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Capturing the multifaceted
function of adipose
tissue macrophages
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and Beiyan Zhou1,2*

1Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United
States, 2Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
Adipose tissue macrophages (ATMs) bolster obesity-induced metabolic

dysfunction and represent a targetable population to lessen obesity-associated

health risks. However, ATMs also facilitate adipose tissue function through

multiple actions, including adipocyte clearance, lipid scavenging and

metabolism, extracellular remodeling, and supporting angiogenesis and

adipogenesis. Thus, high-resolution methods are needed to capture

macrophages’ dynamic and multifaceted functions in adipose tissue. Herein,

we review current knowledge on regulatory networks critical to macrophage

plasticity and their multifaceted response in the complex adipose

tissue microenvironment.
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1 Introduction

Obesity is a prevalent health risk to an expanding list of co-morbidities, increasing

global rates of disability and mortality (1–3). Obesity induces white adipose tissue (WAT)

dysfunction that significantly contributes to obesity-associated health risks through

chronic, low-grade tissue inflammation, insulin resistance, hyperlipidemia, and

hypertension (4). Studies have demonstrated that controlling obesity-associated WAT

inflammation can improve tissue function and systemic health (5–9).

Within white adipose tissue, macrophages are the most abundant immune population.

During obesity, the adipose tissue macrophage (ATM) population increases 10-fold in cell

number and exacerbates local inflammation. ATMs originate from hematopoietic stem-

cell-derived circulating monocytes and self-replicating tissue residents seeded during fetal

development (10–12). Inhibiting macrophage expansion by limiting monocyte-derived

macrophage recruitment during obesity lessens WAT inflammation (11, 13, 14). However,

the ATM population is heterogeneous and critical to tissue function. Indeed, inhibition of

specific ATM functions worsens systemic metabolic health (15). Thus, it is essential to

understand the molecular signaling pathways that enrich beneficial ATM functions under

obesity rather than eliminate them. Several ATM functions have been identified, including
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dead adipocyte clearance, lipid scavenging and metabolism,

extracellular remodeling, and supporting angiogenesis and

adipogenesis. In addition, the macrophage population in brown

adipose tissue is less defined, but several studies demonstrate their

importance in maintaining thermogenesis (16–18). This review

summarizes ATM functions important to white adipose tissue

and relevant regulatory pathways that promote these actions.

Herein, we aim to demonstrate the power of high-resolution

investigations to characterize diverse macrophage populations and

the need for function-based analysis to deconvolute targetable

networks to lessen obesity-induced comorbidity and mortality.
2 Macrophage diversified responses

Macrophages can perform an array of functions to diverse

stimuli, including pathogen- and damage-associated molecular

patterns, cytokines, chemokines, metabolites, and extracellular

vesicles (19, 20). Several models have been developed to classify

macrophage features. One of the most widely utilized models is the

M1/M2 paradigm, which delineates two central functional states:

classically activated macrophages (M1) and alternatively activated

macrophages (M2) (21). This and other in vitro models have

allowed the characterization of regulatory mechanisms and

signaling pathways crucial to several macrophage responses. It is

now appreciated that these in vitro-based models do not

recapitulate the complex stimuli experienced by tissue-resident

macrophages but provide a basis to deconvolute the responses

seen in vivo. Thus, mapped macrophage responses to stimuli

experienced in adipose tissue and other physiologic and

pathogenic states will be summarized in the following

section (Figure 1A).
2.1 Cytokines and chemokines regulating
macrophage actions

WAT is a source of adipokines, including immune modulatory

cytokines, chemokines, and growth hormones. Many in vitro

studies have detailed cytokines/chemokines that differentially

contribute to the polarization of macrophages. Tumor necrosis

factor alpha (TNF-a), interferon gamma (IFN-g), C-C motif

chemokine 2 (CCL2), CCL4, and interleukin 8 (CXCL8) can

induce the classical activation of macrophages. M1-polarized

macrophages provide acute pro-inflammatory effector functions

by expressing reactive oxygen species, nitric oxide, and secretion

of type-1 cytokines such as TNF-a, IFN-g, and interleukin 1 beta

(IL-1b). In contrast, macrophages are activated towards M2

polarization by IL-4, IL-13, IL-10, IL-17A, IL-25, and CCL5 to

resolve acute inflammation and secrete type-2 cytokines, including

IL-10 and arginase (21–25). The effect of cytokines on the

polarization of macrophages has been investigated through in

vivo studies in various contexts relevant to ATM functions (22,

26–28). Administration of IL-25 to obese mice mitigated weight

gain through enhanced ATM M2-polarization, mitochondrial

respiratory capacity, and lipolysis, demonstrating the therapeutic
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potential of targeting macrophage actions in obesity-associated

disease (22).
2.2 Pattern recognition receptors relevant
to ATMs

Macrophages are armed with an extensive repertoire of germ-

line encoded pattern recognition receptors (PRRs) that recognize

conserved molecular patterns that stimulate rapid innate immunity.

Macrophages are also phagocytic and respond to particulate ligands

from engulfed vesicles. Macrophage PRRs and ligands are

summarized elsewhere (29); herein, we focus on those implicated

in adipose tissue function. Receptor ligand interactions regulate

macrophage responses via the release of stored mediators,

transcription activation, and metabolic reprogramming. An

important family of PRRs is Toll-like receptors (TLRs), which

elicit pro-inflammatory responses to exogenous and endogenous

molecular targets. TLR4 can be activated by lipopolysaccharide to

initiate classical macrophage polarization (M1), as well as saturated

fatty acids (30, 31), which are rich in obese AT. Inhibiting TLR4

signaling in models of obesity improves systemic metabolic

function (32). Macrophages also express phosphatidylserine

recognition receptors, scavenger receptors, type 3 complement

receptors (CR3), b-glucan receptors, Fc receptors, and mannose

receptors. Phosphatidylserine recognition receptors are a diverse

group of proteins apt for recognizing apoptotic cells (33). Their

dynamics in ATMs warrant further investigation, given their role in

adipocyte clearance. Within scavenger receptors, CD36 is elevated

in ATMs under obese stress (34). CD36 is a receptor for long-chain

fatty acid transport (35) and binds various danger-associated

molecular patterns (DAMPS) (31, 36, 37). Ligand-dependent

activation of signaling cascades through CD36 relies on specific

co-receptors and partners (33). Fatty acid binding to CD36

upregulates fatty acid oxidation (38), while DAMP interactions

initiate a pro-inflammatory cascade in macrophages (39). CD36-

mediated triacylglycerol uptake is necessary to support M2

activation through stimulating lipolysis and elevated oxidative

phosphorylation (40). In the case of circulating macrophages,

CD36 binding to oxidized low-density lipoproteins initiates a

cellular metabolic shift to activate Mitogen-activated protein

kinases (MAPK) signaling towards M1-polarization (39, 41, 42).
2.3 Key signaling pathways in
macrophage function

Various stimuli elicit common downstream signaling pathways

and metabolic programs, yielding similar macrophage responses.

These signaling cascades’ strength is tuned by small non-coding

RNAmolecules termed microRNA (miRNAs). The effect of miRNA

on the polarization of

macrophages and its impact on ATM function has been

extensively researched and is reviewed elsewhere (43). Notably,

miR-155 and miR-223 are key regulators of macrophage

polarization and profoundly impact systemic metabolism in obesity.
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M1 polarization relies on the Janus kinase-signal transducer

and activator of transcription (JAK-STAT) pathway via nuclear

factor kappa B (NF-kB and MAPK signaling (44). The microRNA

miR-155 supports pro-inflammatory activation of macrophages

(45, 46) by repressing the translation of potent anti-inflammatory

mediators including Socs1, Ship1, and IL13Ra1 (47–50).

In contrast, M2 activation depends on the transcription factor

Peroxisome proliferator-activated receptor g (PPARg), activated
downstream of IL4-IL4R signaling. PPARg stimulates miR-223

expression, supporting PPARg in a positive feedback loop (51–

53). miR-223 suppresses components of NF-kB signaling, including

Nfat5, Rasa1, and PKNOX1, therein reducing pro-inflammatory

cytokine production (51–53). Obese mice with systemic deletion of

miR-223 had heightened WAT pro-inflammatory macrophage

infiltration, inflammation, and worsened systemic metabolism (51).
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2.4 Macrophage cellular metabolism

Macrophage cellular metabolism is integral to activation and

function. For pro-inflammatory activation, macrophages rely on

HIF1a-mediated aerobic glycolysis enrichment (40, 54, 55),

increasing glucose and oxygen consumption likely to increase the

production of reactive oxygen species (40). M2-polarization

requires lipolysis and oxidative phosphorylation (56); inhibiting

metabolic reprogramming severely weakens M2-mediated

responses, including clearance of parasite helminth infections

(56). Macrophage lipid metabolism is regulated through lipid

uptake, synthesis, and clearance through mediators Sterol

regulatory element-binding protein 1 (SREBP) and L-xylulose

reductase (LXR). Inhibition of SREBP signaling in ATMs reduces

cholesterol efflux, activating M1-polarization cascades and
A

B

FIGURE 1

ATMs experience a complex microenvironment with opposing and compounding signals that results in a spectrum of activity. (A) Key stimuli, receptors,
and signaling cascades known to control macrophage actions and implicated in ATM biology. (From Left to Right) M1-polarizing cytokines include TNF-a
and IFN-g. M1-polarizing chemokines are also present in AT and include CCL2, CCL4, and CXCL8. DAMPS= Danger-associated molecular patterns
including exogenous (lipopolysaccharide) and endogenous signaling (e.g. apoptotic cells) are recognized through TLR4 to elicit pro-inflammatory signaling
(JAK-STAT/NK-kB/MAPK) towards the production of type-1 cytokines (TNF-a, IL-1b, IFN-g). miR-155 promotes M1-polarization through inhibition of
signaling cascades towards PPARg. FFA= Free Fatty Acids signaling through TLR4 elicits pro-inflammatory activation; CD36 transports FFAs, upregulating
fatty acid oxidation and OXPHOS= Oxidative Phosphorylation. CD36 also recognizes DAMPs to activate pro-inflammatory activation. M2-polarizing
cytokines (IL-4, IL-13, IL-10, IL-17A, IL-25) activate PPARg to produce type-2 cytokines (IL-10, TGF-b). miR-223 promotes M2-polarization through the
repression of pro-inflammatory signal cascade components. OXPHOS is required for M2 actions. Adipocyte-derived exosomes transport neutral lipids
(including TAG=Triacylglycerols) into macrophages, which induce lysosomal biogenesis for lipid metabolism. Trem2 and Tim4 also elicit lysosomal
biogenesis, but the ligands and downstream signaling cascades are unclear. (B) Macrophages are plastic, responding to diverse stimuli to provide
appropriate action. Due to the plasticity of macrophages, their multifaceted capacity, and the complex microenvironment in AT, a single ATM can perform
various actions. The ATM population is best represented as a spectrum of macrophage functions.
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increasing the proportion of pro-inflammatory ATMs (57). In

addition, LXR-stimulated fatty acid synthesis represses pro-

inflammatory cytokine production in ATMs and increases

systemic insulin sensitivity in obesity (58). However, TLR4-

mediated signaling inhibits LXR-mediated fatty acid synthesis and

downstream Myeloid differentiation primary response protein

(MyD88)- and TIR domain-containing adapter molecule (TRIF)-

signaling pathways alters the lipid composition of macrophages to

intensify inflammation (59). These opposing signaling cascades are

likely responsible for the spectrum of ATMs activation states

observed in vivo (Figure 1B).
3 Macrophage actions in white
adipose tissue

ATM populations are heterogeneous, containing specialized

subsets that can perform pro-inflammatory actions, lipid

scavenging and metabolism, extracellular remodeling, and support

angiogenesis and adipogenesis (Table 1) . Funct ional

characterization of tissue-resident macrophages is necessary to

understand their regulation and identify modulatory pathways to

promote metabolic health in obesity.
3.1 Pro-inflammatory actions

A primary function of recruited macrophages in WAT is

immune activation for the removal of dead adipocytes,

accomplished by pro-inflammatory ATMs. ATMs produce pro-

inflammatory mediators that bolster tissue and systemic

inflammation including TNF-a, IL-6, IL-1b, CCL2, Inducible
nitric oxide synthase (iNOS), and others (65). Under obesity

stress, WAT remodeling is continual, and the macrophage per

adipocyte ratio increases significantly (10, 60, 66). The first

characterization of ATM dynamics in lean and obese conditions

found a shift from M2-like to M1-like cell predominance under

obesity and secrete elevated TNF-a (60, 61). RNA-sequencing

identified CD9-expressing, pro-inflammatory ATMs that

surround dead adipocytes are abundant in obesity (15). ATMs

also contribute to local tissue immune activation through antigen

presentation to resident adaptive immune cells. During obesity,

ATM express increased major histocompatibility complex II
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(MHCII) and co-stimulatory molecules to activate CD4+ T

cells (67).

Notably, glucagon-like peptide-1 (GLP-1) agonists and GLP-1

analogs are a class of medication utilized in the treatment of obesity

and type 2 diabetes (68, 69). Administration significantly reduces fat

mass and macrophage per gram of fat in models of obesity (70).

ATMs and peritoneal macrophages from treated mice also express

less TNF-a and IL-6 (70), suggesting a possible direct role on

macrophage activity. Given the impact of GLP-1 on obesity-

induced health risk, further investigation into their impact on

ATM actions is warranted.
3.2 Lipid-buffering

Macrophages support adipose tissue storage capacity by

metabolizing lipids through lysosomal lipolysis. While all ATMs

upregulate surface expression of the CD36 after a high-fat meal

(34), subsets of specialized lipid-handling ATMs have been

identified in both lean and obese WAT. In lean WAT, a subset of

ATMs delineated by phospholipid-transporting ATPase ABCA1

(Abca1), T-cell immunoglobulin and mucin domain-containing

protein 4 (Tim4), and lymphatic vessel endothelial hyaluronic

acid receptor 1 (Lyve1) expression are self-replicating and most

apt for lipid uptake and metabolism (34). After a meal, Tim4+

ATMs increase their lipid uptake, lysosomal content, and release

HDL as part of the reverse cholesterol pathway (34).

During obesity, ATM transcriptomes demonstrate lysosome

biogenesis is significantly enriched (66). Lipid-laden ATMs are

more abundant and associated with elevated lysosome content

(15, 62, 66). While Tim4+ ATMs persist in obesity, a novel lipid-

laden ATM subset predominates. High-resolution investigations

first delineated obesity-associated lipid-laden ATMs with CD9

expression (15), which were further demarcated by Triggering

receptor expressed on myeloid cells 2 (Trem2) expression in both

mice and humans (62). Recruited monocyte-derived macrophages

are programmed by Trem2 signaling into lipid-laden ATMs (15).

While inhibiting infiltration of monocyte-derived macrophages into

obese WAT lessened overall tissue inflammation (11, 13, 14),

specific inhibition of the Trem2 lipid-laden program of recruited

macrophages exacerbates dyslipidemia and adipocyte hypertrophy,

worsening overall metabolic health (15). Interestingly, ATMs

uptake neutral lipids from adipocyte-derived exosomes, a distinct
TABLE 1 Macrophage functions in adipose tissue and identified markers/features of specialized cells.

Adipocyte Tissue Macrophage Functions Key features Citation

Pro-inflammatory functions
(Dead adipocyte clearance, Immune activation)

CD9+, TNF-a expression (15, 60, 61)

Lipid-Handling
Tim4+, Abca1+, Lyve-1+ (Lean)
Trem2+, CD9+ (Obese)

(34, 62)

Extracellular Remodeling and Angiogenesis Lyve-1+, MMP-9,-12 expression (63)

Adipogenesis Osteopontin expression (61, 64)
fro
While delineated features and markers have been identified for cells that are best equipped to perform these functions, macrophages are multifaceted and plastic in nature and likely perform
multiple actions.
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means of lipid handling for macrophages (71). Adipocyte-derived

exosomes can induce ATM features from monocytes in vitro and,

during obesity, are released at a significantly higher rate (71). Tim4

and Trem2 are relevant for ATM lysosome biogenesis. However,

their ligand and downstream signaling cascades have not been

elucidated. Tim4 and Trem2 are receptors for phosphatidylserine, a

major component of exosomes (72, 73). Further research into the

mechanism of adipocyte exosomes in developing lipid-laden ATMs

could yield translatable discoveries for metabolic disease.
3.3 Extracellular remodeling and
supporting angiogenesis and
adipogenesis

WAT angiogenesis, adipogenesis, and extracellular remodeling

are tightly linked processes to expand lipid storage capacity. ATMs

regulate each process, but it is unclear if specialized subsets persist

in WAT to perform these actions or if multifaceted macrophages

contribute to these functions. While these cells do not recapitulate

the M2 program, tissue remodeling and Transforming growth

factor b (TGF-b) production have been described as an action of

M2-polarized macrophages (74, 75). Whether important regulatory

pathways towards M2 activation are responsible for ATM

extracellular remodeling, angiogenesis, and adipogenesis

remains unclear.

Angiogenesis is crucial to prevent hypoxia in expanding WAT.

Increasing AT capillary density abrogates obesity-induced insulin

resistance and metabolic dysfunction (76). A monocyte-derived

ATMs expressing Lyve1 are recruited to hypoxic outgrowths of

WAT in adolescent, lean mice. Lyve1+ ATMs express angiogenic

matrix metalloproteinases (MMPs) and other angiogenic factors to

form dense vascular networks that permit subsequent adipogenesis-

mediated WAT development (63). MMPs degrade extracellular

matrix components and are elevated in models of obesity.

However, the extent of Lyve1+ ATM extracellular remodeling has

yet to be explored. In addition, examples of macrophage-dependent

angiogenesis in other contexts suggest M1 and M2 features are

required for different stages of angiogenesis (77).

WAT requires extracellular remodeling to reduce stress on

expanding and newly generated adipocytes and allow for proper

vascularization. Unresolved remodeling and inflammation can lead

to excessive extracellular matrix (ECM) component deposition,

known as fibrosis. Obesity-induced WAT fibrosis has been linked

to worsened metabolic dysfunction resistant to weight loss (78–80).

In models of obesity-associated WAT fibrosis, macrophage

depletion ameliorates fibrosis by reducing tissue inflammation

and fibroblast activation (74). The primary mediator of

macrophage-mediated activation of fibroblasts is TGF-b (63, 74,

81). In contrast, macrophages are also capable of ECM component

uptake and degradation; however, these actions have not been

explored in WAT.

Adipose tissue undergoes continual adipocyte turnover,

refreshing the population through adipogenesis. In addition to

adipogenesis within tissue outgrowths, ATMs initiate

adipogenesis by expressing osteopontin to recruit pre-adipocytes
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towards a dying adipocyte (61, 64). In this way, the adipocyte is

quickly replaced, and newly differentiated cells have space to

develop; however, localization of the progenitor cell to the

periphery of pro-inflammatory ATM clearance of a dead cell can

be a double edge sword. Pro-inflammatory mediators such as TNF-

a repress master adipogenic transcription factor PPARg in pre-

adipocytes (82, 83). During obesity, insufficient adipogenesis forces

adipocytes to increase in size, or hypertrophy, and is correlated with

increased inflammation, worsened metabolic health, and greater

risk for co-morbidities (84–89).
4 Capturing dynamic ATM actions

Traditional methods to infer macrophage function rely on

detecting a limited number of M1/M2 markers at the RNA or

protein levels. Transcriptomic investigations, including

microarrays and RNA-sequencing, have demonstrated the

diversity of ATMs that cannot be neatly dichotomized into M1/

M2 (15, 90) and revealed the importance of lipid-mediated

reprogramming (15, 66). The advent of single-cell RNA-

sequencing (scRNA-seq) has permitted unparalleled resolution

to characterize the diversity in the immune compartment of

adipose tissue.
4.1 Strategies in single-cell
RNA-sequencing

ScRNA-seq generates highly dimensional data, and strategies to

analyze begin with performing dimension reduction to facilitate

downstream comparisons. Most strategies for dimension reduction

utilize the whole transcriptome to establish similarities across cells,

such as t-distributed stochastic neighbor embedding (tSNE) (91)

and uniform manifold approximation and project (UMAP) (92).

Following dimension reduction, cells are typically clustered into

groups based on relative distances in the low-dimensional

projection and overall transcriptomic similarity. These

unsupervised algorithms delineate cells well based on major

perturbations in the transcriptome to cluster cells based on

lineage or for de novo subset identification. Researchers can then

characterize clusters based on known cell markers and differential

gene expression. However, due to frequent gene “dropouts” in

scRNA-seq data, where expressed genes are not detected, and the

variable turnover of marker proteins, traditional biomarker genes

are not always reliable. To accommodate the disconnect observed

between mRNA and protein levels, semi-supervised tools have been

developed that use machine learning-based classifiers or manually

curated lists of biomarkers to classify groups of cells based on their

transcriptomic profiles (93–95). In addition, multiomic strategies

combining scRNA-seq with targeted proteomic analysis (96) or

spatial location (97) are becoming more popular. Application of

scRNA-Seq in adipose tissue depicted the heterogeneity of ATMs,

revealing the lipid-handling Tim4+ and obesity-associated Trem2+

population in mice (34, 62) and tissue immune cell dynamics across

lineages in lean and obese humans (98).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1148188
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Matz et al. 10.3389/fimmu.2023.1148188
Beyond identifying cell subsets, cell function is of great scientific

interest in scRNA-seq studies. Several programs have been widely

applied for the downstream cluster-based annotation of gene

ontology from transcriptomics data, including DAVID (99, 100)

and Qiagen Ingenuity Pathway Analysis (IPA) (101). However,

these methods are not high-throughput and thus cannot represent

the continuum of cell actions. In addition, while traditional whole-

transcriptome dimension reduction and clustering techniques work

well to distinguish cell lineages, differences in cell function,

especially for cells such as macrophages, are often represented by

much more subtle transcriptomic changes. Therefore, cell

functional annotation in scRNA-seq data is a current technical

challenge representing an area of active research.
4.2 Algorithms for function-guided
cell annotation

Depicting the dynamic actions of macrophages in

transcriptomics data has been challenging. Due to the whole-

transcriptome input into unsupervised algorithms, functional

distinctions are not intentionally utilized for clustering. Further,

cells respond to diverse stimuli that induce divergent

transcriptomes for multifaceted functions (102). Thus, capturing

complex stimulation-induced signaling network changes towards

multifaceted actions poses an important technical challenge in

bioinformatics (103). To this end, we have designed two programs,

MacSpectrum (90) and AtheroSpectrum (104), to depict three actions

of macrophages along a spectrum of action intensity: monocyte

maturation, macrophage inflammatory polarization, and

atherosclerosis-related foaming. Applications of MacSpectrum in

ATMs depicted the enrichment of pro-inflammatory ATMs in

obesity (90), permitting investigation into obesity-associated

macrophage inflammatory programs. Further, MacSpectrum

characterized an ATM CD206+CD11c- subset enriched in diabetic

obese humans as phenotypically distinct, with terminal differentiation

and less pro-inflammatory than lipid-laden cells (105).

AtheroSpectrum is tailored to atherosclerotic macrophages.

Utilization of AtheroSpectrum revealed two novel macrophage

foaming programs: homeostasis foaming and pathogenic foaming,

the latter associated with cardiovascular disease. Depicting these

distinct programs allowed for a focused investigation into

pathogenic foaming that enabled leveraging program-specific genes

to improve cardiovascular risk prediction models (104). These

programs demonstrate the importance of depicting macrophage

plasticity to parse out nuanced regulatory networks driving

diversified macrophage function.
5 Discussion

Obesity is a major health risk in part due to adipose tissue

dysfunction. In the adipose tissue, macrophages potentiate local
Frontiers in Immunology 06
inflammation through pro-inflammatory cytokine production and

immune activation. However, ATMs represent a heterogeneous

population that support tissue function through dead adipocyte

clearance, lipid-buffering, extracellular remodeling, and

supporting angiogenesis and adipogenesis. High-resolution

techniques have allowed the identification of ATM subsets best

suited to these functions. Leveraging scRNA-seq techniques to

capture the spectrum of multifaceted macrophage actions

allows for important macrophage programs to emerge that are

not evident using traditional macrophage categorization

models or low-resolution techniques. Function-guided

macrophage annotations are important to understanding tissue

heterogeneity and investigating ATM programs correlated with

metabolic health.
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