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Innate immune cells can potentiate the response to reinfection through an innate

form of immunological memory known as trained immunity. The potential of this

fast-acting, nonspecific memory compared to traditional adaptive immunological

memory in prophylaxis and therapy has been a topic of great interest in many

fields, including infectious diseases. Amidst the rise of antimicrobial resistance and

climate change—two major threats to global health—, harnessing the advantages

of trained immunity compared to traditional forms of prophylaxis and therapy

could be game-changing. Here, we present recent works bridging trained

immunity and infectious disease that raise important discoveries, questions,

concerns, and novel avenues for the modulation of trained immunity in practice.

By exploring the progress in bacterial, viral, fungal, and parasitic diseases, we

equally highlight future directions with a focus on particularly problematic and/or

understudied pathogens.
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Introduction

In response to infection, the innate and adaptive immune responses play

complementary roles to contain and eliminate the microbial stimulus. Innate immunity

represents the first line of defense, offering an immediate and nonspecific attack against

pathogens and foreign substances. These responses are mediated by physical and chemical

barriers, the complement system, and—most notably—myeloid and innate lymphoid cells.

Innate immune cells are alerted to danger when pathogen- or damage-associated molecular

patterns (PAMPs and DAMPs) bind to surface or intracellular pattern recognition

receptors (PRR). This binding event triggers intracellular signaling cascades that activate

classical innate immune responses, such as phagocytosis and cytokine production (1). The

importance of innate immune cells is attested to by models of defective toll-like receptor

signaling, wherein toll-like receptors are key PRRs needed to transduce threat signals into
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cellular responses. Such models of primary immunodeficiency

exhibit increased susceptibility to infections by various pathogen

types, including bacteria, viruses, and fungi (2). If the innate

immune response is unsuccessful in eliminating its target,

adaptive immunity responds days to weeks after the initial

challenge with powerful, antigen-specific humoral and cellular

attacks, which are broadly orchestrated by B and T lymphocytes,

respectively. The adaptive immune response is notably associated

with a memory component, whereby memory lymphocytes are

generated to potentiate and accelerate the response upon a second

exposure to the same antigen (3).

In part due to its nonspecific nature, innate immunity was long

thought to be devoid of immunological memory. However, Netea

et al. countered this perspective in a 2011 Cell Host Microbe

perspective article by calling upon “forgotten studies” in

vertebrates, as well as the phenomenon of immunological

memory despite the absence of adaptive immunity in

invertebrates and plants. The authors showcased that mammalian

innate immunity can mount more potent responses upon re-

exposure to a pathogen, and they coined this state of innate

hyper-responsiveness “trained immunity” (4). Since this

publication, trained immunity has been explored and supported

in the context of various human diseases including atherosclerosis,

cancer, and infection (5). Research centered on the relationship

between trained immunity and infectious diseases has revealed that

this form of immunological memory can be either beneficial or

detrimental to the host depending on the pathogen and infection

context. In turn, modulating the innate immune response through

trained immunity holds great promise for the nonspecific

prophylaxis or treatment of infectious diseases (6). This review

will explore recent advances in trained immunity in the context of

bacterial, viral, fungal, and parasitic infections, with an opening on

the future of this “nascent” field.
Innate immune memory

Innate immunological memory is based on the reprogramming

of innate immune cells, as well as other immune-supporting cell

types, after exposure to a sterile or infectious stimulus (4, 5). These

functional programs rely on interacting epigenetic and metabolic

modifications induced by the training stimulus (7). Depending on

the type and intensity of the first encounter, the altered innate

immune response can sway towards a canonically anti-

inflammatory state known as tolerance, or towards a canonically

a pro-inflammatory activation known as trained immunity (8).
Tolerance

As a general concept, tolerance is a host defense strategy to

prevent collateral tissue damage and secure homeostasis after an

immune response against a pathogen (9, 10). This mechanism

protects from the excessive activation of the innate immune

response upon a sustained activation of PRRs (11). Tolerance has

been well-described in the context of exposure to bacterial
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lipopolysaccharide (LPS)—a component of the gram-negative

bacterial cell wall—as a hypo-responsive phenotype in which the

expression of proinflammatory molecules TNF-a, cyclooxygenase-
2, CCL3 and CCL-20 are downregulated in macrophages after a

secondary stimulation. Such changes mimic those that occur in M2-

polarized macrophages (12). Notably, one of the mechanisms

involved in the reduction of cytokine production is the

upregulation of IRG1 due to histone acetylation via reactive

oxygen species (ROS) (13). Itaconate accumulation after IRG1

upregulation dampens the tricarboxylic acid (TCA) cycle in

monocytes, inducing immunoparalysis—a phenotype that is

reverted after treatment with a known inducer of trained

immunity, b-glucan (14).
Trained immunity

Trained immunity is acquired through first exposure to a

stimulus that concomitantly triggers an immune response and

“trains” the challenged cells. During the training period, innate

immune cells undergo significant changes in chromatin structure

and epigenetic landscape—including chromatin relaxation, an

increase in certain histone methylation and acetylation marks,

and a decrease in DNA methylation—that ultimately promote the

expression of pro-inflammatory genes (15). These epigenetic

alterations are facilitated by the differential expression of key

metabolic intermediates, such acetyl-CoA and fumarate, that have

regulatory effects on epigenetic machinery. During the training

period, important metabolic changes are induced, including a

significant increase in glycolysis, the TCA cycle, and lipid

metabolism, which affect the expression of key metabolites. Many

of these metabolic intermediates proceed to activate or inhibit

various epigenetic writers and erasers, thereby creating and

maintaining the characteristic pro-inflammatory epigenetic

landscape (15, 16). However, the exact mechanisms implicated in

the reprogramming of innate immune and central bone-marrow

cells during the training period remain unclear, largely due to the

lack of unique transcriptional signatures and functional outcomes

of trained immunity. Though the common resulting phenotype is

an increase in pro-inflammatory gene expression, the specific

signaling pathways that drive this process can vary in a pathogen-

or stimulus-dependent manner (5). In all cases, innate immune cells

return to resting state post-infection, while several epigenetic

alterations are maintained (Figure 1A). Upon restimulation with

the original stimulus or a heterologous stimulus, the lingering

epigenetic polarization acts as a base to quickly restore and

augment the non-specific pro-inflammatory phenotype from the

training period. These trained innate immune cells respond more

robustly with enhanced classical innate defenses, such as cytokine

production (5) (Figure 1B). The current state of knowledge about

the complex relationship between immunometabolism and trained

immunity has been extensively reviewed elsewhere (17).

Trained immunity has been reported to last between three

months and one year following an initial challenge, depending on

the original training stimulus (5). The secret behind long-term

memory in relatively short-lived immune cells lies in the central and
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peripheral induction of trained immunity, whereby both

hematopoietic stem cells (HSCs) and differentiated immune cells

can undergo training. Training of HSCs in the bone marrow, known

as central induction, allows for pro-inflammatory epigenetic

reprogramming to be sustainably passed down to daughter cells

that will differentiate into trained effector innate immune cells (18).

Training can also occur within differentiated innate immune cells in

peripheral tissues—such as monocytes, macrophages, dendritic

cells, natural killer cells, and innate lymphoid cells—, which is

known as peripheral induction of trained immunity. The stepwise

molecular and cellular processes by which HSCs in the bone

marrow niche acquire trained immunity remains under

investigation, with many insights stemming from studies using

BCG (19, 20). Though the impact of peripheral training is limited

due to the minimal expansion and short lifespan of differentiated

innate immune cells, it still contributes to a state of innate hyper-

responsiveness (21, 22). How immune cells in different

compartments—with notably different lifespans—maintain and

pass down memory is still understudied, but may provide insight

into the longevity and biological relevance of trained immunity.

As evolutionarily complementary systems designed to protect the

host from repeat exposure to threats, trained immunity and adaptive

memory share many commonalities. Enhancing the innate and

adaptive immune responses through memory can be beneficial to

the host when appropriately timed and dosed, such as during acute

infection. However, erratic, or chronic activation of either line of

defense can generate excessive inflammation and cause collateral tissue

damage, which are detrimental to the host. Despite their common

function at the organismal scale, the two forms of immunological

memory differ greatly in terms of mechanism and cellular outcome

(23). Trained immunity reversibly boosts the innate immune response
Frontiers in Immunology 03
through myeloid cells, innate lymphoid cells, stem cells, and epithelial

cells, whereas adaptive memory boosts the adaptive immune response

native to B and T lymphocytes. In trained immunity, enhanced

responsiveness is mediated through relatively temporary and

transitory epigenetic changes, which promote the expression of

relevant pro-inflammatory genes to non-specifically eliminate

threats. In contrast, adaptive memory requires permanent changes in

DNA structure by somatic gene recombination, which creates long-

lived and antigen-specific memory lymphocytes (23). Natural killer

cells seem to be the exception to this clear divide as they exhibit a

unique form of memory with traits of both trained immunity and T

lymphocyte-like memory (24).

Moving forward, to fully appreciate the complexity of memory

in the innate immune compartment, it is important to evaluate

studies claiming trained immunity with an understanding of other

innate immune phenomena, such as priming, hormesis, cell

differentiation, and innate-adaptive interplay.
Infectious diseases and
trained immunity

Trained immunity has been implicated in a variety of

pathologies, both as a driver of disease progression, and as a key

determinant of disease recovery. In the context infectious disease,

innate immunological memory can be either beneficial or

detrimental, depending on the host’s status, the transmitting

vector, the infecting pathogen, and the disease context (Figure 2).

Modulating trained immunity is of clinical interest as it may be

harnessed to potentiate threat-clearing responses or reduce

inflammation in a disease-dependent manner. Indeed, therapeutic
A

B

FIGURE 1

Trained immunity is based in long-standing epigenetic changes in innate immune cells. (A) Initial training begins with exposure to a sterile or
infectious stimulus that triggers metabolic and epigenetic reprogramming in innate immune cells, such as myeloid and innate lymphoid cells. After
the activated innate immune cells return to baseline, some epigenetic changes are retained. (B) Upon repeat exposure to the training stimulus—or a
heterologous stimulus—, the lingering epigenetic marks allow for a more robust proinflammatory and antimicrobial innate immune response. This
enhanced response to reinfection is known as trained immunity. Figure made in part using BioRender (paid subscription).
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modulation of trained immunity could boost the protective

immune response in the acute stages of infection, thus halting

disease progression in its tracks. Modulating trained immunity

through vaccines could also confer prophylactic protection

against infection. With rapid progression of climate change and

the emergence of microbicide-resistant microorganisms, such host-

directed therapies have the major advantage of broad application in

addition to circumventing resistance.

The evolution of this field has been thoroughly reviewed by the

group that coined the term “trained immunity” (5). Below, we more

specifically overview recent work on trained immunity in the
Frontiers in Immunology 04
context of infectious diseases, including bacterial, viral, fungal,

and parasitic infections.
Bacterial infections

Bacteria are single-celled prokaryotes with both commensal and

pathogenic potential. Trained immunity has been studied in a

variety of medically relevant bacterial fields, including vaccines,

antibiotic resistance, common bacterial diseases, and neglected

tropical diseases of bacterial origin.
A

B

FIGURE 2

Innate immunological memory to infectious agents is context- and pathogen-dependent. (A) The nature and intensity of innate immunological
memory mounted by myeloid and innate lymphoid cells varies with different pathogens. In addition, to enhance their survival and persistence,
pathogens can hijack host cell signaling to skew innate immunological memory either towards or away from the canonically anti-inflammatory
tolerance response or the canonically pro-inflammatory trained immune response. (B) Many factors can potentially contribute to the balance
between tolerance and trained immunity, including factors linked to the pathogen, host, vector, and disease context. See the figure for examples of
such factors. Figure made in part using BioRender (paid subscription).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1147476
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dagenais et al. 10.3389/fimmu.2023.1147476
Work with the Bacillus Calmette–Guérin vaccine, developed

against tuberculosis (TB), has been pivotal to uncovering the

mechanisms and scope of trained immunity discussed above. Long

before trained immunity was formally named, the BCG vaccine was

known to confer nonspecific cross-protection. In 1927, physician Carl

Näslund documented that neonatal BCG vaccination lowers early

childhood mortality threefold compared to the unvaccinated—a

decrease that cannot fully be attributed to protection against

tuberculosis. Näslund hypothesized that the protective effects of the

BCG vaccine are nonspecific, which has since been supported by

numerous studies (25). Today, the BCG vaccine is known to offer

varying levels of protection against malaria, leishmaniasis,

candidiasis, yellow fever, leprosy, sepsis, and various respiratory

infections amongst others (26, 27). This nonspecific memory is

independent of adaptive immunity, as demonstrated by many

groups. For instance, BCG vaccination still confers protection

against heterologous challenges, such as disseminated candidiasis,

in severe combined immunodeficiency (SCID) mice, which lack

mature T and B lymphocytes. Protection is instead mediated by

innate immune cells, notably monocytes and macrophages, with

enhanced pro-inflammatory phenotypes (28). In more recent work,

the BCG vaccine has been investigated as a potential tool against

SARS-CoV-2, the etiological agent of COVID-19. For instance, at the

dawn of the COVID-19 pandemic, early epidemiological evidence

indirectly showed that countries with established BCG vaccination

recorded fewer cases of severe COVID-19 cases compared to

countries without rigorous BCG vaccination in place, which hinted

towards the beneficial effects of BCG-induced trained immunity

against SARS-CoV-2 (29, 30). Since then, numerous studies have

investigated the relationship between mycobacteria and

coronaviruses, the BCG vaccine and viral diseases, and more. The

BCG vaccine has also been proposed as an adjuvant for mucosal

AIDS vaccine development—amongst many others—, wherein it

could enhance classical innate immune defenses such as pro-

inflammatory cytokine production. However, this is a long-term

goal that requires a more detailed understanding of trained

immunity before manipulation in the immunocompromised (31).

The modulation of innate immunological memory by vaccines,

however, is not always beneficial to the host. The most notable

example in this regard is the tetanus, diphtheria, pertussis (Tdap)

vaccine, which has been linked to overall increased mortality despite

its protective effects against the targeted pathogens (32). In an

explorative randomized trial, Blok et al. found that Tdap

vaccination enhances the short-term cytokine responses in

monocytes but induces tolerance in monocytes long-term. This

contrasts with BCG vaccination, which potentiates both the short-

and long-term cytokine responses of monocytes. Interestingly, the

host-protective effects of BCG vaccination partially countered the

immunosuppression caused by Tdap vaccination when

administered with or after the Tdap vaccine. Hence, the link

between Tdap vaccination and increased mortality may be related

to long-term tolerance in innate immune cells, rendering the host

more vulnerable to subsequent unrelated pathogens (33). The

ability of vaccines to modulate innate immunological memory

and interact with other vaccines represents an interesting area of
Frontiers in Immunology 05
study for the optimization of existing vaccines, with important

implications for host survival.

A major global health threat related to bacterial infections is the

rise of antibiotic resistance, which can greatly hinder disease

treatment and facilitate transmission. Of the 12 families of

bacteria deemed antibiotic-resistant priority pathogens by the

World Health Organization, most have been studied to some

extent in the context of trained immunity. For instance,

Acinetobacter baumannii is a critical-priority gram-negative

opportunistic bacterium that represents one of the greatest

nosocomial threats, especially in the immunocompromised (34).

No vaccine exists against this bacterium, making infections difficult

to avoid. Work by Gu et al. suggests that intranasal immunization of

inactivated whole cell A. baumannii can train alveolar

macrophages, leading to increased TLR4 expression and TNF-a
production in Rag1-deficient mice upon restimulation just days

after vaccination. This protection extended to other antibiotic-

resistant gram-negative bacteria, such as Pseudomonas aeruginosa,

but not to the gram-positive bacteria tested. The development of

such rapid-acting, trained immunity-based vaccines could lower the

risk of antibiotic-resistant nosocomial infections and sequelae

during inpatient procedures (35). That being said, the potential of

trained immunity-based vaccines can theoretically extend to any

bacterial pathogen. For instance, the live vaccine BPZE1 has been

shown to confer protection against the etiological agent of

whooping cough, Bordetella pertussis, through TLR4-mediated

innate immune responses in SCID mice (36). Similarly, oral

vaccination with live-attenuated Salmonella Typhi strain Ty21a in

humans has been shown to upregulate cytokine production and the

expression of TLR4, TLR5, and various surface molecules in

monocytes following restimulation (37).

Staphylococcus aureus and Pseudomonas aeruginosa, classified as

high- and critical-priority antibiotic-resistant pathogens respectively,

are also common nosocomial agents. These gram-positive bacteria

are particularly common and problematic in chronic pulmonary

obstructive disease and cystic fibrosis, where they induce

inflammation that further damages the weakened pulmonary tissue.

Small colony variants of S. aureus are known for causing chronic

infections despite lacking many wildtype virulence factors, which was

shown to be at least in part linked to the inhibition of trained

immunity induction. In clinical skin isolates of S. aureus variants,

there is a 1,000-10,000-fold increase in the expression of the

fumarate-degrading enzyme fumC compared to wildtype bacteria

(38). Fumarate plays a critical role in the induction of trained

immunity by inhibiting lysine demethylases, allowing for key

epigenetic marks that contribute to the pro-inflammatory gene

transcription profile. By degrading local fumarate, S. aureus small

colony variants abrogate the induction of trained immunity in

myeloid cells, rendering the host unprotected against subsequent

skin infection (39). Upregulation of fumC by 10,000-fold was also

seen in lung-habiting clinical methicillin-resistant S. aureus isolates,

which hints towards the inhibition of trained immunity induction in

that organ as well (40, 41). Indeed, manipulating the induction of

trained immunity is a virulence mechanism that can promote

bacterial persistence even in the absence of wildtype virulence
frontiersin.org
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factors. Paired with recent sophisticated work by Khan et al. showing

that Mycobacterium tuberculosis, the etiological agent of TB, is

capable of reprogramming HSCs to limit myelopoiesis and trained

immunity (19), these studies hint towards the breadth of pathogens

that may hijack trained immunity to their advantage.

Though the lack of an inflammatory innate immune response

can be beneficial in some instances, there are other instances in

which tolerance may be detrimental to the lung-compromised host.

For instance, activated myeloid cells display increased synthesis of

the TCA cycle metabolite itaconate, which contributes to the

development of tolerance in human monocytes. As an

endogenous inhibitor of succinate dehydrogenase (SDH),

increased itaconate production leads to succinate accumulation

and, in turn, succinate oxidation. Itaconate is then released from

activated myeloid cells as an anti-inflammatory compensatory

mechanism (14, 17). Though itaconate has antimicrobial

properties, P. aeruginosa has adapted to assimilate extracellular

itaconate as a carbon source by virtue of the ich-ict-icl locus.

Assimilation generates acetyl-coA and pyruvate, which are

metabolites that facilitate glyoxylate shunt activity and biofilm

production, thereby enabling long-term P. aeruginosa

colonization in vivo (42). The ability to assimilate itaconate is not

ubiquitous but is shared by other dangerous pulmonary pathogens

such as M. tuberculosis, Yersinia pestis, and Aspergillus species (43,

44). Hence, tolerance in such cases does not only abrogate immune

clearance of the bacteria, but also facilitates bacterial survival. These

examples highlight the delicate, pathogen-specific balance between

tolerance and trained immunity necessary for pathogen clearance

and tissue preservation.

The etiological agent of gonorrhoeae, the strict human pathogen

Neisseria gonorrhoeae, is also classified as a high priority antibiotic-

resistant bacterium. Gonorrhoeae is one of the many curable

sexually transmitted infections on the rise worldwide—alongside

chlamydia, trichomoniasis, and syphilis—with an estimated one

million new infections by these four pathogens globally every day

(45). Zughaier et al. discovered that N. gonorrhoeae expresses a

histone deacetylase-like enzyme, which they named Gc-HDAC, that

exhibits high 3D-homology to the human deacetylases HDAC1,

HDAC2, and HDAC8. Gc-HDAC can alter the host epigenetic

landscape, most notably leading to H3K9ac enrichment at the

promoters of various genes conducive with trained immunity,

such as pro-inflammatory genes and toll-like receptors, in

macrophages. Gc-HDAC also limits host macrophage expression

of defense peptides LL-37, HBD-1 and SLPI. Zughaier et al. propose

that Gc-HDAC expression triggers a maladaptive state of trained

immunity, whereby aspects of the innate immune response are

differentially modulated to promote bacterial survival and infection

(46). This explanation is supported by an earlier gonococcal

transcriptome analysis, which revealed a four-fold upregulation in

an open reading frame consistent with Gc-HDAC in anaerobic

conditions compared to aerobic conditions (47). The oxygen-

dependent regulation of Gc-HDAC expression suggests it may

facilitate ascending gonococcal infections, such as in the fallopian

tubes and upper genital tract, where anaerobic conditions prevail

(46). In the development of virulence factor-specific antibiotics, it

may be promising to search for homologous proteins in other
Frontiers in Immunology 06
bacteria—such as the other human-pathogenic Neisseria bacterium,

N. meningitidis—or other bacterial proteins capable of editing

host epigenetics.

Bacteria not identified as antibiotic-resistant priority pathogens

can also pose rising public health threats through increasing

incidence and geographic coverage, such as the etiological agent

of Lyme disease, Borrelia burgdorferi. The incidence and

distribution of many vector-borne diseases is increasing

worldwide, most notably due to changing climates, which better

accommodate vector survival and disease transmission (48). In

lyme disease, the skin rash erythema migrans is an early and

transient hallmark eventually overshadowed by lyme arthritis,

which can persist for weeks after antibiotic therapy (49). Using

murine models, Bernard and Hu found that the discrepancy in

symptom duration in these two organs is linked to innate

immunological memory. Whereas murine fibroblast-like

synoviocytes exhibit inflammation-inducing trained immunity,

skin fibroblasts display tolerance instead. The tissue-dependent

co-existence of these two forms of innate immunological memory

may explain how tissue-specific inflammation is generated during

multisystem infection. These findings suggest that trained

immunity blockade in the joints may reduce inflammation

similarly to the cutaneous phenotype, which may help treat lyme

arthritis (50). Interestingly, Barriales et al. found that trained

immunity acquired from B. burgdorferi exposure can promote

antimicrobial properties in macrophages, such as bacterial

binding and internalization, whilst concurrently limiting the pro-

inflammatory response compared to untrained macrophages. B.

burgdorferi-trained macrophages showed downregulated

expression of the transcription factor Irf4, which mediates the

production of pro-inflammatory cytokines such as TNF and IL-6.

In turn, untrained macrophages produced stronger inflammatory

responses than their trained counterparts. Though most reports on

trained immunity describe a pro-inflammatory phenotype, trained

immune responses are known to differ depending on the training

stimulus, and the term “trained immunity” broadly encompasses

enhanced innate immune cell function—not limited to cytokine

secretion (51). The question of training becomes more complex

with such vector-borne diseases, however, as vectors may also carry

potentially antigenic material. Indeed, an attractive area of research

may be whether an insect vector itself can modulate innate

immunological memory. In a recent review, Kitsou et al. called

upon indirect evidence from a study following Ixodes Ricinus

infestation and T cell responses (52) to suggest that repeat

exposure to antigenic tick saliva may contribute to the

development of trained immunity or tolerance. Further

exploration may reveal direct outcomes or interactions between

vector and pathogen antigens important for disease progression and

remission (53).

Neglected tropical diseases (NTDs) of bacterial etiology—

though critically lacking in research, surveillance, diagnosis, and

treatment options—afflict millions worldwide and threaten to

become more widespread with climate change (54). Though

research bridging bacterial NTDs and trained immunity is scarce,

there is evidence to suggest modulating this form of immunological

memory could be fruitful in prophylaxis. Work with leprosy and
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1147476
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dagenais et al. 10.3389/fimmu.2023.1147476
buruli ulcer, caused by Mycobacterium leprae and Mycobacterium

ulcerans respectively, suggests that BCG-immunization can protect

the host from these mycobacterial diseases (55, 56). This protection

cannot be attributed to antigenic cross-reactivity alone, as

Polycarpou et al. found that M. leprae infection leads to the

upregulation of TLR4 on human macrophages, whereas previous

BCG-immunization reverses this effect ex vivo (57). In leprosy,

TLR4 activation can be deleterious to the host as it contributes to

the damaging inflammation responsible for leprosy lesions, with

genetic association studies having shown that TLR4 polymorphisms

are protective against leprosy (57, 58). Similarly, differential gene

expression has been investigated in the context of Chlamydia

trachomatis infection, responsible for a preventable form of

blindness known as trachoma. Kechagia et al. found that

conjunctival fibroblasts from infected individuals exhibit strong

profibrotic and proinflammatory transcription profiles compared to

conjunctival fibroblasts from uninfected individuals. Trachoma

fibroblasts then mediate reciprocal pro-inflammatory interactions

with macrophages through IL-6. Though untested, Kechagia et al.

suspect that epigenetic changes incurred early during infection are

responsible for the proinflammatory fibroblast phenotype (59). In

the presented bacterial NTDs, the host is disadvantaged by

hyperinflammation induced by trained immunity—in turn,

prophylactic treatment preventing or limiting the induction of

trained immunity against these pathogens could be host-

protective. Prophylaxis is likely preferable to post-infection

treatment since proinflammatory epigenetic changes in central

precursors could promote resistance to immunosuppressive

therapies, as hypothesized in the case of proinflammatory

synovial fibroblasts in rheumatoid conditions (60).
Viral infections

Viruses are obligate intracellular parasites consisting of a DNA

or RNA-based genome and a protein coat, capable of infecting both

prokaryotic and eukaryotic hosts. Host cells must be both

permissive and susceptible, as viruses require host molecular

functions and machinery to establish infection and complete their

life cycle (61). Within complex organisms, viruses must first

overcome physical barriers, such as the skin and mucosa, before

gaining access to their chosen cell types and tissues. After this initial

barrier breach, the innate immune system is the first to initiate an

antiviral response. Monocytes/macrophages, dendritic cells, natural

killer cells, neutrophils, and granulocytes infiltrate the infected

tissue in an attempt to eliminate the invader through the

secretion of cytokines, enhanced cellular migration, and

eventually antigen presentation to T cells in lymphoid tissues (62).

Some viral infections have been shown to reprogram the host’s

innate immune response. This is the case for respiratory syncytial

virus (RSV), which infects up to 68% of infants in their first year,

and is the leading cause of child hospitalization and an important

driver of infant mortality (63). RSV infections have been associated

to greater pro-inflammatory cytokine production, “inflammatory”

dendritic cells, and an increased risk for asthma development (64,

65). RSV re-infection is common, and is a cause of significant
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morbidity and mortality for immunocompromised and elderly

individuals. There are currently no effective vaccines against RSV,

and few immunotherapies have been developed as of present (66). A

hallmark of RSV infection is the abrogation of type 1 innate

antiviral immunity, in favour of a type 2 cytokine response.

Notably, the upregulation of the thymic stromal lymphopoietin

(TSLP) signalling pathway induces chromatin modifications in

dendritic cells after early-life RSV infections (67), which manifest

as a persistent “trained” phenotype in the lungs with an activated

pathogenic gene program and enhanced allergic responses (68).

Thus, RSV infection-associated trained immunity is an example in

which the trained phenotype contributes to disease progression (5).

Paradoxically, trained immunity is hypothesized to play an

important role in vaccines that are protective against viral

infection. It has been proposed that immune training is the

underlying mechanism explaining the long-term nonspecific

protective state conferred by vaccines against pathogens such as

measles and vaccinia, among others (69). Recent epidemiological

and immunological evidence by Debisarun (70) suggests that the

use of the inactivated influenza vaccine, Influvac Tetra, reduces the

risk of SARS-CoV-2 infection by up to 49%. This same study found

that influenza vaccination improved the immune response against

heterologous viral stimuli by reducing the secretion of IL-1b and IL-
6 and enhancing IL-1RA production. In addition, single-cell RNA

sequencing showed a downregulation in the genes NEAT1,

MALAT1 (NEAT2), SFPQ, JUN, and NFKBIA, and an

upregulation of MNDA in CD14+ monocytes – alterations which,

altogether, could be inducing a more balanced inflammatory

response during SARS-CoV2 infection. These functional and

transcriptional alterations suggest that trained immunity may

play a role in the negative correlation between the influenza

vaccination and COVID-19 mortality, hospitalizations, and

respiratory support (70).

An important number of vector-borne viral infections are

caused by viruses of the Flaviviridae family: West Nile Virus

(WNV), Japanese Encephalitis Virus (JEV), Yellow Fever Virus

(YFV), Zika Virus (ZIKV) and Dengue Virus (DENV) (61). Of

these, vaccines are currently available for only JEV (71), YFV (72),

and DENV (73). The YFV 17DD vaccine – an attenuated vaccine

which has been used to protect against Yellow Fever for over 70

years (72) – has been reported to have prophylactic potential against

ZIKV infection in a murine model (74). In this study, A129 mice

were immunized with YFV 17DD, then challenged with ZIKV

intra-cerebrally. The YFV 17DD vaccine conferred cross-

protection against ZIKV infection, which was not dependent on

neutralizing antibodies, but rather partially dependent on innate

immune memory. Further elucidation of the respective roles of

trained immunity and T cell responses in this model will be key to

harnessing innate immunity for vaccine development, for both

vaccine-boosting scenarios and immunization strategies (75).

In the case of DENV, 4 distinct serotypes (DENV1-4)

concurrently circulate in endemic regions. While the resolution of

a first infection confers significant protection against the causative

serotype, subsequent infection by a different serotype has been

shown to dramatically increase the risk of dengue hemorrhagic

fever (DHF) and dengue shock syndrome (DSS) – two important
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complications of DENV infection which display mortality rates of

up to 30% (76). This is explained mechanistically by antibody-

dependent enhancement (ADE), wherein DENV becomes coated

with antibodies that, while neutralizing to the initial serotype, are

non-neutralizing to the other serotypes, thus leading to higher levels

of viral internalization and replication (77). Gene profiling has been

utilized to observe innate immune modulation in host endothelial

cells, towards which DENV is tropic, at early timepoints following

DENV infection, and has highlighted 281 genes that are

upregulated and <30 that are downregulated (78). These data

have demonstrated that DENV infection induces the secretion of

cytokines and chemokines such as RANTES, CXCL10, CXCL11, IL-

6, IL-8, TNF-a, IL-1b, and type I IFN by macrophages and

endothelial cells, which could be associated with the ADE process

(78, 79). In this context, similarly to other flaviviruses, trained

immunity mediation remains poorly elucidated. Mechanisms by

which innate immune training contributes to classically adaptive

immune responses may have important implications in the

pathogenesis of infectious diseases, as well as the development of

possible therapies.

Hallmarks of trained immunity have been identified in multiple

scenarios of infection and disease. However, evidence supporting

the potential vertical transmission of trained immunity from

mother to infant remains controversial (80, 81). Hong (82) have

demonstrated that newborns exposed to Hepatitis B Virus (HBV) in

utero develop a state of trained immunity that is characterized by

enhanced Th1 development and a greater ability to react to

unrelated pathogens. In addition, the authors observed that HBV-

exposed neonates have augmented production of IL-12p40 and low

production of IL-10, IL-6, IL8 and TNF-a (82). Further research on

innate memory in the context of HBV– and, more specifically,

neonatal HBV – is required to improve treatment outcomes as more

than 350 million people are chronically infected with this virus, and

are therefore at risk of hepatic decompensation, cirrhosis and

carcinoma (83).
Fungal infections

Fungi, in the form of single-celled yeast or multi-celled molds,

are ubiquitous eukaryotic organisms infamous for causing

opportunistic infections in the immunocompromised (84). Work

into trained immunity and fungal diseases has been less broad than

for bacterial and viral diseases, mainly touching upon common

pathogens and immunosuppression.

Alongside work with BCG, work with b-glucans, which are

highly abundant polysaccharides in the fungal cell wall, was seminal

to the initial description of trained immunity. In 2012, Netea

provided support for his theory of trained immunity by

demonstrating that infection by the fungal pathogen Candida

albicans induces epigenetic changes at the promoters of immune-

relevant genes and increased cytokine production in monocytes.

This mechanism was shown to be dependent on signaling from b-
glucan receptors, which ultimately protected mice lacking a

functional adaptive immune system from C. albicans reinfection

(85). Today, it is known that individuals with homozygous and
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heterozygous defects in dectin-1 b-glucan receptors are more

susceptible to fungal infections—albeit more mildly in

heterozygous carriers (86). Since Netea’s study, b-glucans,
especially in the context of C. albicans infection, have been

extensively explored in trained immunity. The potential of b-
glucans as a vaccine adjuvant for infectious diseases lacking an

effective vaccine—such as leishmaniasis, tuberculosis, and rabies—

is a particularly hot topic (27, 87, 88). Though less at the forefront,

work has also been conducted in dietary b-glucans— derived from

oats rather than the fungal cell wall. Indeed, oat-derived b-glucans
can induce trained immunity through metabolic changes in vitro,

notably at the level of enzymes in the glycolytic pathway and TCA

cycle (89, 90). Though follow-up work in vivo is needed, the

potential for modulating trained immunity through diet or

ingestible products—especially in contexts where access to

healthcare is limited—is particularly interesting.

Though fungi are commensal in the gut, they pose significant risks

when the epithelial barrier is breached. Polymicrobial intra-abdominal

infections—often caused by a lesioned bowel from trauma, disease, or

surgery—are more deadly when both fungal and bacterial pathogens

are present compared to either pathogen alone (91). In a mouse model

of C. albicans/S. aureus coinfection, Lilly et al. found that training with

low-virulence Candida species or Saccharomyces cerevisiae offered

various levels and durations of protection against subsequent C.

albicans/S. aureus coinfection in Rag-deficient mice. Notably,

training with Candida dubliniensis/S. aureus offered upwards of 90%

protection up to 60 days after training. Mice were also protected from

lethal intravenousC. albicans infection reminiscent of sepsis, but notC.

albicans vaginitis. Interestingly, protection was not mediated by

monocytes or macrophages, but rather by Gr-1+ polymorphonuclear

leukocytes, highlighting the important—yet often overshadowed—role

of these innate immune cells (91, 92). A possible trained immunity-

based fungal vaccine could not only be protective against

complications of surgery and inflammatory bowel disease, but also

immunodeficiencies such as AIDS, wherein sepsis represents a major

cause of hospitalization and mortality (93).

As AIDS is characterized by a lack of CD4+ T lymphocytes,

vaccines targeting common AIDS-related mycoses that work

independently of adaptive immunity are of critical importance.

Indeed, fungal infections are the second leading cause of AIDS-

related mortality after tuberculosis (94). By developing trained

immunity-based vaccines, capitalizing on the nonspecific

protection offered by the innate immune response could

minimize the number of vaccines required to achieve protection

against a variety of infectious agents. For instance, Wang et al.

demonstrated that training with a heat-killed mutant Cryptococcus

strain can protect against C. neoformans, C. gattii, C. albicans

(partially), and Aspergillus fumigatus in the lungs and brain of

both immunocompetent and CD4+ T lymphocyte-deficient mice.

Hence, one vaccine could cover a multitude of pneumonia- and

meningitis-causing infectious agents that are particularly

p rob l ema t i c i n the con t ex t o f A IDS (95 ) . As th e

immunodeficiency associated with old age mostly affects the

adaptive immune system whilst leaving the innate immune

system somewhat intact (96), this approach could equally be used

to vaccinate the elderly (29, 97).
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Similar studies have been undertaken by multiple groups, but

work by Huang et al. stands out for its use of an unconventional

model organism. Mice are the model of choice for many in vivo

studies of trained immunity, but Huang et al. showed that larvae of

Galleria mellonella—the greater wax moth—also exhibit nonspecific

protection against reinfection by fungal pathogens, conducive with

findings from more traditional models. Indeed, as an invertebrate

model lacking an adaptive immune component, immune memory

in G. mellonella is mediated by “immune priming,” which is often

referred to as the counterpart of trained immunity in vertebrates

(98). Though more work is needed to understand the translatability

of innate immune findings to vertebrates, the use of G. mellonella as

a model organism is an interesting alternative from both a practical

and ethical standpoint.
Parasitic infections

The term “helminth” is used to describe worm-like eukaryotic

parasites that belong to two phyla: Platyhelminths (flatworms) and

Nemathelminths (99). Unlike other pathogens, such as viruses or

bacteria, helminths are large organisms with complex tissue

organization that includes organs (100). Helminth parasites

modulate the mammalian immune response and have complex

mechanisms of evasion that suppress Th1 and Th2 responses,

thereby preventing tissue damage and allowing the parasites to

survive up to 18 years in their host (101, 102). Excretory/secretory

products (ES) are the main way these parasites can interfere and

modulate host responses (103); these are a heterogeneous group of

molecules that include proteins, glycoproteins and other small

compounds, which are vital for parasite survival in the host (104).

When looking into epidemiological aspects of helminth infections,

low-income countries with high parasitic-infection prevalence tend

to have lower prevalence of diseases like asthma, type I diabetes,

inflammatory bowel disease (IBD) and allergies in contrast to

developed countries (105, 106). Autoimmune diseases, allergies,

and chronic inflammatory disorders are mainly caused by common

molecular pathways (107). In this context, the immunomodulatory

capacity of helminths infection establishes a Th2 response that can

control inflammation, promote tissue repair and tolerance (108).

One of the models that has been studied in this context is Fasciola

hepatica, whose products have been described as inducing an anti-

inflammatory immune response (109). In this context, Quinn (110)

used F. hepatica total extract (FHTE) to train macrophages in vitro,

which promotes an alternative form of innate memory that differs

from the “classical” trained immunity patterns induced by b-glucan
or tolerance induced by LPS. These alternatively trained

macrophages are characterized by an increased secretion of IL-

1RA and IL-1, as well as inhibited secretion of TNF after

restimulation with LPC or Pam3Cys—all mediated by epigenetic

modifications. In addition, macrophages stimulated with FHTE and

transferred into mice in an experimental autoimmune

encephalomyelitis (EAE) model exhibit an immunosuppressive

phenotype (110). This sustained anti-inflammatory profile is

potentially mediated by trained immunity, as demonstrated by

using F. hepatica ES (FHES) in C57BL/6 mice: treatment with
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FHES imprints HSCs with an anti-inflammatory profile that is later

observable in monocytes and macrophages. In turn, this

reprogramming allows for the eventual suppression of T cell

activation and disease progression in a CNS murine model (111).

Moving towards diseases of protozoan parasites, malaria is an

endemic disease in 87 countries in tropical and subtropical regions

(112). Malaria is caused by five species of the genus Plasmodium

(wherein P. falciparum and P. vivax are the most common) that are

transmitted when a female Anopheles spp. mosquito takes a

bloodmeal (112). Organized efforts to control malaria have been

attempted, including vector control, access to treatment, and early

diagnosis. However, an increase of antimalarial drug resistance, civil

conflicts, human migrations, climatic and environmental change,

lack of funding, and weak healthcare systems have contributed to

the resurgence of the disease in many countries (112).

Consequently, the development of an efficacious malaria vaccine

is a global health priority (113). Once an individual is infected,

innate immune system activation—entailing subsequent

inflammation and high levels of circulating cytokines—leads to

the initial signs of the disease and can influence the outcome of

disease severity or spread towards cerebral malaria (114, 115). Since

adults are continuously exposed to the parasite in endemic areas,

naturally acquired immunity is developed against the blood stage of

the infection, providing protection against the clinical disease but

not to the pre-erythrocytic stage (116). This constant stimulation

was tested as potentially inducing trained immunity in an infant

population in an endemic area. Initial stimulation with P.

falciparum-infected red blood cells (iRBC) or hemozoin on

human derived PBMCs leads a pro-inflammatory phenotype via

TLR2 stimulation; this phenotype was associated with an increased

H3k4m3. The phenotype observed in the infant population samples

was similar to the one found in the PBMCs in-vitro experiment

(117). The relationship between trained immunity and chronic

stimulation, especially in the context of endemic infectious

diseases, represents an important avenue for the mitigation

disease and development of therapies.
Discussion: Future of the field

The potential of trained immunity in the fight against infectious

diseases is undisputed, and the future of this relatively “young” field

is incredibly vast. With some diseases requiring as little as a single

pathogen to establish infection, such as in TB, myeloid and innate

lymphoid cells represent an important—yet often underappreciated

—resource to preventing an infection at its source.

The works presented above elicit many interesting avenues for

the future of trained immunity in terms of research methodology,

research interests, and eventual applications. Methodologically,

whether invertebrate model organisms can be used as a suitable

replacement for traditional mouse models given their similar innate

immunological memory is an interesting prospect. From the

appropriate model organism, it will be interesting to further

characterize how specific pathogens are affected by and/or

manipulate the balance of tolerance and trained immunity

through various stages of disease progression. Indeed, uncovering
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how pathogens modulate innate immunological memory as a

virulence mechanism will allow for the development of virulence

factor-specific antimicrobials and antivirals. Seeing as the scope of

trained immune responses and implicated myeloid cells against

specific pathogens is very diverse—with some responses even

inducing antimicrobial activity independently of inflammation—,

this information will also inform our understanding of disease

pathology and, in turn, therapeutic targets. Different responses in

different anatomical locations in the case of multisystem infections

are also very interesting in this regard.

Modulating the innate immune response to reinfection is the

ultimate application of trained immunity research. Vaccines are at

the forefront of this modulation, though whether diet can be an

effective modulator is still an unknown but interesting possibility.

Fast-acting trained immunity-based vaccines for immediate risks,

such as inpatient procedures for the immunocompromised, could

offer an unprecedented rapid protection—one that is also

independent of adaptive immune cells. In virtue of the

nonspecific nature of innate immunological memory, the

immunocompromised could also benefit from the administration

of fewer but broad-acting vaccines to reduce the total number of

different vaccines required to get an adequate spectrum of coverage.

Indeed, the addition of adjuvants that induce trained immunity,

such as BCG, in regularly administered vaccines (or vaccines in

development) could yield stronger and broader protection against

targeted pathogens and heterologous ones. Equally regarding

existing vaccines, a better understanding of how vaccines that

modulate innate immunological memory interact with each other

to ultimately affect disease outcome and host survival is an

important consideration for vaccine optimization.

Innate immunological memory-based vaccines can theoretically

be developed for any pathogen to either promote or impede trained

immunity according to the disease-specific need. This includes

historically understudied diseases, such as NTDs and endemic

diseases, for which the host-pathogen interactions may be

incompletely understood. To date, many NTDs have received little

to no investigation in the context of trained immunity, including

bartonella and cholera (bacterial), flavivirus (viral), mycetoma and

paracoccidiomycosis (fungal), and trypanosomatids such as

Leishmania and Trypanosoma (parasitic). With many NTDs and

endemic diseases being transmitted by insect vectors, the potential of

vaccines against vector antigens is also an interesting possibility.

Despite the recent advancements presented here, it is equally

important to reflect on studies hinting towards innate

immunological memory before the term “trained immunity” was

coined in 2011. Others have also stressed the importance of

retrospection, as such studies may provide insight into modern

mechanistic, contextual, and consequential questions about trained

immunity (118). For instance, an advanced PubMed Search of

[(macrophage) AND (reinfection) AND (protect)] yields several

results that may deal with innate immunological memory before the

“trained immunity” era. Such results include the correlation

between macrophage function and resistance to reinfection in

murine schistosomiasis (119), promising studies investigating the

potential of anti-Leishmania vaccines against vector saliva antigens
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(120), and the importance of neutrophils in early resistance to

reinfection by Nematospiroides dubius (121), amongst others from

the 1980s to 2000s. Indeed, though the term “trained immunity”

may be novel, questioning into innate immunological memory

dates much farther back. Furthermore, the concepts of hormesis

and cell differentiation programs—such as the M1/M2 spectrum in

macrophages—complexify our past and current knowledge of

innate immunological memory. Whether these biological events

or statuses function synergistically, independently, antagonistically,

or if they are based in the same molecular roots remains poorly

understood. To this effect, it is important to view trained immunity

as a piece of the innate memory puzzle rather than the entire

puzzle itself.
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