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The influence of environmental factors on the development of autoimmune

disease is being broadly investigated to better understand the multifactorial

nature of autoimmune pathogenesis and to identify potential areas of

intervention. Areas of particular interest include the influence of lifestyle,

nutrition, and vitamin deficiencies on autoimmunity and chronic inflammation.

In this review, we discuss how particular lifestyles and dietary patterns may

contribute to or modulate autoimmunity. We explored this concept through a

spectrum of several autoimmune diseases including Multiple Sclerosis (MS),

Systemic Lupus Erythematosus (SLE) and Alopecia Areata (AA) affecting the

central nervous system, whole body, and the hair follicles, respectively. A clear

commonality between the autoimmune conditions of interest here is low

Vitamin D, a well-researched hormone in the context of autoimmunity with

pleiotropic immunomodulatory and anti-inflammatory effects. While low levels

are often correlated with disease activity and progression in MS and AA, the

relationship is less clear in SLE. Despite strong associations with autoimmunity,

we lack conclusive evidence which elucidates its role in contributing to

pathogenesis or simply as a result of chronic inflammation. In a similar vein,

other vitamins impacting the development and course of these diseases are

explored in this review, and overall diet and lifestyle. Recent work exploring the

effects of dietary interventions on MS showed that a balanced diet was linked to

improvement in clinical parameters, comorbid conditions, and overall quality of

life for patients. In patients with MS, SLE and AA, certain diets and supplements

are linked to lower incidence and improved symptoms. Conversely, obesity

during adolescence was linked with higher incidence of MS while in SLE it was

associated with organ damage. Autoimmunity is thought to emerge from the

complex interplay between environmental factors and genetic background.

Although the scope of this review focuses on environmental factors, it is

imperative to elaborate the interaction between genetic susceptibility and
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environment due to the multifactorial origin of these disease. Here, we offer a

comprehensive review about the influence of recent environmental and lifestyle

factors on these autoimmune diseases and potential translation into

therapeutic interventions.
KEYWORDS

multiple sclerosis, systemic lupus erythematosus, Alopecia Areata, vitamin D, diet,
therapeutic strategies
1 Introduction

Autoimmune diseases occur when the immune system fails to

distinguish self from foreign, leading to aberrant immune responses

to self and qualified as ‘self-reactivity’. Overall, the prevalence of

autoimmunity is around 9% of the population, and it affects higher

proportions of females compared to males. Autoreactivity can be

directed against specific organs such as the brain in Multiple

Sclerosis (MS), the skin in Alopecia Areata (AA), or against

systems such as Systemic Lupus Erythematosus (SLE), which are

the focus of this review due to their broad coverage of the diverse

types of autoimmunity. Several FDA approved disease-modifying

therapies (DMTs) are already being used to treat MS (1), but limited

therapies exist for SLE and AA. Thus, effective future therapies for

SLE and AA remain an unmet need and should be designed to

intervene prior to disease onset as growing evidence suggests that

the initial pathogenic events take place prior clinical manifestations.

MS, SLE and AA present clinical heterogeneity, while their

polygenic nature suggests a multifactorial causal effect. Genetic

predisposition is thought to be a key factor of increased

autoimmunity, although it is now clear that the complex interplay

between environmental factors and genetic susceptibility triggers

disease onset. Several nucleotide polymorphisms (SNPs) were

identified using genome-wide association studies (GWAS) for MS

(2), SLE (3), and AA (4). Each SNP alone confers a modest risk to

develop autoimmunity, as opposed to cumulative risk variance

associated with higher disease prevalence. With the advent of big

data and large consortiums including more elaborate technical and

analytical tools (single cell-RNA-sequencing, CITE-Sequencing and

causal-gene analytic tools), the genetics field evolved towards

identifying potential causal genes. Nonetheless, the elucidation of

causal genes alone would not suffice to guide effective therapeutic

interventions, as careful consideration of environmental factors

associated with autoimmunity is needed. Epidemiological data

suggest a panoply of environmental factors associated with MS,

SLE and AA including the lack of vitamin D, obesity, prior viral

infections, lifestyle such as smoking, exercising and consuming

alcohol (Figure 1). Nonetheless, epidemiological studies are

susceptible to higher systematic errors due to the differential

classification of lifestyles, and biased interpretations of causation/

association reports. Since extensive reviews have already focused on

the factors including Epstein-Barr virus (EBV) infection (5),
02
consuming coffee, tobacco, and alcohol, here we highlight

other risk factors with some conflicting findings including

vitamin D deficiency, obesity, and diet (Table 1). Moreover, we

will discuss opportunities on how to best leverage existing

knowledge in the field of MS and benefit the fields of SLE

and AA. We will also discuss strategies to integrate genetic

risk factors with findings about environmental risk factors to

help predict disease onset and progression for an efficient

therapeutic intervention.
2 Multiple Sclerosis (MS)

2.1 Multiple sclerosis pathogenesis

Multiple sclerosis (MS) is a chronic autoimmune disease

targeting the central nervous system (CNS) and affects a ratio of

4:1 females to males (41). Although it is a debilitating chronic

condition, the past few decades brought considerable progress for

MS patients. Notably, the increased number of available DMTs

options for relapsing remitting form of MS (RRMS) (1) and more

recently for patients with progressive MS (PMS) (42, 43). RRMS is

thought to be driven by infiltrating peripheral immune cells causing

peri-vascular injury within the CNS; the progressive form (PMS)

remains not well understood and is thought to involve CNS-

compartmentalized inflammation. Although RRMS/PMS are

biologically distinct, the current consensus views them within the

same spectrum and sharing subclinical biologic processes that

overlaps for years prior to clinical manifestations. The latter

evidence suggests an earlier influence of the environmental

factors on individuals ’ prior disease onset and clinical

manifestations. Furthermore, environmental factors are thought

to interact with the genetic background during the preclinical

stage leading to MS disease onset. Yet specific factors triggering

MS or contributing to relapse episodes and disease progression

remain a mystery. At the cellular level, MS represents an abnormal

balance between effector and regulatory T cells, including aberrant

pro-inflammatory functions of IFN-g+ TNF-a+ CXCR3+ Tbet+ Th1,

IL-17+ CCR6+ CD161+ RORgt+ Th17 and GM-CSF+ T cells (44),

while IL10+ CD25high CD127- FOXP3+ Tregs present deficient

functions. While persistence of plasmablasts and increased

immunoglobulin synthesis is a well-recognized feature of MS
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(45), growing evidence suggest that antibody independent functions

of B cells are associated with new disease activity as supported by

anti-CD20 therapies (43, 46, 47). B cells derived from MS patients

secrete high levels of pro-inflammatory cytokines (TNF-a,
Lymphotoxin-a, IL-6 and GM-CSF) (48, 49), but have a

diminished capability to produce IL-10 (48, 50) (Figure 2). MS is

thought to be more prevalent in Western countries and increases

further away from the equator with lower exposure to sunlight,

however such notions were recently challenged based on migration

studies suggesting that MS disease onset might have taken place

prior to migration towards countries away from the equator (51).

Recent epidemiology data gathered by the Multiple Sclerosis

International Federation found within the open source of the

Atlas of MS (www.atlasofms.org), suggest that the overall

worldwide MS numbers increased to 2.8 million patients in 2020;

a 30% rise compared to 2013 (41). Additionally, higher numbers

were reported in regions closer to the equator such as North Africa

and the Middle East (52). It remains challenging to dissect the

triggering cause leading to MS, while the genetic susceptibility alone

cannot explain the recent increase in MS. Herein, we discuss

environmental key factors associated with MS.
FIGURE 1

The influence of distinct environmental factors on MS, AA and SLE.
Environmental factors including Vitamin D, obesity, viral infections,
hormones, microbiome, alcohol, diet, smoking and chemicals, have
all been shown (with some extend of controversy) to interact with
genes in patients with MS, SLE and AA.
TABLE 1 Impact of environmental factors on MS, SLE and AA.

Environmental
factors

Multiple Sclerosis (MS) Systemic Lupus Erythematosus (SLE) Alopecia Areata (AA)

Vitamin D
(Vit D)

Deficient (<20ng/mL), or insufficient
(21-29ng/mL) Vit D levels are reported in
MS (6)
Higher levels of ultraviolet B (UVB)
irradiation are strongly associated with the
prevalence of MS (r=-0.80, p<10-5) (7)
Association between rs731236 (Taq-1) gene
polymorphism within vitamin D Receptor
(VDR) with MS (8)

SLE genetic susceptibility (CYP24A1 gene allele)
(9)
Deficient Vit D levels (~21.6ng/mL) (10)
Low Vit D levels as a result of sunlight avoidance
due to photosensitivity/renal insufficiency (11, 12)

Low serum levels of Vit D (14.03 ± 8.09 ng/
mL) in AA, which represents 79.6% of
patients with low Vit D compared to
controls (13)
Lower serum (9.99 ± 1.69 ng/mL) and
tissue (199.7 ± 33.38ng/mL) Vit D receptor
(VDR) in AA (14)

Obesity ˜3% weight increase in MS cases (n=1571)
compared to controls (n=3371) (15)
Significant 1.61-1.95 fold increased risk of
MS associated with higher body mass index
(BMI) in a cohort of (n=302,043) children
(16)
Adult GWAS data (n=32,105) identified 70
distinct SNPs related to genetically high
BMI as a risk to develop MS (17)
Expansion of adipocytes, a source of pro-
inflammatory cytokines IL-6, TNF-a, in
turn, help recruit immune cell infiltrates
(18, 19)
High resistin levels correlate with higher
BMI, EDSS and IL-1b and TNF-a (20, 21)

85% significant increase risk to develop SLE in
obese women compared to those with healthy
BMI (22)
Obesity at age 18 is associated with double SLE
incidence during adulthood (HR 2.38, 95%
CI:1,26-4.51) (23)
Increased pro-inflammatory markers IL-6, IL-23,
TNF-a & C-reactive protein (CRP) (24) known to
be elevated in SLE and produced by adipose
tissue.
SLE patients harbor elevated serum resistin levels
(p<0.001) that correlate with renal dysfunction
and proinflammatory markers (25)

Higher BMI (p=0.005) in a Japanese AA
cohort (n=70) compared to controls (n=70)
(26)
Higher BMI correlates positively with
alopecia disease severity in males (n=189,
p=0.01) (27)
Lower serum levels of adiponectin
(p=0.031) and resistin (p=0.017) with AA
(n=65) compared to controls (n=71) (28)
Negative correlation between adiponectin
serum levels and AA disease severity p<0.05
(28)

Diet Low iron (p=0.04), magnesium (p<0.001)
levels in MS patients (9, 29)
High sodium (40nM) found in western diet
promotes in vitro Th17 differentiation
(30)
Mediterranean diet reduces inflammation
through phenols and protect CNS from
oxidative stress (31)

Inadequate intakes of iodine, potassium,
magnesium, folate, and vitamins E and D, and
overconsumption of sugar, sodium, and
phosphorus (32, 33)
High fiber intake by SLE patients may prevent
disease activity
(34)
Vegetarian/pesco-vegetarian diets is associated
with lower odds of SLE (35)

Protein deficiency (intake <30g/day) is
associated with AA disease onset (28)
Deficiencies in biotin (B7) (<100ng/L) and
folate (B9) (110.62-243.75 ng/mL/cells) are
associated with hair loss and AA (36, 37)
Iron deficiency was reported in 56% of AA
patients (<40ng/mL) compared to controls
(38)
Beneficial role of Mediterranean diet rich in
fruits, vegetables (OR 0.43; 95% CI 0.21-
0.89)
in AA (n=104) compared to controls (39,
40)
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2.2 Influence of environmental factors
during the lifespan

Onset of MS disease in pediatric populations is now recognized

worldwide (53, 54). McDonalds criteria specific for pediatric

patients were published in 2018 (55). Together with observational

migration studies (56), it suggests that the risk exposure to

environmental factors may occur prior 15 years-old as Rotstein D

L et al. (57), demonstrated a greater MS risk in individuals who

migrated at a younger age than 15 years old to Canada (Hazard

Ratio (HR) 0.73, 95% confidence interval (CI) 0.63 – 0.85), and

perhaps as early as the gestation period in utero and in neonates

(58–60). Indeed, individuals who migrated from a low to a high-risk

country before adolescence have higher risks of developing MS

compared to the general population of high-risk countries (HR 1.72,

95% CI 1.00-2.75, p=0.049) (61). Although contributions and

timing of environmental exposures promoting disease onset

remain unclear, some evidence suggests that the exposure to

environmental factors during pregnancy or early-life may be

associated with disease onset. Maternal illness during pregnancy

was associated with 2.3-fold increase to develop MS (95% CI 1.20-

4.21, p=0.01) and is considered a risk factor for pediatric MS onset,

while cesarean delivery appeared protective as it reduced the MS

risk by 60% (95% CI 0.20-0.82, p=0.01) based on a large American

case-control study (n=265 MS cases, and n=412 controls) (62).

Which is contradictory with a Danish (n=930 MS cases) (63) and an

Iranian (n=449 MS cases, n=900 controls) (64) cesarean case-

controlled studies demonstrating that the latter had no effect on

the risk of developing MS (OR=2.51; 95% CI 1.43-4.41; p=0.001 and

RR = 1.77; 0.92-1.46), respectively. Moreover, having worked in a

gardening-related occupation and exposure to pesticides from 3

months pre-pregnancy through the first year of life increases the

risk of pediatric MS (OR 2.18, 95% CI 1.14-4.16, p=0.02 and OR
Frontiers in Immunology 04
1.73, 95%, CI 1.06-2.81, p=0.03), respectively (62). While exposure

to adhesives or paint thinners petroleum products after the first year

of life was associated with a two-fold higher MS risk (OR 1.22, 95%

CI 1.23-3.29, p<0.01) (62). In a cohort of (n=6649) babies born in

the post-winter season appear to be more prone (11% higher risk) to

develop MS (p=0.045) (65) compared to babies born between April

and May, which may be due to residual confounding factors (66,

67). Yet, biological mechanisms behind those observations remain

unclear and need more attention. The predominance of sex

dimorphism in MS is stronger between puberty and menopause,

while before/or after this time period the sex ratio is 1:1 earlier age.

An earlier age at puberty tends to be associated with increased risks

of developing MS (OR 0.56, 95% CI 0.33-0.69; p=0.035) (68), and

peaks two years post-puberty (69). Although it is unclear whether

this is due to the direct impact of hormonal changes, past infections,

or other factors.
2.3 Vitamin D

Vitamin D deficiency has been recognized as a risk factor for

MS since the 1970s, leading to considerable efforts to understand

how clinical intervention using vitamin D supplementation

throughout the disease course may prevent or alter MS pathology

(70). Regardless of their geographical localization, MS patients

exhibit a deficiency in vitamin D (<20ng/mL) or insufficient levels

(21-29ng/mL) (6). Deficient/insufficient vitamin D levels are

generally associated with a low sunlight exposure, although MS

patients from sunny countries such as southern Italy (71) and

Australia (41) also display low vitamin D levels, which suggests

deficiencies might be attributed to low levels of active vitamin D, or

perhaps a lack of availability of the vitamin D receptor (VDR). To

exert its direct anti-inflammatory property, vitamin D must bind to
FIGURE 2

Altered balance between pro-inflammatory and regulatory immune cells associated MS, SLE and AA. Increased frequencies of pro-inflammatory Th1/
Th17 cells (IL-17+, IL-23+), effector B cells (IL-6+, TNF-a+, GM-CSF+), pro-inflammatory macrophage (GM-CSF+, IL-6+, IL-23+), and lack or
dysfunctional anti-inflammatory regulatory T cells Tregs (IL-10+, IL-35+, TGFb+), regulatory B cells Breg (IL-10+, IL-35+), anti-inflammatory
plasmablasts (IL-10+) and anti-inflammatory macrophage (IL-13+, IL-10+ and TGF-b+). The altered balance between pro-inflammatory and
regulatory profiles in MS, SLE and AA might be a result of an over activation of the immune system, or an insufficient regulation.
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VDR, forming VDR-D complex that further binds to the receptor

RXR that is activated by the retinoic acid (RA) metabolite found in

vitamin A (71). This process indicates that supplementation with

vitamin D and A in MS patients might improve MS by triggering an

anti-inflammatory cascade suggested by the increase of IL-10+ CD4

T cells, and decreased ratio of IFN-g+/IL-14+ T cells (72, 73). In

addition, active vitamin D has immunomodulatory effects by

suppressing the innate and the adaptive immune system (74). Its

effect could be mediated directly through the VDR signaling

pathway, or indirectly through the antigen presenting cells

(APCs). Vitamin D3 isoforms were reported to modulate the

balance between the pro-inflammatory and anti-inflammatory

cytokines, known to be altered in MS. In humans, 1,25

dihydroxyvitamin D3 (1,25(OH)2D3) induces the differentiation

of IL-4 secreting T cells through the induction the transcriptomic

factor GATA-3, while inhibiting the pro-inflammatory Th1 cells by

blocking the secretion of IFN-g (74, 75), which in turn, induces the

cytotoxic and proliferation of both CD4+ and CD8+ T cells. Thus

far, despite the conflicting data about the impact of vitamin D3 on B

cells, the most robust data is in support of an inhibition of B cell

proliferation and differentiation into plasma cells, resulting in

reduced levels of immunoglobulin G (IgG) (74, 76, 77). 1,25(OH)

2D3 seems to also affect the innate immune system, by increasing

the differentiation of NK cells from the hematopoietic stem cells via

VDUP1 (49, 78). The important roles of 1,25(OH)2D3 within the

CNS include its secretion by neurons and microglia, which

modulates neurotrophic factors secretion enabling calcium influx

into neurons through L-type calcium channels (79, 80).
2.4 Obesity

Obesity is considered an MS risk factor, while most recent

findings implicate obesity as a contributor to MS pathophysiology.

During childhood, risk of developing MS seems lower than in

adolescence where it doubles (16, 81). Interestingly, adult obesity

did not influence the risk of MS diagnosis (82). A large cohort based

comprehensive study (n=1571 patients, n=3371 controls), amongst

others, revealed a two-fold weight increase (3% on average) in MS

cases compared to controls (OR 2.2 95% CI 1.6-3.0; p=1x10-6) (15).

In addition, a prospective Danish investigation where they

examined the body mass index (BMI) of 300,000 students

revealed a significantly increased risk of MS in girls aged between

7-13 who were ≥95th percentile of BMI (1.61-1.95-fold increase)

and boys with a BMI ≥95th percentile at age 7 (1.81-fold increase)

(16). Mendelian randomization investigations demonstrated that

high BMI is a genetic determinant that is strongly associated with

increased risk of developing MS. A large BMI based genome-wide

associated studies (GWAS) (n=322,105) in adults identified 70

distinct SNPs including SNPs of genetically elevated BMI as a risk

to develop MS (17). Whereas pediatric mendelian randomization

(MR) studies reported 11 overlapping/correlating BMI SNPs with

the adult studies (p = 0.01) (83), which reinforces the idea that

predisposition to genetically elevated BMI may be a causal factor in

MS disease onset. Moreover, childhood obesity was significantly

associated with a higher risk of pediatric-onset of MS and with
Frontiers in Immunology 05
clinically isolated syndrome (CIS) in girls (p=0.005 for trend) but

not boys (p=0.93) (84). Specifically, extremely obese girls had over

three times higher chances of developing the disease compared to

children with a healthy weight, as the adjusted odds ratio and 95%

CI for CIS/MS overweight girls was 1.58 (0.71-3.5) compared to

healthy weight category (84). Obesity is accompanied with self-

directed tissue inflammation whereby adipocytes are subjected to

considerable expansion to be able to store lipids (85). Adipose tissue

itself and the immune cell infiltrates through their ability to secrete

pro-inflammatory cytokines are inflammation sources. In fact, fat

cells are known to physiologically secrete hormones (leptin,

adiponectin and resistin) and pro-inflammatory cytokines

including IL-6 and TNF-a, which are recognized to be elevated

during obesity, and in turn stimulate the recruitment of immune

cell infiltrates (19, 86). To date, there is very little evidence regarding

the specific role of adipose tissue in MS pathogenesis, and how these

cells interact with the immune system contributing to relapses/

disease progression.

At the cellular level, obesity is accompanied by a shift towards

pro-inflammatory T cells (Th1/Th17) (87, 88) to the expense of the

anti-inflammatory Th2 cells (88). More specifically, IL-17 and IL-23

producing Th17 cells frequency increases with obesity (89), which is

accompanied by an altered IL-10 producing Treg frequency in

adipose tissue (90). The latter immunophenotypic profiles are also

reported in MS, and perhaps amplified in obese MS patients leading

to an over activation of the immune system and a lack of regulation,

as reviewed by Correlale et al. (91). The adiponectin hormone

secreted by adipose tissue was found to be significantly abundant

within the serum of children with MS (n=43, p<0.005) and appears

to induce pro-inflammatory states of CD14+ monocytes through

increased expression of CD80, CD86, TNF-a and IL-6, as well as

the adaptive immune cells IFN-g producing CD4+ and CD8+ T cells

directly or via myeloid cells, and altering the quiescence profile of

human microglia (92). Furthermore, adiponectin levels in the CSF

and serum of MS patients appear to correlate with MS disease

severity and progression and are higher compared to controls (93–

96). Nonetheless, such observations remain subject to debate due to

the lack of significant correlation between adiponectin levels and

MS disease activity (93). Another hormone of interest is resistin,

found within the CNS and significantly higher levels were found in

the periphery (serum) of MS patients which positively correlates

with a higher BMI and EDSS, as well as pro-inflammatory cytokines

IL-1b and TNF-a (20, 21). High resistin levels correlate with lower

regulatory T lymphocytes (Treg) in RRMS (97), although it remains

unclear whether resistin directly exerts suppressive effects on Tregs.
2.5 Diet

The advent of industrial development revamped our lifestyles

on many levels, including our diet, which has been linked to an

increased prevalence of autoimmune conditions. Increased

attention emerged over the influence dietary habits on MS disease

onset and course, although how specific nutrients impact the

immune system, and the interaction between CNS and immune

cells, remains unclear. Compared to controls (n=146), MS patients
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(n=63) have lower levels of iron (p=0.04) (29, 98), while magnesium

deficiency represent a risk factor for MS although the sample size

was limited Yasui et al., report lower magnesium levels within post-

mortem CNS tissue from MS patients (p<0.001) compared to

controls (99). Cross-sectional MS-studies (n=69) indicated that

85.5% of patients did not meet nutrition guidelines (100). Despite

the sparse data regarding dietary intervention to help patients with

MS, several diets have been suggested to influence the MS disease

course. Mediterranean-style diets are known to be low in saturated

fats, while being high in polyunsaturated and monounsaturated fats

and consist of a high intake of fruits, vegetables, grains. Fish, dairy

products, and red meat are moderately consumed. Overall, the

Mediterranean diet is thought to reduce inflammation in part due to

phenols present in olive oil exerting anti-inflammatory properties

that protect the CNS from oxidative stress, reported in MS (31, 101,

102). In contrast, the western diet is known to be enriched in

processed food, high in saturated fats, sugar and salt and overall

poor in whole grains, fruits, and vegetables and appears to

negatively impact MS disease course (103). In an experimental

autoimmune encephalomyelitis (EAE) animal model, mice fed with

a western high-fat diet exhibited high T cell and macrophage

infiltration, higher IL-6 and IFN-g levels and worse clinical

scores (104).

2.5.1 Unsaturated fats
Polyunsaturated fatty acids (PUFAs) or monounsaturated

(MSFA) fats are found in fish, flax seeds, walnuts, avocados, olive

oil, nuts such as almonds, walnuts and peanuts. Typically,

polyunsaturated fats like omega-3 and omega-6 fatty acids down-

regulate inflammation. A recent study led by Dr. Kappos L

demonstrated that PUFAs measured in the serum is in immune

regulation, decreasing the risk of conversion from clinically isolated

syndrome (CIS) to MS, as well as decreasing the risk of relapse

(105). Observational studies utilizing a large cohort of over 90,000

women nurses over two distinct periods of time established a

significantly better outcome for MS in response to a diet enriched

in PUFAs (106). However, the mechanism by which unsaturated

fatty acids reduce relapse rates, or influence conversion from CIS to

MS remains to be discovered. At the cellular level, Omega-3 fatty

acids modulate macrophages, neutrophils, T cells, B cells, NK cells

and DCs, although their precise mode of action on immune cells in

MS is yet to be discovered. In vitro, omega-3 fatty acids have been

shown to increase macrophage phagocytic functions, perhaps

through driving the anti-inflammatory phenotype of macrophages

known to be phagocytosis competent phenotype (107, 108).

Oxidative stress (OS) increases demyelination during MS, while

in vitro it is diminished in response to Omega-3 treatment through

the suppression of the pro-inflammatory profile of macrophages

(lower IL-6 & TNF-a cytokine secretion) (109). Finally, omega-3

fatty acid inhibits the polarization towards pro-inflammatory Th1/

Th17 cells (110), and promotes Tregs differentiation (110).

2.5.2 Saturated fats
Western diets have elevated levels of saturated fats, known to

increase LDL cholesterol are associated with disability and high
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MRI activity in MS (111, 112). At the cellular levels, saturated fatty

acids have been reported to directly activate the pro-inflammatory

signaling pathway through TLR-2 and TLR4 signaling pathways

(112, 113). Both TLR-2 and TLR-4 are known to be involved in MS

pathophysiology. TLR-2 is expressed by MS Tregs at a higher level

compared to matching controls, and upon activation T cells shift

towards pro-inflammatory Th17 cells (114), while TLR-4 upon

activation leads to the NFkB pathway activation inducing pro-

inflammatory cytokines (IL-6. IL-23 & IFN-g), promoting T cell

proliferation and survival in MS (115, 116).

2.5.3 Grains, fruits and vegetables
A healthy diet is recommended for the general population as

well as patients with autoimmune conditions, although little

evidence exists to define the direct impact of fruits, vegetables,

and grains on the immune system. In MS, a higher intake of fruits

and vegetables is associated with lower disease activity based on the

Health Outcomes and Lifestyle In a Sample of people with Multiple

Sclerosis (HOLISM) study (n=2047), that consisted of a dietary

questionnaire directed to MS patients (117). Moreover, pediatric

MS patients demonstrated a decreased relapse rate in response to a

higher consumption of vegetables (118). Recent findings deploying

the north American research committee on MS (NAARCOMS)

registry questionnaire suggest that high-quality diet enriched in

fruits, vegetables, whole grains and low in sugars and red meat is

associated with a better disease outcome, including lower disability

rates in MS patients (119).

2.5.4 Dairy
Based on the HOLISM study, a low dairy consumption

diet is associated with lower disease activity and improved

quality of life compared to MS patients that consume dairy

products (117). Nonetheless, it may result in a decreased calcium

consumption known to be low in MS. Although survey studies

do not directly assess the precise mode of action of dairy derivates

on immune cells, it opens new avenues for mechanistic

based research.

2.5.5 Sodium
The Western diet is enriched in salt. A decade ago, several

groups closely examined the impact of higher sodium chloride

(NaCl) concentrations similar to those found in the mice

intestine and demonstrated that not only it induces the

differentiation of T cells into pro-inflammatory Th17 cells, but

exacerbates EAE (30, 120, 121). In MS, Th17 are recognized to be

pathogenic T cells, and Kleinewirtfeld et al., further showed that in

vitro 40nM of NaCl promotes the pro-inflammatory pathogenic

Th17 IL-17+, through the phosphorylation of p38 mitogen-

activated protein kinase (MAPK) and the nuclear factor of

activated T cells 5 (NFAT 5) (120). Despite direct in vivo and in

vitro evidence of the impact of NaCl on Th17 cells, it remains

crucial to test NaCl concentrations comparable to those found in

the human intestine, as well as using human blood/CSF samples

from strictly controlled diet groups of patients (high salt diet,

lower salt).
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2.6 Dietary effects on the gut microbiome

Different diets have the potential to influence the composition

and function of the gut microbiota distinctly, hence it is crucial to

pay close attention to these interactions to help better control

disease activity and prevent CNS autoimmunity through healthy

diets. To date, there is no consistent evidence of a clear MS

microbiome phenotype, but a panoply of microbial species has

been described. Initial investigations shedding light on the

importance of the gut microbiota in MS, constitute the surprising

benefits of fecal microbial transplantation (FMT) in MS, and

suggested as a therapeutic strategy (122). Recently, a report by the

international MS Microbiome Study (iMSMS) based on 576

patients and 1,152 controls, highlighted that specific gut

microbiome signatures as a risk for MS and may impact disease

progression, while defined DMTs could shape functional profile of

the gut microbiome (123). Significantly increased proportions of

Akkermansia muciniphila (FDR<0.05), Ruthenibacterium

lactatiformans (FDR<0.01), Hungatella hathewayi (FDR<0.001),

and Eisen-bergie l la tayi (FDR<0.001) and decreased

Faecalibacterium prausnitzii (FDR<0.01) and Blautia (FDR<0.05)

species were reported in MS (n=209), compared to controls (123). A

vegetarian diet enriched in non-fermentable fiber in early life

prevents CNS autoimmunity by altering the composition of gut

microbiota and increasing long-chain fatty acids that support

suppressive Th2 cells functions (124). Finally, recent focused

investigations link IgA+ producing B cells to a specific gut

microbial immune response, which constitutes an important gut-

brain axis as they are recruited from the gut to the inflamed MS

CNS during relapses and exert regulatory properties through IL-10

secretion (125, 126).
3 Systemic Lupus Erythematosus (SLE)

3.1 Pathogenesis

Systemic lupus erythematosus (SLE) is a multisystem

autoimmune disease which can affect the joints, skin, nervous

system, lungs, kidneys, and blood vessels. Its vast clinical

heterogeneity compelled the development of 11 clinical and

immunological criteria that are used in formal diagnosis (127,

128). The development of SLE is multifactorial, involving an

innate susceptibility that interacts with epigenetic, environmental,

lifestyle, and hormonal factors over an individual’s lifetime, which

amplify an underlying dysregulated innate and adaptive immune

response and trigger disease onset (129, 130). Aberrant innate and

adaptive immune responses are thought to contribute tissue injury

in SLE (131). Autoreactive B cells differentiate into pathogenic

memory and plasma cells through germinal center responses, giving

rise to increased autoantibody titers (132, 133). Active SLE is

associated with naive CD19+CD27- B cell lymphopenia, while

transitional CD19+CD24hiCD38hi B cells, switched memory

CD19+CD27+IgD- B cells, double negative CD19+CD27-IgD- B

cells, plasmablasts/plasma cells CD27hiCD38+CD19+sIglowCD20-

CD138+ B cells are increased which correlate with SLE disease
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activity (134, 135). IL-10 producing transitional B cells suppress

pro-inflammatory Th1 and Th17 cell differentiation, although they

are impaired in SLE (136). In SLE, double negative CD4-CD8- T

cells are expanded, and reported to infiltrate kidneys and produce

higher levels of IL-1 b and IL-17 (135). Cytotoxic CD8 functions are

reportedly altered in SLE (137), while frequencies of CD4+Foxp3+

Tregs are low and present altered regulatory functions (138). While

SLE’s exact pathogenesis is complex and unknown, likely due to its

immense heterogeneity in clinical and molecular phenotypes (139),

the breakdown of self-tolerance and sustained production of

autoantibodies are central tenets in our understanding of SLE

(129). However, what drives the sustained loss of self-tolerance

and spread systemically is unknown. In the current model, genetic

and environmental triggers are well-researched initiators of SLE.

Genetic studies have identified many susceptibility loci, including

alleles in the MHC, interferon, complement pathways, and many

others in both the innate and adaptive immune system (3, 140, 141).

Some genes relate to age of onset and clinical course, with what

appears to be a stronger genetic component and more severe

manifestations in pediatric SLE cases and what may be a more

nuanced interplay between genetic and environmental factors in

adults (141–143).
3.2 Influence of environmental factors
during the lifespan

Almost 60% of SLE risk may be related to environmental

exposures and gene-environment interactions (144), which

accumulate over the lifespan. Preterm delivery (OR 28.9, 95% CI

2.9–287.8, p=.004) and exposure to inhalable particles or volatile

components (OR 7.4, 95% CI 1.3–42.3, p=.03), secondhand smoke

during pregnancy and after birth (OR 9.1, 95% CI 1.8–45.2, p=.007),

and low-to-middle socioeconomic status (OR 2.8, 95% CI 0.5–16.6,

p=.26) have been associated with an increased risk of childhood-

onset SLE using multiple logistic regression models (145). Like

adult-onset SLE, other environmental exposures associated with

childhood-onset SLE include UV light, drugs, and viral infections

(146). Environmental exposures associated with SLE development

are cigarette smoking, crystalline silica, alcohol, oral contraceptives

and hormone replacement therapy, EBV, dietary factors, and

occupational exposures including solvents, pesticides, mercury

and trichloroethylene; more details can be found in a recent

review here (147). Gene-environment interactions over the

lifespan can be mediated epigenetically, as indicated by data on

SLE discordance in monozygotic twins is associated with

widespread changes in methylation pattern, enriched in immune

function associated regions (148). DNA hypomethylation in SLE

cells is a dominant pattern and driving force towards autoimmunity

and severity (149). The plethora of different SLE-associated stimuli

may act cumulatively over the lifespan and synergistically through

epigenetic modifications that promote autoreactive T cells (149,

150). Environmental factors which may dysregulate DNA

methylation and contribute to cells switching to an autoreactive

state include diet, drugs (i.e. procainamide and hydralazine),

oxidative stress-inducing agents like infections, UV light,
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smoking, mercury, and pollution (151–154). Increasing evidence

attributes neutrophil extracellular traps (NETosis), a specialized

form of neutrophil apoptosis, as major source of auto-antigen in

SLE, leading to the release of DAMPs that activate immune

responses (155, 156). Pathways which usually prevent immune

activation to this endogenous cellular material may also be altered

in SLE patients, such as the degradation of chromatin by DNase I

(157, 158). Increased apoptosis can be caused by environmental

factors such as UV exposure, infections, toxins, and drugs, all

factors which are well-associated with SLE and flares (36, 130).

Environmental factors associated with SLE can also drive

inflammatory cytokines which initiate downstream pathological

processes including hyperactive B and T cells, loss of tolerance,

and autoantibody production (130). The subsequent formation,

deposition, and inadequate clearance of immune complexes in

tissues ultimately leads to organ damage.

There is a striking sex difference in SLE; 90% of patients are

female and most patients are diagnosed during reproductive years

when hormonal levels are high (159). There is scarcity of research

into sex differences in environmental exposures and sensitivity to

environmental factors in SLE incidence, which is remarkable

considering that estrogens and endocrine disruptors may

contribute to SLE development and flares in a dose-dependent

manner (150, 160, 161). Endocrine disruptors have been associated

with autoimmune disease as well as SLE, which ties into the

importance of natural estrogens in immune regulation and

dysregulation (150, 162). Recently, early-life exposure to

pesticides was associated to increased SLE risk (OR = 2.3; 95%CI

1.3-4.1) in a dose-dependent manner (163). Pesticides are

endocrine disruptors and increase oxidative stress. Both personal

use of and work-related exposure to pesticides (OR 7.4, 95% CI 1.4-

40.0) and insecticides (HR 1.97, 95% CI 1.20-3.23) have previously

been associated with SLE risk and autoimmunity with a greater risk

conferred by longer duration and increased usage (164–167).

Exposure to pesticides is also associated with increased mortality

from SLE (168).

All together, these studies indicate that environmental agents

that increase oxidative stress, apoptosis, and inhibit DNA

methylation can contribute to lupus onset and flares. Focusing in

on these agents, diet is one of the most modifiable risk factors, and a

feasible and accessible approach to making a positive impact on SLE

patients, perhaps in an individualized way.
3.3 Vitamin D

Low levels of vitamin D are frequently observed in SLE patients

(~21.6ng/mL) (10) (and obese patients) in multiple studies and it is

not known whether deficiencies are a cause or result of the disease;

however, low levels are often attributed to avoidance of sunlight due

to photosensitivity or renal insufficiency in patients with nephritis

(11, 12, 169, 170). Vitamin D and the its metabolism gene allele

CYP24A1 is related to the risk of developing SLE, as shown by

prospective study cohort of at-risk family members (n=436) who

were assessed for vitamin D level at baseline and through follow-up,

vitamin D supplementation, and genotyped for SNPs (9). The
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impact of vitamin D on SLE risk was modified by the number of

minor alleles in CYP24A1. With two copies of the minor allele,

having higher vitamin D levels was associated with a decreased SLE

risk (OR 0.91, 95% CI 0.84-0.98), deficiencies were associated with

an increased risk of transitioning to SLE (OR 4.9, 95% CI 1.33-

18.04) (9). In individuals with deficient vitamin D levels and two

minor alleles, the incidence of SLE development attributable to

deficiency and two minor alleles was a striking 68.1%. As the

enzyme product of CYP24A1 initiates Vitamin D degradation,

this study indicates a role of genetics in the pathogenic effect of

low Vitamin D on SLE development (9).

VDRs are expressed in many immune cell lines and activation

leads to functional changes, generally skewing cells towards anti-

inflammatory states (171). While VDR polymorphisms have been

reported in SLE and are possibly implicated in both in vitamin D’s

effect on immune cells and in vitamin D serum status, results have

been inconsistent and conclusions cannot yet be made (171–174).

Deficiencies are associated with altered immune cell differentiation

and some studies have shown an association with increased SLE

progression and activity, while others do not (11, 169). In vitro,

vitamin D (10 nM) has been shown to decrease neutrophil

extracellular traps (NETs) and prevent endothelial damage in

cultured neutrophiles derived from SLE patients, compared to

controls (p<0.05) (175). NETs are net-like fibrous structures on

activated neutrophils which play an important role in fighting

infections but are also associated with autoimmune diseases,

possibly through a dysregulation between creation and

degradation of NETs and subsequent activation of inflammatory

cascades due to prolonged exposure to NETs. The therapeutic use

and impact of vitamin D in vivo within SLE patients has been

investigated in different studies which are discussed in more detail

below (155, 156). In one prospective study, vitamin D

supplementation in patients preferentially increased naïve CD4+T

cells frequency (p<0.01) and CD3+CD4+CD25hiCD127-FoxP3+

Tregs (p<0.01), decreased effector IFN-g+Th1 (p<0.05) and IL-

17A+Th17 cells (P<0.01), and decreased memory IgD-CD27+B

cells (p<0.001) as well as anti-DNA antibodies (176).
3.4 Obesity

Obesity is strongly associated with inflammation and

inflammatory arthritis. Studies estimate that about a third of SLE

patients are overweight and/or obese, which is associated with

impaired functional capacity (177). Adults patients with SLE

recruited longitudinally part of the multi-ethnic Southern

California Lupus Registry (SCOLR) indicated that increased BMI

(n=130 obese patients) had severe SLE disease activity index score

(SLEDAI) (p=0.0026) (178). Obesity independently initiates a

proinflammatory state and has been associated with SLE

development; excess weight in women disrupts hormones

involved in immune function (178, 179) and obese women

followed over 20 years had a higher risk of SLE (22). Obesity

during adolescence increased the risk of SLE (95% CI 1.26–4.51)

even further (180). Concerningly, if patients are obese during

childhood, later achieving a normal body weight in adulthood
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does not appear to reverse the conferred risk (179). Obesity in SLE is

associated with increased inflammatory markers including C-

reactive protein (CRP), IL-6 (24), IL-23 (181) and TNF-a (182);

IL-23 is associated with nephritis and a hypercoagulable state.

Several studies and a meta-analysis have found increased

adiponectin levels in lupus patients (183, 184), like the findings in

MS as described above. Higher levels have been associated with

severity of disease (183), but a meta-analysis found no relation to

SLEDAI score (184). Adiponectin concentration was higher in

obese SLE patients and those with plaques (p=0.033) (184, 185).

It may be that higher levels of adiponectin mitigate the

inflammatory response, as adiponectin is thought to have anti-

inflammatory and protective endothelial effects (184, 186). Obese

SLE patients are also at a higher risk for metabolic syndrome

compared to non-obese SLE patients, a cluster of metabolic

abnormalities including high blood pressure, dyslipidemia, and

high glucose levels (187) that further perpetuating the chronic

inflammatory state and oxidative stress. Overall, obese SLE

patients have higher disease activity, poorer outcomes, and

worsened organ damage which ultimately reinforces the great

need for intervention (178, 188–190). Interventions may include

dietary and lifestyle changes. Contributing factors in obesity and

connections to SLE development include a high-fat diet, gut

dysbiosis, medications, and physical hypoactivity. A high-fat diet

can lead to weight gain and gut dysbiosis, which may lead to

impaired immune regulation and tolerance to beneficial intestinal

microbes (191, 192). Losing weight may be difficult for SLE patients,

as the small number of studies exploring lifestyle-based dietary and

exercise regimens have been mostly ineffective at promoting weight

loss. However, weight loss was not a primary outcome in most and

corticosteroid use may be a confounding factor (193). Nonetheless,

one study did achieve significant weight loss in SLE patients who

were on either a low-calorie or low-glycemic index diet, with a

reduction in fatigue as well (194). Obesity can lead to sedentary

behavior and vice-versa, which has important consequences for

immune function. Physical activity such as Tai Chi Chuan

promotes a healthy immune state by significantly increasing the

ratio T helper to suppressor cells (CD4:CD8) (p=0.05), and

increasing CD4+CD35+ Tregs producing TGF-b and IL10 known

to suppress the immune system (195, 196).Thus, physical

hypoact ivi ty can exacerbate adipose-re lated systemic

inflammation (197) and exercise may be an area of intervention

for SLE patients. Exercise can promote cardiovascular health (198),

increases insulin sensitivity (198), helps prevent bone mineral loss

(199), and may help with fatigue and depressive symptoms (200), as

well as ameliorating the effects of corticosteroids, including weight

gain and muscle weakness (201).
3.5 Diet

Over the past two decades, researchers have been investigating

diet, nutrition, and dietary-related microbiome changes as

complementary approaches to understanding and treating SLE.

Current literature supports the idea that a balanced diet and

nutrients confer anti-inflammatory, immunomodulatory and
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antioxidant effects which may offer benefits to SLE patients (202,

203). Alarmingly, a cross-sectional study showed that the majority

of normal weight SLE patients (67.2%) have an inadequate

nutritional intake (90% less) (177). Most patients had an

inadequate intake of calcium, iron, vitamin B12, and fiber,

possibly due to a low consumption of fruits and vegetables.

While, there was an overconsumption of fats and oils,

contributing to dyslipidemia and cardiovascular risk. Other

studies have shown similar results alongside inadequate intakes of

iodine, potassium, magnesium, folate, and vitamins E and D, and

overconsumption of sugar, sodium, and phosphorus (32, 33). A

recent large, prospective study using the Nurses’ Health Study

(NHS) and NHSII population (n=185,962) identified healthy diet,

body weight, regular exercise, never smoking or past smoking, and

moderate alcohol intake as modifiable risk factors associated with a

decreased risk of SLE development HR 0.42 (95% CI 0.25-0.70)

(204). Remarkably, SLE risk was halved for those with the highest

adherence to healthy behaviors compared to the lowest. The effects

were additive for each additional behavior, suggesting that these

modifications may act synergistically via common underlying

mechanisms. Importantly, while these underlying mechanisms

remain to be elucidated, these results emphasize the potential for

SLE prevention with lifestyle changes, including adherence to a

healthy diet and body weight.

3.5.1 Mediterranean diet
The Mediterranean diet has recently been shown to positively

impact SLE disease activity (SLEDAI ≥5) (OR: 0.13; 95% CI: 0.04 –

(−0.50), p<0.001), such as using more than 2 vegetable servings per

day, significantly reduced SLE damage (SLICC/ACR Damage Index

(SDI) ≥1)) (OR: 0.04; 95% CI: 0.005 – (–0.352), p<0.001), as well as

reducing CRP by 24%, IL-6 by 16% (205) and homocysteine levels,

and was associated with lower obesity and cardiovascular risk (206,

207). Possible mechanisms underlying its benefit include a

reduction in overall inflammation, oxidative stress, and

modulation of the immune system and DNA methylation status.

Olive oil, fruits, vegetables, and fish may be the most beneficial

components. Fruits and vegetables are important sources of fiber. A

diet low in fiber (like the westernized diet) can lead to a state of gut

dysbiosis that contributes to the development of autoimmunity and

other health disorders (208, 209). Inflammation and immune

dysregulation may result from gut microbiome perturbation in

that alters its production of short-chain fatty acids (SCFAs), a

product of fiber fermentation (210, 211). Indeed, SLE patients often

have gut dysbiosis which has been linked to a low consumption of

fiber (212). Higher fiber intake also increases gut motility, resulting

in lower uptake of potentially harmful compounds from the diet

(213, 214). In turn, a diet high in fiber consumed by SLE patients is

associated with reduced disease activity (214).

3.5.2 Protein restriction and vegetarian diet
A relative abstinence from meats may also independently show

benefit for SLE patients, as suggested by a recent study using the

Adventist Health Study-2 cohort (n=77,795) to investigate the

relationship between self-reported dietary patterns and diagnosed

SLE (35). Most participants were already vegetarians or pesco-
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vegetarians and this dietary pattern was associated with lower odds

of SLE (OR=0.75, 95% CI 0.56-1.02), and (OR 0.88, 95% CI 0.57-

1.36), respectively (35). Conversely, there was increased SLE

diagnosis in nonvegetarians, which trended upwards with greater

consumption of meat (35).

Protein restriction is commonly applied in kidney disease. In

lupus nephropathy, high protein intake directly worsens renal

filtration, while limiting protein slows the decline in kidney

function (215). Excessive protein in diet (75% higher) has also

been shown to accelerate bone mineral loss in juvenile SLE (216).

However, a moderate intake of protein is recommended for most

due to its nutritional importance; therefore, only in patients with

overt kidney disease is an avoidance of high protein recommended

currently. One way that amino acids can modulate the immune

response through mechanistic target of rapamycin (mTOR), a

paramount regulator and sensor of nutrient status, intracellular

metabolism, oxidative stress, and immune response that is

implicated in the development of autoimmunity (217). Amino

acid metabolites, like kynurenine from tryptophane, can promote

mTOR activation. mTOR contributes to T cell dysfunction,

apoptosis, and reduced CD4+/CD8+ ratio in SLE (0.72 ± 0.12%)

patients, as well as a significant increase of CD8+ T cells (p<0.001)

due to upstream depleted glutathione levels and mitochondrial

hyperpolarization (218). Percentages of CD4 and CD8 T cell

apoptosis in SLE patients were higher than controls, p<0.001 and

p<0.01, respectively (219).

3.5.3 Fatty acids
Fatty acids and PUFAs positively impact SLE patients in most

RCTs (220). Mammals are unable to synthesize these essential

nutrients and may obtain them from dietary sources like fish,

meat, nuts, corn, olive oil, soybeans, and vegetable oil. Clinical

trials in SLE patients have shown anti-inflammatory benefits and

suppression of pro-inflammatory pathways from increased

consumption of PUFAs and especially omega-3 PUFA (221–224).

Fish oil omega-3 supplementation has been shown to improve

endothelial function measured with flow-mediated dilatation by

5.9% (p<0.001), energy/fatigue (p=0.092), emotional well-being

(p=0.07), quality of life, increase serum Vitamin D (p=0.005),

reduce inflammatory cytokines (IL-17 p=0.001, IL-1 p=0.003, IL-6

p=0.001) increase antioxidant enzyme activities like glutathione

peroxidase and catalase, and reduce anti–dsDNA (224–226). In SLE

mouse model NZBWF1, fish oil reduced expression of IL-6 and

TNF-a in the kidneys (3-5 fold), while high-oleic and corn oil diets

had increased expression of IL-6 and TNF-a (6- and 14-fold,

respectively; 6- and 15-fold, respectively) Splenic osteopontin

cytokine mRNA expression was attenuated in fish oil diets, while

corn and high-oleic safflower diets showed a 7- to 8-fold increase.

Other pro-inflammatory cytokines were attenuated in the fish oil

diet, such as CCL-5 chemokine (4-7 fold) and CXCR3 (3 fold)

chemokine receptor, compared to increased expression in high-

oleic safflower and corn oil diets (11- and 15-fold) (221). This

suggests that different sources of fatty acids may not be equally

beneficial and may promote SLE manifestations instead of being

protective (221). Lastly, the polyphenols contained in extra virgin
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olive oil (EVOO) have also shown to have a beneficial

immunomodulatory effect in SLE patients, as shown by a

reduction in CD4+CD69+ T cells p<0.001 after in vitro PHA (10

µg/mL) treatment, decreased IFN-g (p<0.001), TNF-a (p<0.001),

IL-6 (p<0.001), IL-1b (p<0.01), and IL-10 (p<0.001) levels, and

attenuated T cell activation (227).

3.5.4 Flavonoids
Lycopene, an antioxidant found in guava, grapefruit, tomatoes,

watermelon, and red carrots, may augment oxidative stress and

inflammation in lupus. In a six-year study, higher levels of serum

lycopene were shown to be protective against mortality in SLE

patients (228). In cultured human T cells, another dietary flavonoid,

apigenin (40uM), was shown to cause the chronically overactivated

CD4+ T cells to undergo apoptosis through inhibition of NF-kB

activity below basal level (p<0.01) (229). Apigenin is found in

common herbs and vegetables, such as parsley, thyme,

peppermint, olives, and chamomile. It was shown to suppress the

anti-apoptotic pathways, including NF-kB, cFLIP, and COX-2

pathways, which contribute to autoimmunity and lupus through

the maintenance of chronic immune act ivat ion and

lymphoproliferation (229).

3.5.5 Other vitamins
Antioxidants properties of Vitamin C and E may lower chronic

inflammation in SLE (230). Vitamin E levels is lower in SLE

patients, preceding diagnosis (231). Vitamin C intake was

associated with a lower risk of active disease (p=0.005) in a

prospective study of Japanese SLE patients, possibly through the

decreased production of autoantibodies and reduced oxidative

stress (232). B vitamin levels in SLE patients are lower ≤180 pg/

mL, in particular, B2 (riboflavin) and B12 (cobalamin) (233). They

help regulate the levels of cytokines and inflammatory markers,

such as homocysteine, as Vitamins B6 (pyridoxine), B12, and B9

(folate) are important factors in homocysteine metabolism (234).

The combination of B12 and folic acid supplementation reduces

homocysteine levels by 18% (235). Vitamin B6 and B9 also act as

coenzymes in antibody and cytokine metabolism, thus, deficiencies

may contribute to dysregulated immune responses and risk of

vascular events (234, 236, 237). Intake of B2 and B1 (thiamin)

were inversely associated with carotid atherosclerotic plaque (238),

and B6 showed a decreased risk of active SLE (p=0,04), possibly

through decreased homocysteine levels, in a Japanese cohort of

patients (232). There was an inverse, but insignificant association

for folate and no association found for B12. Vitamin A is a well-

known anti-inflammatory vitamin and is involved in immune

system function, with potent anti-infective effects and

contributions to immune cell maturation and regulation (239–

241). Vitamin A is plays a central role in balancing Th17/Treg

cells, through blocking IL-6, IL-21 and IL-23 signaling in naïve T

cells inhibiting their differentiation into Th17 cells, while promoting

Tregs via TGF-b (242).Vitamin A is not a single entity, but a group

of related nutrients mostly composed of retinoids and carotenes and

found in animal products and plants respectively. SLE patients with

low vitamin A show an altered ratio of regulatory and helper T cells;
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that is, a higher percentage of proinflammatory Th17 cells (26.9 ±

62.2 vs. 3.5 ± 2.3, p=0.000) (243), which has been correlated to

higher disease activity and organ damage (244, 245). In vitro

treatment of CD4+ cultured cells from these patients with retinoic

acid (0.3 µg/ml) showed an improved Th17:Treg balance, with

decreased Th17 (p=0.000) and increased Treg (p=0.000) (243).

However, the variable responses highlight the possibility that SLE

T cells may have an underlying defective response to Vitamin A or

may have reduced regulatory capacity (243).

3.5.6 Sodium, potassium
Studies on the effect of sodium in SLE are limited, but recent

work has highlighted that low sodium regimen diet resulted in a

reduction of Th17 percentages (p=0.001), while Tregs percentages

increased, therefore suggesting a link between salt intake and

autoimmunity (p=0.02) (246). One study exploring high dietary

intake of sodium and low potassium intake in SLE patients found an

association with an increased risk of high-sensitivity CRP

(p=0.004), a marker of disease activity and cardiovascular risk,

supporting the potential for sodium to adversely affect

inflammation (247). High sodium was also associated with anti-

dsDNA (p=0.001) and complement C4 (p=0.039), while low

potassium was associated with C3 level (247). These findings

indicated that these disease activity biomarkers in lupus may be

affected by consumption of sodium and potassium. Neither sodium

nor potassium was associated with clinical markers, including

SLEDAI and systemic lupus damage index score (SDI); however,

this cohort was at an earlier stage of disease. As the majority of

patients in this study were strikingly well over the recommended

maximum daily intake of sodium, and most had inadequate intakes

of potassium, patients may be advised follow a diet that is composed

of potassium-rich foods and limited salt.
3.6 Dietary effects on the microbiome

In SLE, growing evidence suggests that perturbations in the gut

microbiome may influence symptoms and progression (248),

through mechanisms such as bacterial translocation (249),

molecular mimicry (250), and microbial metabolites (251). Some

species like Bifidobacterium might have protective effects, inducing

Tregs and promoting mucosal homeostasis (252, 253). Other

species, such as Streptococcus and Ruminococcus gnavus, are

expanded in SLE and in lupus nephritis and are theorized to

contribute to auto-antibody formation through molecular

mimicry and the initial activation of B cells and CD4+ T cells

(254–256). In a small group of hospitalized SLE patients (257), the

microbiota of SLE patients were less diverse and more heterogenous

than their healthy family members attributed to their diet and

symptoms. The over abundant Lactobacillus negatively correlated

with total energy, protein, zinc, and Vitamin B2, while the less

abundant Clostridium [a phytonutrient-sensitive species that may

promote Tregs cells and mucosal thickening (258, 259)] was

positively correlated with total nutrient intake and negatively with

SLE disease flares. An association of Lactobacillus to improved SLE

symptoms and autoantibody production were seen in some studies
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(260, 261), but another reported negative effects including

outgrowth to internal organs, activation of pDC/IFN pathways,

and increased mortality (259). This suggests that Lactobacillus may

be beneficial or harmful in SLE depending on underlying host and

environmental conditions. Intriguingly, the negative effects in the

later study were ameliorated by increasing resistant starch, which

prevented both the overabundance (ileum p<0.001) and reduced the

percent of SLE mice with translocation to internal organs from

approximately 90% (n=9) to 30% (n=10) (0% in wild type mice;

n=9) (259). This fiber-rich diet increased types of bacteria which

ferment fiber into SCFAs, which are an important group of

metabolites linked to Tregs, gut integrity, anti-inflammatory

pathways and disease when absent. In turn, this suppressed

growth of Lactobacillus locally and increased the abundance of

Clostridium. This study highlights the importance of dietary fiber in

controlling outgrowth of bionts and preventing activation of

immune pathways in susceptible individuals and opens the

possibility for personalized dietary interventions to promote gut

microbiome homeostasis and reduce systemic inflammation.
4 Alopecia Areata (AA)

4.1 Pathogenesis

Although the clinical manifestations are different and more

localized in comparison to SLE and MS, immune system mediated

skin diseases such as alopecia areata (AA), psoriasis, and vitiligo

share a similar background of chronic inflammation. AA is a

common, non-scarring type of hair loss due to autoimmune

attack and destruction of the hair follicle with a loss of immune

privilege (262, 263). The amount of hair loss varies across patients,

with some patients exhibiting well-defined patches of scalp hair loss

(most common; “Patchy alopecia”) to complete scalp hair loss

(“Alopecia totalis”), as well as entire body hair loss (“Alopecia

universalis”) (264, 265). Most patients experience a disease course

that is sudden in onset, and then relapsing and remitting (265). The

pathogenesis of AA is multifactorial, with contributions from

genetic, epigenetic, immunologic, gut and skin microbiome,

allergy, and oxidative stress factors. Genetic studies have shown

that AA is a complex, polygenic disease (266). GWAS and meta-

analysis studies have identified multiple susceptibility loci which

were linked to signaling pathways in hair follicle cycling and

development, as well as immune function-related genes including

interferon and T cell activation and proliferation regions, among

others (4, 265–267).

The collapse of the hair follicle immune privilege is central to

AA pathogenesis, but what causes its breakdown is not fully

understood 258. Important roles have been attributed to a

downregulation of local immunosuppressive molecules, increased

secretion of IFN-g, TNF-a around the hair follicle by NK or

activated T cells (268), in turn, IFN-g induces the expression of

MHC-1, NKG2D+CD8+ T cells, NK cells and CXCL9, CXCL10 and

CXCL11chemokines (269–271) that perpetuate a cascade of

inflammation as reviewed by Bertolini et al., and Rajabi et al.

(262, 268). It is notable that to date, a specific autoantigen in AA
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has not been clearly identified, but hair follicle autoantigens are

suspected (272, 273). Some studies suggest that the initial triggers

for antigen presentation are induced by a stressed hair follicle

environment, while other studies indicate an infiltration by a

dysregulated immune system as the inducing factor (271, 274).
4.2 Influence of environmental factors
during the lifespan

AA can occur at any age and the prevalence of AA is slightly

higher in children than in adults (275, 276), although mean age of

onset has been between 25.3 and 36.3 years (277). Many adult and

pediatric AA patients with limited hair loss spontaneously recover,

but it often follows a relapsing and remitting course; in more severe

forms it can progress to complete hair loss (278). A more chronic

and relapsing course generally occurs in patients with a childhood

onset, more severe presentation and a family history. AA onset is

associated with triggers such as infections, trauma, hormones, and

stress (279), leading to increased IFN- a/IFN-g, CXCL10, IL-2, IL-
13, IL-17 (280) that might initiate the immune privilege breakdown

of the hair follicle at any point over the lifespan (281).

Environmental factors may cause local disturbances in the hair

follicle, through the buildup of ROS within keratinocytes (282, 283).

This oxidative stress may contribute to the loss of immune privilege

and autoimmune attack through an upregulation of activating

ligands in the stressed follicle (i.e., NKG2D) (269). Indeed,

oxidative stress has been linked to AA (284, 285) as patients’

blood and scalp samples show higher levels of serum nitric oxide,

and total oxidant capacity as well as lower levels of superoxide

dismutase (p<0.001), glutathione peroxidase (p<0.001), and total

antioxidant capacity. The level of imbalance was also correlated

with disease severity, with higher levels of oxidative stress in more

severe cases (95% CI 1.43-0.71) (284, 286, 287). Furthermore,

GWAS studies looking at the underling genes involved in AA

have found a link to the antioxidant enzyme PRDX5, which has

also been associated with MS (4). Therefore, an cumulative

exposure to environmental factors throughout the years which

cause oxidative stress to the skin, like UV light and chemical

pollutants, may lead to excess ROS production and a background

of chronic inflammation, which ultimately may contribute to the

development of AA in predisposed individuals. Mercury, a toxin

which increases oxidative stress in exposed individuals, has been

thought to cause AA through overconsumption of high-mercury

fish in a case study and was reversible with an altered diet (288).

Others have also linked AA cases to toxic metals, including

thallium, mercury, non-metal selenium, and arsenic, and

postulate that these substances may induce AA pathology through

imbalanced zinc homeostasis and blocked cross-linking in

keratin (289).

Interestingly, AA is commonly comorbid with other

autoimmune conditions, including lupus (290) and inflammatory

bowel disease (291), implying a potential common link between gut

health and chronic inflammation in these disease states. Like in

other autoimmune conditions, a dysbiosis in the gut microbiome

has been suggested in AA (292), with enrichment in certain species
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regrowth in two patients after undergoing a fecal microbiota

transplant (293). However, a clear link has not been established

as there is very limited research. Other potential environmental

factors in the development of AA are discussed in detail in a recent

review, and include allergy, skin microbiota, and epigenetic

changes, such as DNA methylation (265).

As these authors note, a promising feature to treating AA is the

fact that the hair follicle’s epithelial stem cells typically withstand

the autoimmune attack and therefore in most cases AA can be

reversed (279). Decreasing the background inflammation that

deregulates the hair follicle growth pattern and restoring the

immune privilege of the hair follicle to prevent future attack are

important strategies that may lead to remission for patients

(268, 294).
4.3 Vitamin D

The role of Vitamin D and its receptor (VDR) in the hair cycle

have been widely explored but remains poorly understood (295).

Without proper VDR function hair follicles are born but are unable

to maintain themselves and loss occurs, as shown by in vitro and

mice studies prompted by observations from patients with a rare

genetic disorder called type II vitamin D-dependent rickets, whose

hair is normal at birth and then lost completely (296, 297).

However, while lower VDR amounts (p=0.000) are noted in AA

patients’ serum (9.99 ± 1.69 ng/mL) and scalp tissue (199.7 ±

33.38ng/mL) (14, 298), genetic VDR polymorphisms that may

contribute to risk of developing AA have not been shown, albeit

in a limited sample of patients (14, 299). Nonetheless, low levels of

serum Vitamin D (11.84 ± 6.18 ng/mL) have been reported by

several groups in AA patients compared to controls p<0.001and are

thought to contribute to pathogenesis, as lower levels are correlated

with increased disease severity (13, 300, 301).
4.4 Obesity

Like other autoimmune conditions, AA has been associated

with obesity and a higher BMI odds (ratio, 1.15; 95% confidence

interval, 1.02–1.29; p = 0.0207) were reported in AA cases (26),

likely due to the pro-inflammatory effects of obesity. In addition, the

association may also be related to a decrease in immune modulating

adipokines, such as adiponectin, which has been shown to be lower

in AA patients and correlates with disease severity (28). More

recently, high fat diet was shown to increase hair thinning by

depleting hair follicle stem cells (HFSCs) through epidermal

keratinization that activates the NF-kB pathway and/or autocrine

and paracrine IL-1R to generate an excess of reactive oxygen (302).
4.5 Diet

Many patients with these skin conditions attribute a significant

role of diet in their disease management, both in terms of
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inflammatory triggers and anti-inflammatory mechanisms. In

several cases of AA patients with comorbid Coeliac’s disease, a

gluten-free diet resulted in hair growth (303, 304). Other possible

triggers shown in different subtypes of alopecia include caloric

deprivation, buckwheat, and millet groats, however, these have not

been explored in AA per se to our knowledge (40).

A restricted clinical study on dietary protein deficiency

demonstrated that all AA patients with an adequate protein

intake (>30g/day) and early morning breakfast habits prevent

deregulation of autophagy, which may in turn be protective for

autoimmune conditions including hair loss disorders (305). The

authors postulated that protein adequacy and early breakfast may

play a role in preventing follicle destruction or deregulated

autophagy, as the body may redirect the limited protein intake to

more critical organs and/or subsequently these non-renewed

senescent collagens may release antigens that contribute to

autoimmunity in predisposed individuals. However, AA patients

were also found to have significantly lower folate (Vitamin B9)

(p<0.001) (37) and Vitamin D (300), and hypothyroidism (306) and

thus conclusions regarding a single factor cannot be made (307).

On the other hand, diets associated with improvement include

the Mediterranean diet, rich in vegetables, herbs, and fruits that

contain high amounts of anti-inflammatory and antioxidant

substances as well as sufficient protein, necessary for hair health

(40). A reduced risk for developing AA is associated with soya-

based eastern diets compared to western diets (308, 309). The

protective effect may be mediated by soy isoflavones;

phytoestrogens which have estrogen-mimicking, antioxidant

effects, and stimulates hair growth through increased insulin

growth factor-1 (310, 311). A diverse diet may be needed to

obtain adequate amounts of the vitamins and minerals necessary

to support the high metabolism of the rapidly dividing hair follicle

cells. These micronutrients are also important in lowering oxidative

stress, which is implicated in the pathology of AA (312).

4.5.1 Vitamins in AA
Micronutrients have been explored in AA as modifiable risk

factors for disease development and progression, including vitamins

and minerals, but few studies have provided sufficient evidence to

make recommendations from and more research is warranted.

Kantor et al. (313), proposed a “threshold hypothesis”, in which

patients with mild hereditary susceptibility might have a threshold

micronutrient level under which disease could develop while

patients with high hereditary susceptibility may develop AA

regardless of micronutrient status. Sub-optimal micronutrients in

the mild predisposition group may lead to disease through aberrant

immune cell function, DNA synthesis, and oxidative stress.

Deficiencies in biotin (B7) (<100ng/L) and folate (B9) (110.62-

243.75 ng/mL/cells) are associated with hair loss and AA (36, 37).

To date, it appears that vitamin B application has not been tested in

AA. The sparse, contradictory studies preclude a strong conclusion

regarding B vitamins in general (307), however, a study suggested

low red blood cell folate may play a role in the risk for AA and

progression (37). Interestingly, AA patients have been shown to

have higher levels of genetic polymorphism in the enzyme

methylenetetrahydrofolate reductase (MTHFR), a regulator of
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folate metabolism and homocysteine levels (314). Polymorphisms

in this gene and increased homocysteine levels have also been

associated with MS (315) and SLE (316), suggesting a common link.

Other micronutrients, such as vitamin D (301), zinc (317), and

folate (37) have been found to be lower in patients with AA, while

the evidence is currently insufficient in terms of iron, vitamin B12,

copper, magnesium, and selenium. Iron deficiency can cause diffuse

hair loss (318) and is therefore currently recommended to screen for

and treat in AA management. The primary measure of iron status

used is ferritin, which has been shown to be lower in 56% of AA

patients(<40ng/mL) (38), but other studies have not found an

association (319) and has been reviewed by Tompson and

colleagues (307). Many studies used only female participants

which may be a factor (319–321). Vitamin A is important in hair

follicle cycle and in immune privilege, as a regulator of antigen-

presenting (APC) cells (322). APCs express STAR6 which binds to

retinol binding protein, inducing retinaldehyde dehydrogenase

(RALDH) 2 that metabolizes retinol to atRA, and upregulates the

transcription of MMP-9 and CD1, inducing iTregs and stimulates

IgA isotype switching by B cells (322). Retinoic acid has been shown

to increase T-cell proliferation (323), antigen-presenting capacity of

dendritic cells (324), while decreasing B-cell proliferation (325).

Lower levels of beta-carotene, a precursor to Vitamin A, were found

in some AA patients (326). Vitamin A toxicity can also cause

alopecia (327). A study of AA patients and model animals identified

a dysregulation in retinoid synthesis genes, with an increase in

synthesis and decrease in breakdown, which may make patients

more sensitive to exogenous Vitamin A (328).
4.6 Dietary effects on the microbiome

To date, few studies have explored the gut microbiome in AA,

but preliminary evidence of gut dysbiosis exists (292),including in

pediatric patients as compared to their siblings (329). The authors

in the pediatric study noted that the transition from the early

childhood microbiota to a more adult-like microbiota occurs near

the timing of the initial presentation of AA and may be influenced

by diet. Notably, the predominant diet in this study was

Westernized. In a recent review, the potential for our modern diet

and its impact on gut integrity is thought to be driving factors

towards AA development susceptible individuals (330). Although

this is a single paper, it is promising and in line with other

autoimmune research exploring the recent rise of autoimmune

disease alongside the rapid growth of industrial food processing

and additives (331). One mechanism frequently proposed is an

altered equilibrium between the gut and the immune system,

through dysfunctional “leaky” intercellular tight junctions in the

intestinal epithelial barrier. Common additives used in food which

can affect intestinal permeability include glucose, salt, emulsifiers,

organic solvents, gluten, microbial transglutaminase, and

nanoparticles. Once the intestinal integrity is breached,

immunogenic antigens on these molecules may activate the

autoimmune cascade. Exposure to organic solvents has been

associated with MS and other autoimmune diseases (332), and

individuals with risk factors are advised to avoid consuming these.
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Ultra-processed food has low nutritional value, low fiber and

protein, with added salt, sugars, oils, as well as additives like

coloring, flavoring, stabilizers, and preservatives which extend its

shelf life. Chemical additives including phthalates and bisphenols

are known to disrupt the endocrine system, and higher dietary

consumption is associated with high levels of urinary phthalates

(333). In addition to a shortened lifespan, ultra-processed food

consumption has been associated with a plethora of deleterious

health effects, including cancer, chronic disease, and obesity

(255, 256).
5 Genetic susceptibility to
environmental factors

Over the past years, growing evidence suggests that genetic

architecture and susceptibility to environmental factors increases

the odds to develop autoimmunity. The international MS Genetics

Consortium identified 233 genome variations as genetic risk factors

on the x chromosome, and overall influencing different immune-

cell types and tissues (2), while in SLE over 60 locis are reported to

be associated with innate and adaptive immune function

dysregulations (3, 334, 335). In AA, 139 SNPs were identified as

genetic risk factors, mainly controlling Treg functions and HLA (4).

The autoimmune conditions discussed in this review are complex

diseases due to their multifactorial nature, including the ambiguous

interplay between genes and environmental factors that may trigger

and exacerbate disease. It is hence challenging to point to a single

genetic or environmental factor, and in addition, the differential

impact of environmental factors on immune function may be

explained by the timing of exposures during development. It is

becoming clearer that in MS and SLE the preclinical phase starts

prior the appearance of clinical manifestations, given the

accelerated brain atrophy of patients with MS after the first

clinical presentation (336). While in SLE, early longitudinal

studies suggest the detection of auto-antibodies in healthy

individuals transitioning to SLE as a potential biomarker,

although more studies are needed (337, 338). In an effort to

identify effective means to prevent onset of disease or delay

progression, a great deal of effort is focusing on the identification

of genetic, immune and environmental profiles that may enhance

the risk of an individual to develop autoimmune conditions. To

efficiently accomplish this goal, the ideal cohort represents first

degree family members of patients with MS, SLE or AA considering

the genetic pre-disposition they have at least 30 times greater

chances than sporadic cases to develop the disease (339–341).

Our group deployed a large cohort of first-degree family members

of patients with MS (the genes and environment in MS (GEMS)

cohort, n=2,632 participants) (342, 343) to establish a tool that

successfully predicts an MS risk score based on a mathematical

model that accounts for the most robust environmental and genetic

factors known so far (sex, BMI, smoking status, mononucleosis

infection status, and HLA SNP allele) (342, 344). Overall, these

studies provided foundations to leverage existing findings and

develop a personalized tool to calculate MS risk scores and help
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identify high-risk individuals (such as family members) prior

autoimmune disease onset. Such tools are crucial to develop

improved preventive care strategies and to shed light on

autoimmune dysfunctions. The initial prospective studies of high-

risk siblings were completed in type 1 diabetes (DAISY) (345).

Similar studies have been conducted in potential at-risk SLE

populations, including family members (346) and women in the

prospective Nurses’ Health Studies (347). In at-risk family

members, researchers found preclinical alterations in levels of

inflammatory mediators that may predict transition (348), as well

as a greater SLE risk when genetic susceptibility is combined with

vitamin D status and smoking (9, 349), suggesting that environment

may influence specific pathogenic SLE genes and is a useful

component in estimating risk. Future efforts to develop predictive

tools using gene-environment interactions in SLE and in AA could

be inspired by those developed in the DAISY and GEMS cohorts.
6 Perspectives: therapeutic
interventions

In addition to the established treatments and DMTs to treat MS,

SLE and AA, diets and supplements known to confer anti-

inflammatory benefits are of increasing interest as a potential way

to reduce chronic inflammation. Patients often seek medical

guidance to adopt a suitable lifestyle to cope with relapses, flares,

or control disease progression. However, inadequate guidance is

provided in this area despite emergent bodies of research

demonstrating the benefits of complementary therapeutic options,

such as vitamin supplementation, diet and overall, a healthier

lifestyle. The latter suggests that further investigations to assess

the precise impact of complementary therapeutic interventions

along with approved DMTs should be explored to understand

their impact on the immune system and on the disease course.
6.1 Add-on therapies: vitamin D

As discussed above, vitamin D is a common risk factor for MS,

SLE and AA associated with greater disease activity and duration.

Hence a number of clinical trials attempted to use vitamin D as a

therapy, although conflicting results emerged.

A new, large-scale, double-blind randomized controlled trial

from Brigham and Women’s Hospital found that participants who

took vitamin D, or vitamin D and omega-3 fatty acids, had a

significantly lower rate of autoimmune disease including MS, SLE,

and AA (350). The strongest effects were found after two years of

supplementation and for participants with a lower body mass. This

study suggests that vitamin D could be used as a primary

preventative measure to lower incidence of autoimmunity in

older adults. Future research could extend these findings to young

adults and high-risk family members. These findings along with the

associations between low vitamin D and disease activity in

autoimmunity suggests that the use of vitamin D as an add-on
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therapy or as supplements in patients with MS, SLE or AA could be

beneficial to control autoimmune disease activity and progression.

Add-on Vitamin D therapy for MS in addition to IFN-b therapy
was tested in the context of phase 3 clinical trials, and suggested a

beneficial additive effect on disease activity (350, 351). In contrast, a

meta-analysis based on several clinical trials using vitamin D

supplementation as an MS add-on therapy suggests there is no

strong therapeutic effect on disability, nor on relapse rate (352). In

lupus, cross-sectional studies exploring the impact of

supplementation on fatigue and clinical disease activity measures

have failed to show a benefit of supplementation, while prospective

studies and RCTs have shown a benefit, possibly through a

suppression of interferon signature gene expression which is

elevated in SLE patients and correlated to disease activity (353–

358). A meta-analysis of available RCTs showed a significant

improvement in SLEDAI scores, fatigue (when assessed in two

studies), and serum C3; in contrast, serum C4 and anti-dsDNA

changes were insignificant (359). In AA, application of topical

calcipotriol, a vitamin D analogue, has been shown to be an

effective treatment in most mild-to-moderate patients (298, 360,

361), particularly those with deficiencies (362). However, these

studies in AA often lack placebo arms and randomized, clinical

trials with larger groups of patients are greatly needed.

Moreover, PUFAs are protective in MS, perhaps through their

anti-inflammatory properties clinical trials aimed to test the efficacy

of PUFAs supplementation in patients with MS. Although they

obtained mixed results (363) suggesting PUFAs should be tested in

combination with other add-on therapies like Vitamin D, as shown

to be efficient to reduce autoimmunity rates (350).

Overall, the plethora of research papers and conflicting results

citied in this review point to the need for robust randomized

controlled trials to determine the dosage of vitamin D

supplementation that will offer long-term benefits for MS, SLE,

and AA patients. Future studies should enroll large numbers of

patients from diverse demographics, should be cross-sectional, and

control for the dose of vitamin D administered. Although

challenging, vitamin D supplementation should be compared in

conjunction with DMTs, other vitamins, and presence or avoidance

of ultraviolet radiation which is crucial for the conversion of

vitamin D. Finally, future therapeutic strategies should aim to

move towards personalized therapeutic strategies considering the

genetic background of each enrolled patient. Emerging studies may

help resolve the ambiguity between vitamin D deficiency, and

autoimmune risk/progression.
6.2 Other add-on therapies

Other vitamins have been explored in autoimmune disease for

their potential anti-inflammatory and immunomodulatory

qualities. Vitamin E decreases autoantibodies in SLE (364) and

when combined with Nigella sativa (aka black cumin, antioxidant),

patients had improved SLEDAI score, inflammatory markers, and

increased GSH and superoxide dismutase antioxidant levels (365).

In MS, vitamin E improved oxidation markers and telomere length

maintenance (366). In an RCT in SLE patients, combined Vitamin
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C and E administration decreased lipid peroxidation but did not

affect other markers of oxidative stress or endothelial function

involved in CAD risk. However, at baseline these patients were

not deficient and studies with a longer duration of treatment or

higher doses could be explored (230). No studies exploring isolated

Vitamin C in MS were found, nor vitamin C or E in AA. In SLE

patients, Vitamin A treatment increased antibody-dependent

cellular cytotoxicity (ADCC) functions in effector to target cells

(p<0.001), NK cell cytotoxicity measured using Cr-labeled K-562

target cells (p<0.001), and IL-2 activities measured in PBMC treated

with concanavalin A (p<0.001), while decreasing anti-dsDNA and

proteinuria in lupus nephritis (367, 368). In vitro treatment of CD4+

T cells with vitamin A (0.03 µg/ml) modulated the Th17/Treg

balance towards Treg (p=0.000) (243). In MS RCTs, vitamin A

decreased IL-17, IFN-g, retinoic acid–related orphan receptor gt
and T-bet expression, fatigue and depression (369, 370). In AA,

topical retinoids have shown regrowth in some patients. A

randomized, ‘half-head’ trial using Bexarotene, a selective retinoid

which induces T-cell apoptosis, showed regrowth in some patients

(371). However, these studies could not differentiate this from

spontaneous regrowth or growth in Vitamin A deficient patients,

and the aforementioned duality remains in which too much vitamin

A can cause alopecia (327).

Case reports in MS have showed an improvement in fatigue

with high-dose thiamine (B1) supplementation (372). Biotin (B7)

improved visual acuity, muscle strength, VEPs, fatigue,

coordination, and mood symptoms in a pilot study, and an RCT

showed modest motor score improvement in MS; however, follow-

up RCTs have not shown an effect on disability or walking speed

(373). Biotin in AA has been explored as a combination with zinc

and topical clobetasol, which did help regrowth in some patients,

but no conclusions can be made about it as a single agent (374). In

MS, zinc sulfate supplementation significantly improved depression

in compared to placebo (375). The few conflicting studies on oral

zinc in AA highlight the possibility of subgroups of responsive and

unresponsive patients (376–378). Zinc has not been explored in

lupus, likely due to animal studies suggesting a potential negative

effect (379).

6.2.1 N-acetyl cysteine, curcumin, and Royal Jelly
Ameliorating oxidative stress by raising levels of depleted GSH

is an interesting area of research for therapeutic intervention. Direct

administration of GSH has failed due to bioavailability constraints

(380), therefore, repletion of GSH with its precursor and

antioxidant, N-acetylcysteine (NAC) is a potential way to

overcome this challenge. In SLE, NAC safely and significantly

blocked the mTOR activation underlying dysfunction in T cells,

reduced anti-DNA production, and improved disease activity in a

double-blinded RCT (381). Moreover, it raised levels of

CD4+CD25+FoxP3+ Treg population, deficient in active SLE

(381–383). NAC reduced kynurenine levels, a tryptophan

metabolite that is abnormally elevated in and specific to the SLE

metabolic profile that may contribute to mTOR activation (384). In

two cases of early lupus nephritis, NAC in addition to standard

therapy improved GSH levels, lipid peroxidation, blood counts, 24-

h urine protein, erythrocyte sedimentation rate, and SLEDAI (385).
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In MS, a clinical trial evaluating the potential neuroprotective effects

of NAC is ongoing (386). A previous study found an increase in

cerebral blood flow and qualitative improvements in cognition and

attention with NAC alongside standard of care in patients (387), as

it is thought that decreasing oxidative injury may lessen brain

degeneration (388). To our knowledge, NAC has not been explored

in AA. However, one study found topical crude onion juice

significantly regrew hair compared to tap water (389) which is

intriguing onions contain GSH and may stimulate GSH production

systemically and epidermally (390). Finally, diet may also be a

means by which to simulate GSH synthesis as increased intake of

cruciferous vegetables improves GSH levels and reduces oxidative

stress (391–393). Therefore, quality, and quantity could affect

sensitivity to oxidative stress within each day and should be

considered when designing future studies.

Curcumin is an anti-inflammatory molecule that positively

impacts autoimmune patients, a polyphenol contained in turmeric

spice. In SLE, curcumin inhibited cell proliferation, modulated Th17/

Treg balance, and reduced proinflammatory cytokines (394, 395). A

RCT demonstrated decreased proteinuria, hematuria, and systolic

blood pressure in relapsing or refractory SLE nephritis with no

adverse effects (396). In MS, a curcumin nano formulation

improved EDSS score, reduced inflammatory mediators, miRNAs,

IFN-g, CCL2, and CCL5, and increased Sox2, Sirtuin-1, Foxp3,

PDCD1 (397). Other studies found decreased Th17 frequency, and

IL-17 and RORgt alterations (398), as well as restored regulatory T

cell frequency and function (399). In AA, curcumin has not been

tested individually, but was effective in a mixed preparation with

piperine and capsaicin, albeit not superiorly to minoxidil (400).

Finally, Royal Jelly (RJ) is a milky secretion of water, proteins,

carbohydrates, fatty acids, and other compounds, with pleotropic

functions including control of honeybee development epigenetically

by DNA methylation (401). RJ has been explored for its antioxidant,

anti-inflammatory and immunomodulatory properties. A 2016 open-

label study on pediatric SLE found RJ improved SLEDAI score,

increased C3 and C4 levels, and increased regulatory CD4+ and CD8+

T cells (402). However, further research in larger cohorts is needed, as

well as trials in AA.

6.2.2 Diet
Few clinical trials have explored whole-diet interventions in

autoimmune disease, despite evidence that broad dietary changes

can be synergistic and may be more effective than isolated nutrient

or food administration as reviewed in (403, 404). A pilot RCT in MS

found a modified Paleolithic diet improved fatigue, quality of life,

exercise capacity, hand/leg function, and vitamin K levels (405). A

balanced diet with high fiber intake, polyunsaturated fatty acids,

polyphenols, vitamins, minerals, antioxidants, with a relatively

lower but adequate consumption of calories, proteins, and

carbohydrates throughout the lifespan, may enable prevention of

disease and is overall beneficial towards a healthier lifestyle,

improving autoimmune disease progression. According to the

work discussed in this review, the Mediterranean diet may have

the strongest potential to improve immune system function in

health and disease, with its high proportion of antioxidant and anti-
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inflammatory components that operate directly and indirectly

through the microbiome to support efficient immune functions. A

clinical trial comparing the Mediterranean and high-fermented

food diet in SLE is ongoing (406).

In AA, clinical trials using dietary intervention are needed. One

pediatric AA case study highlights the potential benefit, as complete

remission was achieved over 5 months with a diet of unrefined

foods, rich in vitamins A and D, and zinc as well as supplements like

zinc sulfate, fish oil, and vitamin D (407). This warrants further

investigation in clinical trials, including in adults as the timing of

intervention may be of importance.

A potential mode of action of diet includes its impact on the

epigenome, as it has been shown that poor dietary habits may

precipitate epigenetic changes leading to chronic inflammatory

disorders over time; hence changes to daily diet may help to prevent

or reverse these epigenetic aberrations (408). Recent work has

demonstrated that DNA hypomethylation in SLE cells is a dominant

pattern and driving force towards autoimmunity and severity (409).

Alteredmethylation patterns have also been identified in AA (410, 411)

as well as MS (412, 413), showing an even more prominent alternation

on PPMS than RRMS which may contribute to the distinct progression

patterns. The mechanisms causing aberrant DNAmethylation patterns

in SLE, AA, and MS are poorly understood, however, molecules

important to maintaining DNA methylation patterns, including S-

adenosylmethionine (SAM), require dietary nutrients like methionine,

choline, and B vitamins to function properly. In SLE, it has been

suggested that low nutrient levels might precipitate T cell epigenetic

changes caused by oxidative stress after CD4+ T cells cultured in low

methionine showed a greater overexpression of methylation sensitive

genes (414). Furthermore, patients with active SLE have been shown to

have deficiencies in transmethylation nutrients; therefore, a methyl-

donor poor diet may worsen disease activity through dysregulated

methylation patterns (414, 415). In MS, reduced methionine levels and

dysregulated B12-dependent methionine metabolism peripherally and

centrally has been observed and is associated with altered methylation

patterns as well as neural mitochondrial abnormalities (416, 417). This

was consistent with a prior report showing lower levels of methionine,

SAM, and vitamin B12 in MS patients at different disease stages (418).

6.2.3 Dietary effects on the immunomodulatory
gut microbiome

Gut dysbiosis is increasingly implicated in autoimmune disease,

including MS (123, 125, 126), SLE (212, 248, 254, 256, 257), and AA

(265, 292). Fecal transplants have been shown to ameliorate

symptoms of MS (122) and SLE and resolve AA (293) in several

cases. However, changes to diet may be a more feasible long-term

approach in both treatment and prevention, as dietary patterns have

been shown to profoundly and rapidly affect the human gut

microbiome (419). Overall, a diet that is rich in fiber will have a

beneficial effect on immune homeostasis through the gut

microbiome. Fiber is metabolized by colonic bacteria and

increases the growth and diversity of gut bacteria. Consumption

of fiber is low in westernized diets and stimulates pathogenetic

bacterial growth which may provide a stimulus for autoimmunity

(208, 420, 421).
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7 Limitations and future directions
Autoimmunity is thought to emerge from the complex interplay

between a multitude of environmental and genetic risk factors,

which renders the chase for causation factors difficult. Studies

discussed in this review thus far are mostly restricted to a

retrospective approach, therefore one cannot determine if these

alterations in diet, microbiome, or past infections are contributing

to autoimmune development or as a result of disease per se. Hence,

to further our knowledge about the interaction between

environmental factors and genes in the context of autoimmunity,

future studies should aim to deploy larger cohorts and with a

prospective design. In addition, the choice of cohort is crucial to

collect reliable data. For instance, if the goal is to investigate the

influence of a given environmental factor prior disease onset, it is

imperative to deploy a large cohort of first-degree family members

of autoimmune patients. An excellent example of a successful

retrospective study design represents the association between EBV

infection with MS disease onset using a massive longitudinal cohort

(10 million participants) (420). Whereas, if the goal is to assess the

impact of add-on therapies on disease progression, the desired

cohort would be patients diagnosed with early-stage MS, SLE or

AA. Other factors that may influence cohort inclusion criteria

should account for the ethnic background and the age of

participants, given the growing evidence of the impact of

interindividual immune variations on the immune system; such

variables should also be corrected for during data analysis stage

(422). Unfortunately, many publications use inconsistent inclusion

criteria for assessing the effectiveness of the same nutrition or

supplementation on patients to evaluate their impact on the same

disease. All three autoimmune conditions discussed here can follow

a waxing and waning course, therefore the stage at the time of

intervention may alter the effectiveness, especially on clinical

measures. Overall, studies cited in this review conducting meta-

analysis based on observational epidemiologic studies must account

for systematic error biases while evaluating the data, as it may

distort findings interpretation. As a result, interpretation can

include reverse causation: the disease itself causes the association;
Frontiers in Immunology 17
or omitting confounding factors during data analysis such as:

stratification of cohorts based on disease stage, forms of disease

and self-reported ethnicities versus. genetic ancestries.
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