pandemic enables the analysis of immune responses induced

against a novel coronavirus infecting immunologically naïve individuals. This

provides an opportunity for analysis of immune responses and associations with

age, sex and disease severity. Here we measured an array of solid-phase binding

antibody and viral neutralising Ab (nAb) responses in participants (n=337) of the

ISARIC4C cohort and characterised their correlation with peak disease severity

during acute infection and early convalescence. Overall, the responses in a

Double Antigen Binding Assay (DABA) for antibody to the receptor binding

domain (anti-RBD) correlated well with IgM as well as IgG responses against

viral spike, S1 and nucleocapsid protein (NP) antigens. DABA reactivity also

correlated with nAb. As we and others reported previously, there is greater risk

of severe disease and death in older men, whilst the sex ratio was found to be

equal within each severity grouping in younger people. In older males with
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severe disease (mean age 68 years), peak antibody levels were found to be

delayed by one to two weeks compared with women, and nAb responses were

delayed further. Additionally, we demonstrated that solid-phase binding antibody

responses reached higher levels in males as measured via DABA and IgM binding

against Spike, NP and S1 antigens. In contrast, this was not observed for nAb

responses. Whenmeasuring SARS-CoV-2 RNA transcripts (as a surrogate for viral

shedding) in nasal swabs at recruitment, we saw no significant differences by sex

or disease severity status. However, we have shown higher antibody levels

associated with low nasal viral RNA indicating a role of antibody responses in

controlling viral replication and shedding in the upper airway. In this study, we

have shown discernible differences in the humoral immune responses between

males and females and these differences associate with age as well as with

resultant disease severity.
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1 Introduction

Individual risk of COVID-19 severity is heterogenous and

determined by several factors including the host’s clinical

characteristics and genetics (1–4). The most important predictors

of severe disease are advanced age and male sex followed by the

presence of co-morbidities including cardiac disease, metabolic

disorders such as obesity and diabetes, hypertension and

respiratory diseases (2, 5–11). Further, recent studies have

identified several genetic correlates of disease severity (4, 12–14).

Disease outcome may also be determined by the timing and

magnitude of humoral immune responses (15–19). Generally,

antibody responses to acute infection in SARS-CoV-2-naïve

individuals are rapid; the majority of patients seroconvert for

virus-specific IgM and then IgG between 10-19 days post-

symptom onset (20–22). The primary viral targets of humoral

responses to SARS-CoV-2 are the Spike (S) glycoprotein

(including the RBD domain) and the nucleocapsid (N) protein

(23). The majority of virus neutralisation activity is provided by

antibodies directed against the receptor binding domain (RBD) of

the spike protein S1 sub-unit, which blocks the interaction between

S and ACE2 (24–27). Mild cases of COVID-19 have previously been

associated with higher ratios of antibodies directed against RBD as

opposed to N, as well as rapid reduction of respiratory tract viral

RNA concomitant with rises in anti-RBD IgG (16, 24). Faster

production of both total and RBD-specific IgG has been observed

in female patients (28, 29), and early upregulation of specific IgM

responses (24, 30) and neutralising RBD specific responses (31)

have been associated with improved disease outcome. In response

to vaccination, elderly patients generate weaker humoral responses,

characterised by slower induction of antibody production, lower

magnitude Ab titres at peak and quicker Ab decline, when

compared to younger adults (32–35). Whilst several reports have

shown that elderly patients are able to generate robust and
02
neutralising antibody responses during acute infection (7, 36, 37),

there is less evidence of early antibody kinetics impacting on disease

outcome in elderly patients.

Using serum samples from patients hospitalised during the first

wave of the COVID-19 pandemic in the United Kingdom (UK), we

have performed an extensive analysis of the serological responses

generated to SARS-CoV-2 in an immune-naïve population. Anti-

RBD reactivity, neutralising function and class specific antibodies to S

and N proteins were measured using a hybrid double antigen binding

assay (DABA) (38), a pseudo-virus particle (PVP) neutralisation

assay and Ig capture assays respectively. This portfolio of assay

formats was used previously in the characterisation of the antibody

response kinetics in Ebola virus survivors following the Sierra Leone

outbreak of 2014-2016 (38, 39). By comparing serological responses

in hospitalised patients of different age groups and sexes in the

context of the early UK outbreak when the virus population was

relatively homogenous, we have been able to identify host

characteristics that contribute to the risk of severe disease.

Additionally, repeat sampling starting from early in hospital

admission through to convalescence has provided greater insights

into the influence of sex and age on early antibody kinetics, and their

association with outcome.
2 Materials and methods

2.1 Study cohort patients and samples

This analysis included sera from 337 patients admitted to UK

hospitals with COVID-19 between February and June 2020 before

vaccines were made available and therefore describing a new

infection in a naïve human population. The patients were

enrolled in the International Severe Acute Respiratory and

emerging Infections Consortium (ISARIC) World Health
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Organization (WHO) Clinical Characterisation Protocol UK (CCP-

UK) study. Study participants were confirmed SARS-CoV-2

positive by reverse transcription polymerase chain (PCR) reaction

or were highly suspected cases based on clinical presentation and

providing a serological response in one or more of the described

assays being recorded. Acute infection samples were collected

within 21 days of the onset of symptoms and convalescent

samples were collected when SARS-CoV-2 PCR showed

undetectable viral burden. A number of patients underwent serial

sampling (2/n=129, 3/n=91, 4/n=12, 5/n=1), with not all follow up

specimens tested in every assay implemented. Samples with

repeated measures were included in a mixed effect regression

model to analyse the antibody responses over time (section 3.5).

Patients were stratified into five categories of peak illness

severity based on the World Health Organization (WHO)

COVID-19 ordinal scale (40): 1) no oxygen requirement (WHO

score 3); 2) patient requiring oxygen by face mask or nasal prongs

(WHO score 4); 3) patient requiring high-flow nasal oxygen

(HFNO) or non-invasive ventilation (NIV) (WHO score 5); 4)

patients requiring mechanical ventilation (WHO score 6/7) and 5)

patients who died within 28 days. (WHO score 8).
2.2 Anti-SARS-CoV-2 S1, spike and NP IgM
and IgG capture ELISAs

Three viral antigens all based on the hCoV-19/Australia/VIC01/

202 (Accession MT007544) lineage were tested. The SARS-CoV-2

full length spike glycoprotein (Spike/amino acids 1–1211; His-tag)

and the nucleoprotein (NP) conjugated to Horseradish peroxidase

(HRP) were purchased from The Native Antigen Company

(Kidlington, Oxford, UK). The SARS-CoV-2 S1 antigen (spanning

Wuhan-Hu-1 SARS-CoV-2 Spike residues 1–530, C-terminal twin

Strep tag) (41, 42) was produced and gifted by The Francis Crick

Institute and conjugated to HRP using the Bio-Rad LYNX HRP

conjugation kit, in accordance with the manufacturer’s instructions.

Recombinant NP antigens from seasonal coronavirus NL63, OC43,

HKU1 and 229E were used to block non-specific NP responses as

previously described (43). These proteins were produced in

Escherichia coli with N-terminal hexahistidine-SUMO and C-

terminal Twin Strep tags and purified by tandem immobilised

metal and StrepTactin® affinity chromatography. The IgM and IgG

capture ELISAs for the detection of antibody to S1, Spike and NP

were undertaken as described previously (43).
2.3 SARS-CoV-2 RNA quantitative reverse
transcriptase polymerase chain reaction

SARS-CoV-2 RNA was quantified using a NEB Luna Universal

Probe One-Step RT-qPCR Kit (New England Biolabs, E3006) and

2019-nCoV CDC N1 primers and probes (IDT, 10006713)).

Genome copy numbers were quantified using a standard curve

generated from serial dilutions of a plasmid containing the target N

protein gene fragment. The standard was quantified and quality

controlled using QX600 droplet digital PCR system (Bio-rad, UK).
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2.4 Anti-RBD hybrid DABA immunoassay

Antibodies targeting SARS-CoV-2 were measured using a

hybrid double antigen bridging assay (DABA) that was previously

developed to detect Ebola virus (EBOV) glycoprotein targeting

antibodies (38) and recently adapted and validated to detect

SARS-CoV-2 directed antibodies, using the same methodology for

performance and analysis as described previously (44). Briefly, an

S1 antigen coated onto a solid phase was used to bind all reactive

immunoglobulins present in a sample, after a which an HRP

conjugated RBD antigen was added to detect antibody binding

which was expressed as arbitrary units (AU)/ml (44). Owing to the

use of an antigen as the detector, the DABA detects all classes of

antibody that target a specific antigen, unlike methods which

discriminate between IgM or IgG.
2.5 Generation of SARS-CoV-2 pseudovirus
particle, infectivity and neutralisation assay

2.5.1 Cell culture
HEK293T (ATCC® CRL-3216™) cells were cultivated in

Dulbecco ’s modified eagle medium (Invi trogen) and

supplemented with 10% heat-treated FCS (Sigma), 2mM/ml L-

glutamine (Invitrogen), 100 U/ml penicillin (Invitrogen) and 100

mg/ml streptomycin (Invitrogen), termed complete DMEM

(Thermofisher). HEK293T/ACE-2 cells were used to monitor

PVP infectivity and in performing serum neutralisation assays.

All cells were cultured at 37°C and at 5% CO2.
2.5.2 SARS-CoV-2 PVP production and infection
The ancestral SARS-CoV-2 S glycoprotein (Accession

MN908947) was cloned into the pCDNA3.1 expression plasmid

(produced by GeneArt Gene Synthesis) and was used in generating

PVP stocks via a lentiviral system to generate single-cycle infectious

viral particles as previously described (45, 46). HEK293T cells

(5.0x105 in each well of a 6-well tissue culture flask) (Corning)

were grown in 2.0 ml of complete DMEM overnight. Cells were

transfected with 750 ng of the lentiviral luciferase reporter

construct, pCSFLW, along with 450 ng of the SARS-CoV-2 S

expression plasmid and 500 ng of the lentiviral backbone, p8.91,

using cationic polymer transfection reagent (Polyethylenimine)

(Polysciences) and in the presence of OptiMEM (Invitrogen).

OptiMEM/plasmid mix was removed 16 h post transfection and

2.0 ml complete DMEM added with the single-cycle infectious

SARS-CoV-2 stock harvested 48 h later, passed through a 0.45µM

filter, aliquoted and stored at −80°C. PVP infection was monitored

on HEK293T/ACE-2 cells through measuring luciferase activity

(expressed from the HIV-1 LTR promoter) under control of Tat

expression from the HIV-1 backbone. 100 µl of virus stock was used

to infect 1.5x104 cells/well for 6 h in a white 96 well plate (Corning).

Following infection 100 µl DMEM complete medium was added to

each well. 48 h post infection, media was discarded from the wells

and the cells washed with PBS (Thermofisher), lysed with 30 µl cell

lysis buffer (Promega) and luciferase activity determined utilising
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the commercially available luciferase assay (Promega) and

measured using a BMGLabtech FluoroStar Omega luminometer.
2.5.3 SARS-CoV-2 S PVP neutralisation assay
SARS-CoV-2 enveloped PVP was thawed and pooled and

subsequently diluted 1/20 in complete DMEM. Serum samples

from SARS-CoV-2 individuals were serially diluted 2-fold with

complete DMEM; 28 µl serum dilution was incubated with 420 µl

diluted SARS-CoV-2 PVP for 30 min at RT. 200 µl of virus/serum

dilution mix was used to infect HEK293T/ACE-2 cells. Luciferase

activity readings of neutralised virus were analysed i) by considering

0% inhibition as the infection values of the virus in the absence of

convalescent plasma included in each experiment, ii) by considering

0% inhibition as the infection values of two consecutive high

dilutions not inhibiting virus entry. The neutralisation activity

defined as the serum dilution that reduced viral infectivity by

50%, 70% or 90% (IC50, IC70 or IC90, respectively).
2.6 Statistical analyses

Statistical analyses were performed using GraphPad Prism 6.0

software. Unpaired sample comparisons were conducted for all

data; however, individual figures state the corresponding statistical

test performed. These include parametric and non-parametric t-

tests (student t-test and Mann-Whitney U test) and non-parametric

ANOVA (Kruskal-Wallis test). Significant P values < 0.05 were

depicted by * or a horizontal line above the groups compared.

Repeated measures linear regression was used to model antibody

levels over time, including a random intercept term to account for

within-individual correlation, age and a time-sex interaction to

predict trajectories for males and females separately, adjusted

for age.
3 Results

3.1 Patient demographics

We analysed the patient demograhics of individuals within our

cohort, specifically age and sex, to determine the risk of severe

disease across these groups. A higher proportion of the 337 study

participants were male (63.0%, n=210). Median age was 57 years

(range: 15–94) with no age difference observed between sexes (male

median age = 57.3 years/range: 19–90 and female median age = 57.7

years/range: 15–94). As this was a hospital study, no asymptomatic

individuals were enrolled. Participants were grouped into categories

S1-S5 according to disease severity (Supplementary Figure 1) (40).

The ratio of males to females increased within the higher disease

severity groupings, from 47% of participants in S1, to 66% of

participants in S4, and with only three females (8.1%) in S5

(individuals that died within 28 days of disease onset)

(Figure 1A). There were no age differences between sexes within

severity groupings, and the age range narrowed as disease severity

increased (Figure 1A). The average participant age across severity
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groups was similar with S5 being an exception, where participants

tended to be older.

We next anlysed the time between the onset of symptoms and

hospital presentation to compare the rate of deteriation across

different patient groupings. No difference was found between

males and females in the time between symptom onset and

hospital presentation (Figure 1B). When the cohort was stratified

by 10 yearly age categories, participants between 50 and 70 years old

were recruited later than participants <50 years or >70 years

(Figure 1C), reflecting a delay from disease onset to when

participants presented at the hospital. In this cohort we found

that overall, males developed more severe disease than females

(Figure 1D), which was shown in all age categories above 50

years (Figure 1E).
3.2 Antibody responses by gender and age

When measuring anti-RBD using the hybrid DABA (an

antibody class neutral assay) high antibody levels were measured

within one week following onset of symptoms and were maintained

at high levels for 3 to 4 weeks (Figure 2A). Anti-RBD titres reached

a peak around day 21 following symptom onset for both males and

females, and peak antibody levels were higher in males. Neutralising

antibodies (nAb) (IC50, IC70 or IC90), measured using the PVP

neutralisation assay, revealed a similar serological profile to anti-

RBD with a sharp initial increase reaching the peak at around day

26 post symptom onset (Figure 2B). When comparing anti-RBD

with nAb responses (IC70) a correlation was observed during the

first 21-day period (P<0.0001, rp=0.6476). This correlation

remained but was lower in magnitude after 21 days following

disease onset (P<0.0001, rp=0.3666) (Figure 2C).

At recruitment to the study, corresponding to the time that a

participant was hospitalized, no significant differences were

identified between males and females in anti-RBD (DABA) or

nAb responses (Supplementary Figures 2A, B). However, when

divided into age groups, significant differences were observed in the

antibody responses between age groupings for both males and

females (Supplementary Figures 2C, D). Specifically, individuals

between 51-70 years of age demonstrated higher anti-RBD levels

and nAb responses (IC70) than those aged 20-49 or those >70 years

old. (Supplementary Figures 2C, D).

We further studied responses against the two main

immunogenic viral proteins, the spike and the non-envelope

nucleoprotein (NP). The S1 region of spike that includes the RBD

was was also studied individually considering it is the primary target

of nuetralising antibodies. In samples taken at recruitment, which

represents a range of days between patients since the onset of

symptoms and hospital presentation, IgM and IgG antibody

binding responses to spike, S1 and NP were not significantly

different between males and females for most age groupings,

except for the IgM responses to S1, which were higher in men

aged 60-70 (Supplementary Figures 3A-F). The IgM responses to

the S1, Spike, and NP proteins all demonstrated higher levels in

individuals aged between 41-60 in comparison to the <40 or >70 age

groupings (Supplementary Figures 3A-C, respectively), with a
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similar profile observed for IgG (Supplementary Figures 3D-

F, respectively).

Overall, when comparing antibody responses (DABA,

neutralizing, IgG and IgM) at recruitment no differences were

found between males and females within age categories but

differences were observed between the different age categories.

Individuals in age categories 20-40 and >70 had lower antibody

titres than those in the intermediate age categories.
3.3 Total, neutralizing and class
Ab associations

We next analysed the relationship between the antibody classes

IgM and IgG against different virus antigens, comparing acute

infection with convalescence. During acute infection, IgG

responses against Spike protein correlated with IgM antibody
Frontiers in Immunology 05
levels (P<0.0001), whereas this correlation disappeared during

convalescence (Supplementary Figure 4A). This association was

not observed when comparing IgG versus IgM responses against S1

or NP antigens during acute infection or convalescence

(Supplementary Figures 4B, C, respectively), indicating that

antibody class induction is variable across different antigens.

Strong correlations were found between Spike-IgM and S1-IgM as

well as between Spike-IgG and S1-IgG responses (Supplementary

Figures 4D, E) with again no difference between acute infection and

convalescence. In contrast, weak correlations were observed when

comparing NP with Spike or S1 antibody responses (Supplementary

Figures 4F-I).

There were signficant correlations between total anti-RBD

binding (DABA) and both IgM and IgG to total spike and S1

(Supplementary Figures 5A-D) during the acute infection phase

(<21 days post-symptom onset), which became weaker or not

significant during convalescence (>21 days post-symptom onset)
A B C

FIGURE 2

Association between anti-RBD as well Ab neutralisation responses with days since disease onset. (A) Anti-RBD binding in relation to days since
disease onset and split into females (orange) and males (blue). The lines (females orange and males blue) show the spline/LOWESS curves indicating
the overtime evolutionary trend of the data. (B) Neutralisation antibody responses depict in relation to days since disease onset and curves
representing the spline/LOWESS for the IC50, IC70 and IC90 values indicating the overtime evolution trend. (C) Association between anti-RBD and
neutralisation responses (IC70). Spearman correlation test (P<0.0001/rp=0.6476), in acute infection (under 21 days) and (P<0.0001/rp=0.3666) in
convalescence (over 21 days).
A B

D E

C

FIGURE 1

Sex and age distribution within groups with relation to days since disease onset and severity. (A) Number of individuals, female (F) or male (M), overall
and when broken down into disease severity groupings (S1-S5). (B) Days since symptom onset split into females (orange) and males (orange) for all
individuals. (C) Days since symptom onset split into females and males and relative to age groupings. (D) Disease severity split into females and
males for all individuals. (E) Disease severity split into females and males relative to age groupings. In all panels mean values and confidence intervals
shown (black lines). Lines above or below the groups indicate significant differences between groups as found by implementing a paired t-test or a
non-parametric ANOVA (Kruskal-Wallis test). * indicates statistical significance P < 0.05.
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for IgG, but not IgM. A similar pattern was observed for the

correlation between anti-RBD binding and anti-NP binding,

indicating that the anti-RBD binding correlated to some extent

with the total antibody response, though the magnitude was less for

binding to NP (Supplementary Figures 5E, F).

Next, we compared antibody classes IgG and IgM against Spike,

NP and S1 to nAb responses (IC70) directed against the same

antigens. We observed similar profiles during both acute infection

and convalescence (Supplementary Figures 5G-L). Collectively, these

results suggest that total antibody, as well as class-specific responses

(all measured by solid-phase binding ELISA), correlate with nAb

activity induced in early infection. The most notable associations

between responses were observed when comparing Spike, S1 IgG or

IgM levels with nAb responses (Supplementary Figures 5G-J). This

would indicate that both IgM and IgG induced during acute infection

and convalescence are associated with virus neutralisation with spike,

including the RBD domain as the predominant target.
3.4 Antibody levels and neutralisation
associate with disease severity over time

We next analysed the relationships between anti-RBD and nAb

responses (IC70) with disease severity (Figure 3). In all severity

groups, antibody levels increased over time, but initially relatively

lower levels were observed in groups S1 and S5 in week 1, particularly

for nAb responses, when compared to intermediate severity groups

(Figure 3 and Supplementary Figure 6). By week 3, high levels of anti-

RBD and nAbs were measured in all groups, and maintained for the

duration of the study period (Figure 3). A similar profile was observed

when comparing IgM and IgG responses for Spike, NP and S1

(Supplementary Figure 7). These results indicate that whilst

antibody levels rise with time in all severity groups, individuals in

the most severe and least severe disease groups developed antibody

responses more slowly than those in intermediate groupings.
Frontiers in Immunology 06
3.5 Differing profiles of antibody responses
over time in male and female pariticipants

Sex differences in antibody responses over time were

investigated using a mixed effect regression model comparing

different antibody measurements. Female participants

demonstrated higher initial anti-RBD responses which declined

slowly from day 20, whilst male participants had lower early anti-

RBD responses that sharply increased up until day 30 before falling

to similar levels as females at 50 days post symptom onset

(Figure 4A). However, when comparing nAb (IC70) responses

over the same period (Figure 4B), similar antibody profiles were

found for both males and females, suggesting that the higher anti-

RBD responses measured by the hybrid DABA observed in males

were not associated with higher neutralisation. When comparing

IgM and IgG Ab responses against Spike, S1 or NP antigens over the

50 days period following symptom onset, a very similar profile was

observed to DABA anti-RBD measurements (Figures 4C-H).

However, the most marked differences were observed with IgM

between males and females (Figures 4C-E) and especially for the

Spike and S1 protein (Figures 4C, D, respectively). These results

highlight the differences in antibody response kinetics between male

and female participants and in particular in early IgM responses

targeted to the dominant antigens for neutralisation.
3.6 Upper respiratory tract SARS-CoV-2
viral RNA in relation to demographics,
disease severity and Ab responses

We performed SARS-CoV-2 viral transcript measurements on

upper respiratory tract samples, taken from 174 participants, at a

median of 14 days from date of symptom onset (IQR8-30). There

were no differences in viral RNA levels by sex (Figure 5A), nor by

age or disease severity (Figures 5B, C, respectively). Viral RNA copy
A B D E F

G IH J K L

C

FIGURE 3

Antibody responses by severity groupings and time following disease onset. (A-F) Total anti-RBD titres grouped by severity (S1-S5), measured from
samples taken at (A) week 1, (B) week 2, (C) week 3, (D) week 4, (E) week 5 and (F) past week 5 post-symptom onset. (G-L) Neutralising antibody
(IC50) titres grouped by severity (S1-S5), measured from samples taken at (G) week 1, (H) week 2, (I) week 3, (J) week 4, (K) week 5 and (L) past week
5 post-symptom onset.Statistically significant differences (non-parametric ANOVA (Kruskal-Wallis test) are indicated by horizontal lines above the
groupings.
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number fell over time from symptom onset (Supplementary

Figures 8A, B), but the number of days from symptom onset to

when participants first presented at hospital and were sampled at

study recruitment did not vary according to age or disease severity

(Supplementary Figures 8C, D). We next aimed to identify whether

there were associations between viral RNA load and the array of

antibody responses previously described. Contemporaneously

collected samples showed an inverse correlation between viral

RNA measurements and anti-RBD and nAb titres (IC70),

(Figures 5D, E, respectively). Similar inverse correlations were

observed when comparing Spike, NP and S1 antigen directed IgM

(Figures 5F-H, respectively) and IgG (Figures 5I-K, respectively).

The results indicate that the presence of antibody responses were

associated with a reduction in nasal levels of viral RNA, with no

difference by sex.
4 Discussion

This study of individuals during the early stages of the pandemic

(February-May 2020), using several measurements of host responses

and viral RNA, has enabled the identification of differences in

antibody profiles in an immunologically naïve population. Very

early in the SARS-CoV-2 pandemic it was reported that a number

of factors such as age, sex, co-morbidities, obesity and ethnicity were

associated with the risk of severe disease (2, 5–7). In our cohort,

analysis of patient demographics and disease severity showed that
Frontiers in Immunology 07
males were disproportionately represented in higher severity groups,

especially in the age groupings above 50. Further, we showed that

90% of participants who died (severity group 5) were male with a

median age of 68, supporting previous reports in which older males

were more prone to death (47). Nevertheless, we observed no

differences in the mean age between males and females when

grouped by disease severity, potentially indicating that age is a

stronger determinant of disease severity than sex.

Many other studies have measured antibody responses

following acute infection with SARS-CoV-2 (23, 24, 31, 48–50).

However, most were either cross-sectional, did not measure such

early responses or do not utilise a multitude of comparable antibody

assays. Therefore, a strength of this study was the use of an array of

assays to measure antibody responses against the two main

immunogenic viral proteins S and NP (48). Three different types

of binding assays were performed with one quantifying total

antibodies against RBD (DABA) and the two other measuring

IgM and IgG responses against Spike, S1 and NP. Additionally, a

PVP neutralisation assay was also employed to assess the

functionality of the antibodies generated. Through comparing

these different measurements, we observed an overall robust

correlation between binding antibody titres (measured by DABA

or ELISA), regardless of IgM or IgG class, to neutralising antibodies

which is not affected by age, gender or disease severity. Comparison

of total anti-RBD antibodies, as measured by DABA, with IgG and

IgM Spike and S1 directed antibodies highlighted a strong

correlation between these measurements during the acute
A
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C

FIGURE 4

Evolution in time of antibody titres following disease onset by sex and subclass. (A) Anti-RBD titres. (B) nAb (IC70) responses. (C-E) IgM binding
responses against spike (C), S1 (D) and NP (E). (F-H) IgG binding responses against spike glycoprotein (F), S1 (G) and NP (H) responses. The thin lines
in background indicate individuals with longitudinal samplings with each dot representing a time point collection. For all panels, best-fit curves with
95% confidence intervals are shown for females (orange) and males (blue).
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infection phase (Supplementary Figures 5A-D). However, this

correlation became significantly weaker when comparing anti-

RBD antibodies to spike and S1 directed IgG antibodies during

the convalescent phase (Supplementary Figures 5A-D), indicating a

strong contribution of IgM to the antibody responses measured by

DABA and suggesting a progressive switch to IgG as the

predominant class of spike directed antibodies. Similarly, we

observed a strong correlation between Spike and S1 directed IgM

and IgG antibody responses with nAbs during both acute infection

and convalescence, suggesting that both early IgG and IgM posess

neutralising activity (Supplementary Figures 5G-J), as has been

previously reported (51–53). Together, these results further

highlight how this multi-faceted analysis can reveal the evolvoing

dynamics serological responses within patients. The associations

between different antibody classes and functions observed in this

study can be used to provide retrospective insights into humoral

immunity in the most vulnerable population during the early stages

of the pandemic. Such associations can facilitate further

understanding of how inital immune responses can evolve over a

pandemic of a novel virus, when population immune responses are

not primed by previous exposures or vaccination.

We sought to identify how the timing of antibody responses

associates with disease severity. Our data supports previous findings

that antibody seroconversion occurs 10-19 days post symptom

onset (20–22, 30, 49, 54) and with higher IgM than IgG antibody
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titres measured during acute infection (Supplementary Figures 4A-

C). Despite some differences in the rate of induction of antibody

response between males and females (discussed below), we showed

that total anti-RBD as well as nAb responses peaked around 3 weeks

post-symptom onset for both sexes and across all age groupings.

Through comparing antibody titres at hospital presentation in

different age groups, we showed that there were higher levels of

IgM targeting spike, S1 and NP in indivudals aged between 41-60

than in other age groups (Supplementary Figure 3). Similarly, we

also showed that both anti-RBD and nAb responses to all antigens

tested were delayed in individuals with lowest disease severity, as

previously reported (50, 54, 55) and in those with the highest

severity (fatal outcome) (Figures 3, 4 and Supplementary Figure 6,

respectively). However, patients in the 51 to 60 age group were

recruited up to 4 days later in disease onset than the other groups

(Figure 1C), which may account for some of the differences

observed. Nevertheless, these data, together with the finding that

older males are more prone to severe disease and death, suggests

that delayed antibody production is associated with severe disease

and death in older patients (>60) but not in younger individuals

(<40). A potential explanation for this disparity is that in younger

individuals, more robust innate immune responses help to limit

virus replication during early infection, reducing the overall viral

burden and subsequently delaying the production of Ab responses.

Conversely, advanced age is associated with blunted innate immune
A B

D E F G
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C

FIGURE 5

Association of SARS-CoV-2 upper respiratory tract viral loads in relation to sex, age and Ab responses at time of sampling. (A) Overall viral load
measurements in relation to sex. (B) Viral loads according to age groupings and between females (orange) and males (blue). (C) Viral loads according to
disease severity groupings (S1-S4) and between females (orange) and males (blue). (D) Associations between viral loads and overall DABA anti-RBD
binding responses. (E) Associations between viral loads and neutralisation antibody (IC70) responses. (F-H) Associations between viral loads and IgM
antibody binding responses against spike (F), NP (G) and S1 (H) antigens. (I-K) associations between viral loads and IgG antibody binding responses
against spike (I), NP (J) and S1 (K) antigens. (D-K) Inverse correlations shown (black dotted line) with males shown in blue and females in orange.
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responses, which in combination with delayed Ab production likely

accounts for the higher risk of severe disease. Indeed, delayed and

impaired type 1 IFN responses have been associated with risk of

severe COVID-19 (56) and these responses are known to be

dysregulated in elderly individuals, contributing to the age related

discrepancies in patient outcome (57–59).

When comparing antibody responses between sexes, we

observed a more rapid induction of antibody responses in females

than was observed in male participants and have associated this

with differences in disease severity. Therefore, it is possible that a

contributing factor to sex-associated differences in disease severity

is the timing of antibody responses, whereby a delay in antibody

production may account for increased risk of severe disease

outcome. This association between age, sex and disease outcome

with antibody kinetics has been previously reported, where females

demonstrated more rapid increases in protective IgG responses

than males (29) and that in severe cases, females had higher

concentrations of virus-specific IgG (28). Here, we identify that

the timing of measuring serological responses is important when

correlating to disease status and outcome. This should be taken into

consideration when comparing results to other studies where levels

of IgM have reported contradictory findings between the sexes (60).

Through measuring upper respiratory tract viral RNA

transcripts, indicative of localised viral shedding and therefore a

surrogate measure for viral load, we observed an inverse correlation

between nAb levels which may indicate a critical role of effective

serological responses limiting viral replication and leading to

clearance of the infection. Nevertheless, our samples were

obtained a median of 2 weeks post symptom onset and therefore

viral RNA has been predominantly measured during the decline

phase of infection (61). Additionally, it is possible that this

observation could be a non-causal association with emergence of

effective cellular immunity. It should also be noted that viral load in

the lower respiratory tract, which may play an important role in

defining disease severity, was not measured in this study.

Additionally, a formal analysis of the avidity of the anti-RBD

serological response following recovery has not been undertaken.

Preliminary unpublished data indicate avidity is low after recovery

from infection but greatly increased after vaccine administration.

In this study, immunological linkages with disease outcome

have been deciphered independently in a naïve host population and

with a homogenous viral strain. The analyses of patients early in the

pandemic has been vital in enabling description of the associations

we have identified. Subsequent multiple exposures to different types

of vaccines, natural infections and the emergence of diverse viral

variants makes unravelling further host genetic and immune factors

associated with disease challenging, meaning that the data

presented here are unique, and are unlikely to be obtained as the

pandemic evolves.
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