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Polysaccharides extracted from natural resources have attracted extensive

attention in biomedical research and pharmaceutical fields, due to their

medical values in anti-tumor, immunomodulation, drug delivery, and many

other aspects. At present, a variety of natural polysaccharides have been

developed as adjuvant drugs in clinical application. Benefit from their structural

variability, polysaccharides have great potential in regulating cellular signals.

Some polysaccharides exert direct anti-tumor effects by inducing cell cycle

arrest and apoptosis, while the majority of polysaccharides can regulate the host

immune system and indirectly inhibit tumors by activating either non-specific or

specific immune responses. As the essential of microenvironment in the process

of tumor development has been gradually revealed, some polysaccharides were

found to inhibit the proliferation and metastasis of tumor cells via tumoral niche

modulation. Here, we focused on natural polysaccharides with biomedical

application potential , reviewed the recent advancement in their

immunomodulation function and highlighted the importance of their signaling

transduction feature for the antitumor drug development.

KEYWORDS
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1 Introduction

It has been estimated that there were 19.3 million new cancer cases and almost 10

million cancer deaths worldwide per year (1). People’s physical and mental health is being

threatened by its high incidence and high mortality and patients suffered from and mostly

died of progressive failure of multi organ systems. Current, treatment methods or include

surgery, radiotherapy, chemotherapy and immunotherapy. Although these methods have

certain therapeutic advantages on early tumors, they are often ineffective in patients with

advanced and metastatic tumors, and in many cases, they have serious side effects (2). This

prompts researchers to look for new anti-tumor drugs/methods with lower toxicity, higher

efficiency and fewer side effects (3).
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Bioactive components extracted from natural resources such as

macrofungi, plants, animals and microorganisms have been proven

to have great potential in the prevention and treatment of cancer

(4–6). These active components mainly contain polysaccharides,

glycopeptides/protein complexes, proteoglycans, proteins,

triterpenes and so on (7). Polysaccharides are a class of natural

polymer formed by connecting aldose or ketose with glycoside bond

(8). Compared with the amino acids in proteins which are only

interconnected in one way, the monosaccharide units in

polysaccharides are able to be interconnected at several points to

form a wide range of branched or linear structures. This structural

diversity is almost unlimited, which gives the necessary flexibility to

the precise regulatory mechanisms of various cell-cell interactions

in higher organisms (9). In addition, a large number of studies have

indicated that these natural polysaccharides have significant anti-

tumor effects without obvious side effects (2, 10). Therefore, a

diversity of natural polysaccharides, such as Astragalus

polysaccharide, Ginseng polysaccharide, lentinan, fucoidan,

Coriolus versicolor polysaccharide and pachman, have already

become clinical drugs (3, 11, 12).

This review focused on natural polysaccharides with biomedical

application potential, reviewed the recent advancement in their

immunomodulation function and highlighted the importance of

their signaling transduction feature for the antitumor

drug development.
2 Structure features

Polysaccharides are constructed by a large number of

monosaccharides linked through glyosidic bonds. The

monosaccharide units mainly consist of glucose, galactose,

mannose, xylose, arabinose, caramel, ribose and glucuronic acid

(13). Polysaccharides extracted from natural resources are mostly

heterogeneous, i.e., heteropolysaccharides composed of different

monosaccharides, except for a few homopolysaccharides. Most

polysaccharides with strong biological activity have ab-helix
structure (10). Among them, b-D-glucan are deemed to be the

most important and potent immunomodulating polysaccharides,

and several linear and branched b-D-glucan have been reported to

have great biological activity latent capacity (14). The glycosidic

bonds of plant-derived polysaccharides are primarily a-(1!6)-D,

a-(1!4)-D and b-(1!4)-D. However, even the polysaccharides

separated from the same plant may be of vast difference (10). For

example, two fractions F1 and F2 can be extracted from

Schizophyllum commune. The F1 fraction was composed of

glucose (75.5% and 88.2%) with small amounts of mannose,

galactose and xylose, while the F2 fraction was comprised of

mannose (55.2%) with minor amounts of galactose, glucose, and

xylose. Moreover, F2 has stronger immunomodulatory activity (15).

As almost all physiological activities rely on the aqueous

environment, the solubility of polysaccharides in water affects their

biological function to a considerable extent. The water solubility of

polysaccharides depends on many factors. Structures that hinder the
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intermolecular association usually lead to a higher solubility, such as

branching structures and charged groups (carboxylic acid group,

sulfate group or phosphate group) (16–18); on the contrary, the

structural features that promote intermolecular association result in

poor solubility, such as linear chain, large molecular weight, and

other regular structural characters (19). This provides an idea for

how to take full advantage of the biological activity of natural

polysaccharides. Thus, many polysaccharides products with

chemical modifications (e.g. carboxymethylation, hydroxylation,

formyl methylation, amination and sulfation) have been designed

and applied to the market (20).

Table 1 lists the structural features and possible anti-tumor

mechanisms of some natural polysaccharides purified from fungi,

plants, animals and microorganisms. Interestingly, most of the

natural polysaccharides that can directly act on tumor cells rather

than play an anti-tumor role through immune regulation are highly

water-soluble polysaccharides with charged groups. For example,

both Bupleurum chinense polysaccharide BCP (43) and Salvia

miltiorrhiza polysaccharide SMP (52) are acidic polysaccharides,

and both of them could cause cell cycle arrest and induce apoptosis.

Ginger polysaccharide GP was found to have a triple helical

structure (57). Some literatures had reported that polysaccharides

with triple helix structure have high antitumor activity (57, 65), but

the exact relationship between the triple helix structure and

antitumor function of polysaccharides is still unclear (57).

However, this can still shed some light on us and provide

experience for subsequent analysis of the association of

polysaccharides structure and biological activity.
3 Anti-tumor activity

In addition to the original six characteristics, Professor

Hanahan and Professor Weinberg added four features and

summarized the ten hallmarks of cancer (66). They include

sustaining proliferative signaling, evading growth suppressors,

resisting cell death, enabling replicative immortality, inducing

angiogenesis, activating invasion and metastasis, reprogramming

energy metabolism, evading immune destruction, tumor-

promoting inflammation and genome instability and mutation

(66). These ten characteristics are also targets for tumor

treatment. Natural polysaccharides are considered to inhibit

tumor growth and metastasis by cell cycle arrest, inducing

apoptosis, inhibiting angiogenesis and regulating host immune

system (34, 36, 47, 56). In addition, the occurrence and

development of tumors are not entirely attributed to the tumor

cells themselves. In recent years, non-malignant cells and non-

cellular components around tumor cells, namely tumor

microenvironment (TME), have been increasingly proven to play

an important role in the occurrence and development of tumors

(67) . Some polysacchar ides can regula te the tumor

microenvironment to indirectly realize their anti-tumor effect

(59). Figure 1 shows the possible anti-tumor mechanism of

natural polysaccharides.
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TABLE 1 Structural features and anti-tumor mechanism of some polysaccharides from nature resources.

Type Species name Polysaccharide(s)
Structural
feature (s)

Anti-tumor
mechanism Reference (s)

Macrofungus Craterellus cornucopioides CCP (1!3)-b-D-Manp- (1!6)-
a-D-Galp

Immunomodulation: Macrophage (21)

Coriolus versicolor PSK Protein-bound
polysaccharide

Cell-cycle arrest and apoptosis
induction

Immunomodulation: NK cell

(22)

Dictyophora indusiata DP1 (1!3)-a-L-Man, (1!2,6)-
a-D-Glc

Immunomodulation: Macrophage (23)

Entoloma lividoalbum ELPS (1!3,6)-b-D-Glcp, (1!3)-
b-D-Glcp,

(1!6)-b-D-Glcp

Anti-oxidation
Immunomodulation: Macrophage

(24)

Flammulina velutipes FVP1 Homogeneous
polysaccharide

Immunomodulation: Macrophage (25)

Ganoderma atrum PSG-1 Protein-bound
polysaccharide

Anti-oxidation
Immunomodulation: Macrophage

and T cell

(26, 27) (28–31)

Ganoderma lucidum GLIS Proteoglycan Immunomodulation: B cell (32)

Lentinus fusipes PS-II (1!6)-a-D-galactan,
(1!6)-b-D-glucan

Anti-oxidation
Immunomodulation: Macrophage

(4)

Phellinus baumii PPB Homogeneous
polysaccharide

Cell-cycle G0/G1 arrest (33)

Phellinus ribis PRP-S1, PRP-S2 (1!4)-, (1!6)-b-glucan
*sulfated derivatives

Anti-angiogenic effect (34)

Pleurotus citrinopileatus PCP Pyranose (a-glucan & b-
glucan)

Cell-cycle S arrest and apoptosis
induction

(35)

Pleurotus ostreatus Se-POP-3 Selenium-enriched
heteroglycan

Apoptosis induction (36)

Polyporus umbellatus PPS D-glucan Immunomodulation: DCs, T cell
and NK cell

Adjuvant chemotherapeutic drugs

(37)
(38, 39)

Schizophyllum commune F2 (1!3)-mannan, (1!2,3)-
galactan

Immunomodulation: Macrophage (15)

Tricholoma lobayense TLH-3 (1!3)-a-D-glucan Anti-oxidation (40)

Plant Alfalfa APS Heteroglycan Immunomodulation: B cell (41)

Artemisia sphaerocephala ASPs Acidic heteroglycan Cell-cycle S arrest and apoptosis
induction

(42)

Plant Bupleurum chinense DC BCP Acidic heteroglycan Cell-cycle S arrest and apoptosis
induction

(43)

Codium fragile CFP Sulfated polysaccharide Immunomodulation: DCs, NK cell,
T cell

(44, 45)

Codonopsis pilosula CPPS Heteroglycan Immunomodulation: T cell (46)

Gayralia brasiliensis Gb1
Gb1-OS

Sulfated polysaccharide
Over-sulfated
polysaccharide

Cell-cycle G1 arrest
Cell-cycle S and G2 arrest

(47)

Hippophae rhamnoides HRWP-A (1!4)-b-D-galactan Immunomodulation: Macrophage
Adjuvant chemotherapeutic drugs

(48)

Laminaria japonica LJP-31 Homogeneous
polysaccharide

Immunomodulation: Macrophage (49)

Nemalion helminthoides N3, N4 (1!3)-a-D-mannopyranose Immunomodulation: Macrophage (50)

(Continued)
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3.1 Cell cycle arrest

In normal cells, cell cycle arrest helps to maintain genome

stability. By initiating cell cycle arrest, cells can avoid cell division in

the process of stress and injury (68). Many natural polysaccharides

are able to inhibit the proliferation of tumor cells by blocking cell

division. This effect usually occurs in the interphase (G1, S and G2)

of the cell cycle. For example, Gayralia brasiliensis polysaccharide

Gb1 could cause cell cycle arrest in G1 phase, which prevents DNA

replication from starting (47). And the over sulfurized product of

Gb1, named Gb1-OS, can remarkably induce cell arrest in S phase

and G2 phase (47). Another polysaccharide from Salvia miltiorrhiza

(SMP) also has anti-proliferative effects against cancer cells by

arresting cell cycle at S phase (52). p53 is a transcription factor,

which is regarded to play a critical part in cell cycle arrest and

apoptosis. The growth arrest of cells at the G1/S border is initiated

by the destruction of cyclin D1 and Cdc25A, the activator of cyclin

dependent kinase 2 (CDK2). p53 maintains this arrest by inducing

the expression of CDK inhibitor p21 (69). Many tumor cells have

been found to have mutations in p53 gene. Approximately 80% of

p53 mutations are single point mutations with several hotspot

mutations. In addition to losing function and dominant-negative

effect on wild-type p53 activity, hotspot p53 mutant also obtained

new oncogenic function (70). Wang et al. demonstrated that

Artemisia sphaerocephala polysaccharide ASPs showed significant
Frontiers in Immunology 04
anti-tumor activity via inhibiting the expression of mutant p53

protein and inducing H22 Cell cycle arrest (42).
3.2 Apoptosis induction

Apoptosis is an autonomous and orderly cell death controlled

by cellular signaling to maintain the stability of the internal

environment. There are two main pathways of apoptosis: external

or death receptor pathway and internal or mitochondrial pathway

(71). The key process of apoptosis is the activation of caspases.

Extrinsic pathway can be induced by members of the cytokine

receptor TNF family, such as TNFR1 and Fas. These proteins

recruit adaptor proteins to their cytosolic death domains (DDs)

and then bind to death effector domain (DED)-containing pro-

caspases, particularly pro-caspase-8 (72). The intrinsic pathway is

induced by the release of cytochrome C from mitochondria. In the

cytoplasm, cytochrome C binds and activates apoptotic protease

activating factor-1 (Apaf-1) to bind and activate pro-caspase-9. The

active caspase-9 and caspase-8 directly cleave and activate the

effector protease, caspase-3, which finally start the apoptosis

program (72). The control and regulation of mitochondrial

pathway are almost related to Bcl-2 protein family. Among them,

Bcl-2 plays an anti-apoptotic role by maintaining the integrity of

mitochondrial membrane. In contrast, Bax and Bak can destroy
TABLE 1 Continued

Type Species name Polysaccharide(s)
Structural
feature (s)

Anti-tumor
mechanism Reference (s)

Ophiopogon japonicus OPL Polysaccharide liposome Immunomodulation: Macrophage (51)

Salvia miltiorrhiza SMP Acidic heteroglycan Cell-cycle S arrest and apoptosis
induction

Anti-oxidation

(52)

Sargassum fusiforme SFPS Heteroglycan Immunomodulation: Macrophage
Anti-angiogenic effect
Apoptosis induction

(53)
(54)
(5)

Tarphochlamys affinis PTA Heteroglycan Immunomodulation: T cell, NK cell
Apoptosis induction

(55)

Tinospora cordifolia G1-4A Heteroglycan Immunomodulation: Macrophage (56)

Zingiber officinale (Ginger) GP Heteroglycan with a triple
helix

Cell-cycle G0/G1 arrest and
apoptosis induction

(57)

Animal Edwardsia sipunculoides SAP30/60/80 Heteroglycan Anti-oxidation (6)

Philomycus bilineatus PBP60-C
PBP60-D

Heteroglycan Anti-oxidation (58)

Scolopendra subspinipes
mutilans L. Koch

SPPC polysaccharide–protein
complex

Immunomodulation (59)

Microorganism Alternaria mali Roberts AMEP-2 Manp-(1!4) and Glcp-
(1!6)

Cell-cycle arrest and apoptosis
induction

(60)

Hirsutella sinensis HSP-III (1!3)glucose Apoptosis induction (61)

Morchella esculenta MP-1/3/4 Heteroglycan Cell-cycle G0/G1 arrest (62)

Phoma herbarum YCP (1!4)-a-D-glucan Immunomodulation: B cell (63)

Trichoderma pseudokoningii EPS Heteroglycan Apoptosis induction (64)
"!" means glycosidic bond and "*" means polysaccharides derivatives.
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mitochondrial membrane and promote the release of cytochrome

C, thus activating caspase-9 (73).

Various natural polysaccharides have been found to induce

tumor cell apoptosis by acting on mitochondrial pathway, as shown

in Figure 1D. For instance, Pleurotus ostreatus polysaccharide Se-

POP-3 (36), Sargassum fusiforme polysaccharide SFPS (5) and

Trichoderma pseudokoningii polysaccharide EPS-1 (64) can

increase the expression of Bax and reduce the expression of Bcl-2,

so as to promote apoptosis. Additionally, Liu et al. reported that

HSP-III, separated from Hirsutella sinensis, can collapse the

mitochondrial membrane potential, release of cytochrome C,

activate caspase-3 and caspase9, and finally induce the apoptosis

of human non-small cell lung cancer H1299 cells (61). A

proteoglucan from Grifola frondosa (PDF) has been proven to

show strong anti-cancer activity in breast cancer cells through

directly promoting the activation of caspase-7 and caspase-1, and

increasing the expression of BAK-1 gene (74).
3.3 Anti-oxidation function

Oxidative stress is the result of the imbalance between the

production of reactive oxygen species (ROS) and cell antioxidant

defense, which is implicated in the etiology of cancer (75). In other

words, chronic and cumulative oxidative stress will induce harmful

modifications to various macromolecules, such as DNA (76). And

DNA damage is considered as one of the mechanisms of

tumorigenesis. Studies have manifested that antioxidants can help

reduce cancer risk (77) and effectively prevent cancer. In addition to

preventive effects, antioxidant supplementation during

chemotherapy can reduce the toxic and side effects of

chemotherapeutic drugs that may lead to ROS production (78). It

must be noted that the concentration of the supplied antioxidants is

crucial; a high concentration could cause an opposing effect (79).

Careful control of the dose of antioxidants administered to treat

some cancers could facilitate ROS scavenging, restore the redox

balance in tumor cells, and abate their growth advantage (79). A few

fungal polysaccharides, such as Lentinus fusipes polysaccharide (4)

and Tricholoma Lobayense polysaccharide (40), have been found to

eliminate superoxide anion and hydroxyl radical in vivo, prevent

nucleic acid damage and inhibit the proliferation of tumor cells to

some extent. Furthermore, He et al. studied the antioxidant activity

of several animal-derived polysaccharides. The results indicated

that both Philomycus bilineatus polysaccharide (58) and Edwardsia

sipunculoides polysaccharide (6) had free radical scavenging activity

in a dose-dependent manner.
3.4 Tumor microenvironment modulation

Tumor microenvironment (TME) provides essential support

for tumor growth and development. The exact composition of TME

varies among different types of tumors and different stages of

tumors. Generally, TME consists of immune cells, stromal cells,

blood vessels, and extracellular matrix (ECM) (80). Natural

polysaccharides possess a wide range of immune activations,
Frontiers in Immunology 05
which makes them have broad application prospects in local

tumor therapy targeting TME (81).

Macrophages are important immune cells in TME. They can be

divided into inflammatory M1 macrophages with good antigen-

presenting ability and cytotoxicity and immunosuppressive M2

macrophages involved in wound healing. TME promotes M2

phenotype through hypoxia and secretion of cytokines to support

tumor growth and progression (80). Wang et al. found that

Antrodia camphorata polysaccharide could reduce IL-6, IL-10,

COX-2 and TGF-b in the TME of tumor bearing mice and then

promote the transformation of tumor-associated macrophages

(TAMs) to M1 type, so as to restrict tumor growth (82). The

effect of natural polysaccharides on macrophages in TME is shown

in Figure 1B.

Tumor infiltrating lymphocytes (TILs) are another major class

of immune cells in TME. Polysaccharides usually achieve anti-

tumor effects by regulating the ratio of Th1/Th2, as seen in

Figure 1A. Th1 is a pro-inflammatory CD4+ T cell that activates

and promotes the proliferation of CD8+ T cells and natural killer

(NK) cells by secreting IL-2 and IFN-g. Th2 mainly secretes IL-4,

IL-5, IL-10 and IL-13, and first induces humoral immunity. More

and more evidences show that Th2 cytokines play a significant role

in mediating tumor immune escape, while Th1 cytokines are the

main immunomodulatory cytokines with anti-tumor properties

(59, 83, 84). For instance, Ganoderma atrum polysaccharide PSG-

1 can increase the production of IL-2, IFN-g and IL-12 (28), thereby
promoting the differentiation of Th0 into Th1. A polysaccharide-

protein complex from Scolopendra subspinipes mutilans L. Koch

(SPPC) has a similar effect, which can markedly enhance the ratio of

Th1/Th2 cytokines. At the same time, SPPC can also inhibit the

expression of IL-10 and TGF-b, resulting in increasing the

production of M1 macrophages (59).

Tumor cells affect or limit the function of dendritic cells (DCs)

antigen presentation via releasing growth factors and cytokines,

such as vascular endothelial growth factor (VEGF) and IL-10, which

finally leads to tumor immune escape (12). Thus, even with

su ffi c i en t numbe r s o f DCs infi l t r a t i n g t h e t umor

microenvironment, they do not perform their normal functions.

Astragalus polysaccharide (APS) has been found to promote DCs

activation by increasing the expression of some immune-related

suppressors such as CD86, CD80 and MHC-II on the DCs surface,

resulting in enhanced interaction between DCs and T cells (85). The

immunomodulatory function and mechanism of polysaccharides

will be discussed with more details in the next section.

Furthermore, in order to overcome the hypoxic and acidic

microenvironment, TME coordinated a procedure to promote

angiogenesis to restore oxygen/nutrient supply and remove

metabolic waste (80). A water-soluble polysaccharide from

Sargassum fusiforme (SFPS) can reduce the expression of CD31,

VEGF-A in SPCA-1 cells and so decrease tumor microvessel density

(MVD) (54). Liu et al. also proved by immunohistochemical

analysis that two sulfated derivatives of a-glucan from Phellinus

ribis (PRP-S1 and PRP-S2) are able to inhibit tumor angiogenesis by

down regulating the expression of VEGF in H-22 tumors (34).

Figure 1C outlined the process of natural polysaccharides inhibiting

tumor-related angiogenesis.
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4 Immunomodulatory

More and more natural polysaccharides have been widely

studied and applied being regarded as a class of immune-

stimulant. They not only activate the immune response by

combining mononuclear phagocytes (monocytes and

macrophages) and antigen presenting cells (APCs), but also

directly act on immune cells such as lymphocytes (T, B, NK cells)

and neutrophils (86). It is noteworthy that the regulation of

polysaccharides on immune cells is not carried out alone. Put

differently, the same polysaccharide may activate different

immune cells at the same time, therefore triggering a multi-

channel anti-tumor mechanism. The specific action mechanisms

of different polysaccharides are different. Figure 2 illustrates the

possible molecular mechanism of natural polysaccharides

regulating the immune system.
4.1 Macrophages and DCs

The mechanism of polysaccharides on macrophages is relatively

clear. In summary, they can promote the proliferation of

macrophages, enhance the phagocytosis of macrophages, and

stimulate the release of cytokines such as NO, TNF-a and IL-6

(87–89). Macrophages mainly bind to polysaccharides or their

derivatives through toll like receptors (TLR2 and TLR4), CD14,

mannose receptor (MR) and Dectin-1 receptor (10, 29, 86). The

activation of macrophage receptors can initiate a series of

intracellular signal cascades, leading to the transcriptional

ac t i va t ion and produc t ion o f inflammat ion re l a t ed

cytokines (Figure 2A).

Hsu’s team cloned the extracellular domains of 17 receptors

into Fc fusion proteins, and then detected whether they interacted

with polysaccharides by enzyme linked immunosorbent assay

(ELISA). The results showed that the receptors which could

interact with Ganoderma lucidum polysaccharide GLPs included

Dectin-1, DC-SIGN, langreen, Kupffer cell receptor, macrophage

mannose receptor, TLR2 and TLR4 (90). Dectin-1 is a C-type

lectin-like receptor, which recognizes glucans linked by b-1,3 and/

or b-1,6 glycosidic bonds (91) and mediates the biological effects of

b-glucans as immune cell activators (92). The response of these cells

to b-glucans requires the cytoplasmic tail and immunoreceptor

tyrosine-based activation motif (ITAM)-like domain of Dectin-1,

some of which involve collaboration with other signaling molecules,

such as toll like receptor, TLR-2 and the myeloid differentiation

factor 88 known as MyD88 (92). The polysaccharides isolated from

Cordyceps militaris can induce up regulation of NO, ROS, TNF-a
and phagocytosis by mitogen-activated protein kinases (MAPKs)

and nuclear factor kappa-B (NF-kB) signaling pathways through

Dectin-1 and TLR2 receptors in macrophages (93).

MR is another member of C-type lectin-like receptor family,

which can recognize many sugar molecules containing mannose or

focusing residues (94). The combination of polysaccharides and MR

can increase the phagocytic activity of macrophages, produce ROS,
Frontiers in Immunology 06
activate transcription factor NF-kB and induce the secretion of

cytokines (10).

Toll like receptors (TLRs) take a pivotal part in both innate

immune system and acquired immune system, and are one of the

hotspots involved in the function of immune regulatory receptors

(94). After binding with TLR4 and other receptors, polysaccharides

can activate PKC, MEK1, PAK and MAPKs, and transduce different

signal cascades, leading to different biochemical reactions, such as

the production of a variety of cytokines (95). TLR4 and TLR2

ligation brings about the activation of IL-1R associated kinase

(IRAK) via an adaptor MyD88, with subsequent activation of

TNF receptor-associated factor 6 (TRAF-6), MAPKs (p38 and

JNK) and NF-kB. It can also activate phosphoinositide-3-kinase

(PI3K)-Akt pathway via reactive oxygen species (ROS) signal, then

promoting activation of MAPKs (10). Finally, these activators enter

the nucleus and induce the expression of cytokines such as TNF-a,
I L -6 and induc i b l e n i t r i c ox id e syn tha s e ( iNOS) .

Lipopolysaccharide (LPS) is the cell wall component of Gram-

negative bacteria. TLR4 has been considered as the only immune

receptor of LPS for decades (96). LPS activates macrophages by

binding to TLR4, and IL-1b, IL-10, IFN-g and IL-6 are important

markers to evaluate LPS-stimulated macrophages (56, 97). Apart

from LPS, TLRs showed a wide range of affinity for a variety of

natural polysaccharides. For example, both Astragalus

polysaccharide APS (98, 99) and Tinospora cordifolia

polysaccharide G1-4A (56) can stimulate macrophages by

activating p38, ERK and JNK MAPKs in a TLR4-MyD88

dependent classical manner.

The surface distribution of receptors on DC cells is similar to

that on macrophages, which provides prerequisite for

polysaccharides to activate DCs. For instance, a polysaccharide

from Polyporus umbellatus (PPS or PUP) can up regulate the co-

expression of CD86 and CD11c on bone marrow DCs (BMDCs) via

TLR4, and significantly induce BMDCs to produce IL-12, which is

the most powerful stimulator for NK cells activation (37). In

another experiment, after treatment with a polysaccharide from

Codium fragment (CFPs), the concentrations of IL-6, IL-12 and

TNF-a in BMDCs medium increased evidently, which promoted

the activation of mouse DCs, NK cells and T cells (44). Additionally,

the combination of CFPs sin immunotherapy can improve the anti-

tumor effect of anti-PD-L1 antibody on lung cancer in animal

model (100).
4.2 Lymphocytes

T cells originate in the bone marrow and mature in the thymus.

In the thymus, T cells proliferate and differentiate into helper,

regulatory, or cytotoxic T cells or develop into memory T cells.

PSG-1, as mentioned above, is a homogeneous protein-bound

polysaccharide and has been proven to enhance the proliferation

of T lymphocytes. PSG-1 can not only elevate intracellular Ca2+

concentration and calcineurin (CaN) activity but also raise the p-

ERK, p-JNK, and p-p38 expression levels (28). Yu et al. found that
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PSG-1 may induce the activation of spleen lymphocytes at least in

part through Ca2+/CaN/NFAT/IL-2 signaling pathway and PKC/

NFAT/IL-2 signaling pathway synergistically (30). Regulatory T

cells (Tregs) have immunosuppressive effects, usually inhibiting or

down regulating the induction and proliferation of effector T cells.

Treg cells deficiency may lead to autoimmune diseases. However,

the high frequency of Treg cells present sin tumor infiltrating

lymphocytes (TIL) population often indicate poor clinical

prognosis (101). Codonopsis pilosula polysaccharide CPPS could

suppress excessive Tregs via surface receptor TLR4 mediated

signaling pathway, and trigger a shift of Th2 to Th1 with

activation of CD4+ T cells (46).

Both NK cells and neutrophils can interact with polysaccharides

through complement receptor 3 (CR3) and Dectin-1 receptor. CR3 is

a member of the b2 integrin family and consists of CD11b and CD18
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domains. CR3 mediates many different important functions including

leucocyte adhesion, activation, recruitment, host defense, phagocytosis

and immune tolerance functions through interactions with numerous

ligands such as iC3b, ICAM-1 and fibrinogen (102). A b-glucan from

Ganoderma lucidum (GLP) can initiate innate immunity by binding

CR3 on NK cells and directly activate neutrophils, eosinophils and T

cells or B cells (103). Another experiments have proved that GLP can

stimulate the production of cytolytic proteins (perforin and granule

protein), up regulate the expression of NKG2D/NCR cell surface

receptors, and activate intracellular MAPK signal (104). Moreover,

Huang et al. developed a polysaccharides mixture consisting of GLP

and PUP in a ratio of 3:1 (named GPP) and explored the biological

activity of the mixture. The results showed that GPP significantly

enhanced the function of RAW264.7 macrophage cells line and the

activity of primary NK cells (105).
FIGURE 1

Anti-tumor mechanism of natural polysaccharides. Polysaccharides not only induce apoptosis by directly acting on tumor cells, but also inhibit the
occurrence and development of tumors by acting on tumor microenvironment (TME). Among them, (A) indicates that natural polysaccharides
promote the expression of cytokines such as IL-2, IFN-g and IL-12, inhibit the expression of cytokines such as IL-4, IL-5, IL-10 and IL-13, resluting in
promoting the differentiation of Th0 cells into Th1 cells, which have anti-tumor effect. What’s more, natural polysaccharides activate DC cells,
allowing them to function normally in antigen presentation. (B) indicates that polysaccharide reduces the concentration of cytokines such as IL-6,
IL-10, COX-2 and TGF-b in TME, so as to promote the differentiation of M1 macrophages,which play an anti-tumor role. (C) indicates that
polysaccharides down regulate the expression of VEGF and so inhibit tumor related angiogenesis. (D) shows the direct anti-tumor effect of natural
polysaccharides: cell cycle arrest and inducing apoptosis.
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A few polysaccharides can directly stimulate the proliferation

and activation of B cells. For example, Alfalfa Polysaccharide APS

can effectively and selectively activate B cells and promote the

production of IgM in vitro. This effect is mainly achieved through

TLR4/MAPK/p38 pathway (41). In another experiment, a

homogenous polysaccharide from the mycelium of marine fungus

Phoma herbarum (YCP) was also foundto interact with TLR2 and

TLR4 to activate p38, ERK and JNK in cells and transfer the

transcription factor NF-kB into the nucleus, which finally led to

the proliferation of B cells and the increase of IgM (63).
5 Clinical application

Natural polysaccharides increasingly show their clinical

prospects in the field of anti-tumor and immune regulation for
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their easy extraction, low toxicity and changeable structures. More

and more polysaccharides products have been used in combination

with traditional chemotherapy drugs in order to enhance efficacy or

reduce toxicity, which is also called immunochemotherapy (106). In

Asia, due to the broad influence of traditional Chinese medicine,

macrofungi have been collected, cultivated, eaten and used for

medical purposes for at least 2,000 years. A variety of

polysaccharides extracted from fungi have become routine clinical

drugs. Among them, PSP and PSK, two commercial polysaccharides

products from Coriolus versicolor, are widely used in China and

Japan, respectively.

PSP is a commonly used adjuvant drug for cancer

chemotherapy or radiotherapy in China (107). It has been proven

that PSP enhanced the cytotoxicity of etoposide (VP-16) on human

breast cancer cells by interfering with S-phase progression and

DNA synthesis (108). Another study by the same authors found
A

B

FIGURE 2

Immunomodulatory mechanism of natural polysaccharides. Natural polysaccharides activate intracellular signaling pathways via a variety of surface
receptor binding modes (TLRs, Dectin-1, MR and CR3), and finally promote the proliferation and activation of immune cells [shown in (A)]. Various
immune cells interact with each other to form an immune regulation network, resulting in inhibiting the growth and metastasis of tumor [shown in (B)].
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that PSP could increase the sensitization of HL-60 cells to effective

apoptotic cell death induced by Camptothecin, suggesting that PSP

is a potential adjuvant in the treatment of human leukemia (109).

Jin et al. combined PSP and Astragalus polysaccharide APS into a

new complex prescription (PSP + APS), then they found that PSP

+APS could restore the immunological effects against adriamycin

(AMD) induced immunosuppression, such as the subset of

leukomonocyte, the expression of IL-2/IL-2R in the spleen, and

the thymus index (110).

As a non-specific immune stimulant, PSK has been used as an

adjuvant therapy for gastric and colorectal cancer in Japan for many

years (111). A systematic review and network meta-analysis showed

that PSK combined with chemotherapy could significantly improve

overall survival and disease-free survival without increasing side

effects. The analysis suggested that PSK could be used as a first-line

adjuvant immunochemotherapy drug in the clinical treatment of

patients with gastroenteric cancer (106). Another systematic review

indicated that when PSK was used as adjuvant treatment after

standard chemotherapy, radiotherapy or surgery, it could

prominently improve the immune function, tumor-related

symptoms and survival of patients with lung cancer (112). In

addition, Yamasaki et al. reported that PSK suppressed Hedgehog

signaling through down-regulation of mastermind-like protein 3

(MAML3) and recombination signal binding protein for

immunoglobulin-kappa-J region (RBPJ) transcription under

hypoxia, inhibiting the induction of a malignant phenotype in

pancreatic cancer (113), which provides a new idea for the

treatment of refractory pancreatic cancer.

Similarly, polysaccharides from other sources are gradually

accepted for clinic use. For example, dozens of polysaccharides

products, such as Poria cocos polysaccharide, Ganoderma lucidum

polysaccharide and Grifola frondosa polysaccharide, have been

approved by China food and Drug Administration (SFDA) for

chemotherapy or radiotherapy of a variety of cancers, hepatitis and

other diseases (114–116).

More potential polysaccharides for immunochemotherapy

are actively under research. Several polysaccharides have

been shown to restore cyclophosphamide (CTX)-induced

immunosuppression. CTX can reduce the activity of macrophages,

promote macrophage apoptosis, and down regulate the levels of NO,

IL-1b, IL-6 and TNF-a in macrophages. A natural high-methoxyl

homogalacturonan from Hippophae rhamnoide (HRWP-A) was able

to prolong the survival time of macrophages and inhibit their

apoptosis. Meanwhile, HRWP-A significantly increased the levels

of NO, IL-1b, IL-6 and TNF-a in peritoneal macrophages of CTX

induced immunosuppressive mice (48). Polysaccharide from Panax

notoginseng (NPPN) can not only directly inhibit the growth of H22

cells, but also improve the thymus index, cellular immunity, humoral

immunity and bone marrow hematopoietic function of CTX induced

immunosuppressive mice and bone marrow inhibitory mice (117).

Hepatocellular carcinoma is closely related to hepatitis B virus. A

novel polysaccharide from Flammulina velutipes (FVP1) has been

proven to effectively inhibit the expression of HBeAg, HBsAg and

HBV DNA replication in HepG2.2.15 cells, and has significant anti-

HBV activity. This suggests that FVP1 may be used as a dietary
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supplement with immunomodulatory activity for HBV infection

prevention (25).
6 Future prospects

The bioactivity of polysaccharides has been widely verified. On

one hand, polysaccharides directly inhibit tumor growth and

development through cell cycle arrest, apoptosis inducing, anti-

angiogenesis and tumor microenvironment regulating. On the other

hand, polysaccharides can also regulate the host’s immune system and

indirectly play an anti-tumor role by stimulating non-specific

immunity and specific immunity. Some molecular mechanisms of

polysaccharides’ bioactivity have been clarified, but more in-depth

research is needed to facilitate function-oriented polysaccharide drug

screening and design. The structural variability of polysaccharides

allows them to flexibly regulate some signaling pathways. However, it

was also suggested that polysaccharides lack specific targets. As a

result, based on current understanding, polysaccharides can only be

used as broad-spectrum adjuvants rather than targeted drugs. More

effort is required to be paid to the area of relationship between

structures and function of polysaccharides in the future.

Additionally, the absorption and metabolism of polysaccharides

are also important factors that affect their effective functioning.

Polysaccharides usually exert pharmacological activities by oral

administration. The absorption efficiency of polysaccharides after

oral administration varies greatly and is mainly determined by

factors such as charges (118), relative molecular mass (119), spatial

structure (120) and dosage (121). Studies have found that the oral

absorption of polysaccharides can be improved by structural

modification of the polysaccharides (122) and the use of

absorption enhancers (e.g. polyamines (123), chitosan (124) and

thiolated polymers (125)). Exploring the best approach for

improving the absorption would be beneficial for more effectively

exerting the biological functions of polysaccharides.
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TME tumor microenvironment

CDK2 cyclin dependent kinase 2

Cdc25A activator of CDK2

TNF tumor necrosis factor

TNFR1 TNF receptor 1

DDs death domains

DED death effector domain

Apaf-1 apoptotic protease activating factor-1

Bcl-2 B-cell lymphoma-2

Bax Bcl-2 protein family member

Bak Bcl-2 protein family member

ROS reactive oxygen species

ECM extracellular matrix

IL-n interleukins-n

COX-2 cyclooxygenase-2

TGF-b transforming growth factor-beta

TAMs tumor-associated macrophages

TILs tumor infiltrating lymphocytes

DCs dendritic cells

BMDCs bone marrow DCs

NK cells natural killer cells

IFN-g interferon-gamma

VEGF vascular endothelial growth factor

MHC major histocompatibility complex

MVD microvessel density

APCs antigen presenting cells

TLRs Toll-like receptors

MR mannose receptor

ELISA enzyme linked immunosorbent assay

ITAM immunoreceptor tyrosine-based activation motif

MyD88 myeloid differentiation factor 88

MAPKs mitogen-activated protein kinases

ERK/JNK/p38 subfamily of MAPKs

NF-kB nuclear factor kappa-B

PKC protein kinase C

MEK1 mitogen-activated extracellular signal-regulated kinase 1

IL-1R IL-1 receptor

IRAK IL-1R associated kinase
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F
rontiers in Immunolog
y 13
Continued

TRAF-6 TNF receptor-associated factor 6

iNOS inducible nitric oxide synthase

LPS lipopolysaccharide

PI3K phosphoinositide-3-kinase

CaN calcineurin

NFAT nuclear factor of activated T cells

Tregs regulatory T cells

CR3 complement receptor 3

ICAM-1 intercellular cell adhesion molecule-1

NKG2D natural killer group 2D

NCR natural cytotoxicity receptors

MAML3 mastermind-like protein 3

RBPJ immunoglobulin-kappa-J region.
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