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Alopecia areata (AA) is a non-scarring hair loss disorder caused by autoimmunity.

The immune collapse of the hair follicle, where interferon-gamma (IFN-g) and
CD8+ T cells accumulate, is a key factor in AA. However, the exact functional

mechanism remains unclear. Therefore, AA treatment has poor efficacy

maintenance and high relapse rate after drug withdrawal. Recent studies show

that immune-related cells and molecules affect AA. These cells communicate

through autocrine and paracrine signals. Various cytokines, chemokines and

growth factors mediate this crosstalk. In addition, adipose-derived stem cells

(ADSCs), gut microbiota, hair follicle melanocytes, non-coding RNAs and specific

regulatory factors have crucial roles in intercellular communication without a

clear cause, suggesting potential new targets for AA therapy. This review

discusses the latest research on the possible pathogenesis and therapeutic

targets of AA.
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1 Introduction

Alopecia areata (AA) is a non-scarring hair loss disorder that affects about 2% of the

population, regardless of race, gender, or age (1, 2). The symptoms and signs of AA vary

depending on the severity of the condition, from patchy hair loss to diffuse hair

involvement on the scalp or the whole body (3, 4). Most AA patients experience

unpredictable relapses and remissions (5). Studies show that it lowers the quality of life

of patients and may lead to emotional disorders such as depression and anxiety (6–8).

Further associations between AA and certain inflammatory and metabolic diseases have

been observed, increasing the probability of developing them (9, 10); however, causality

remains to be established and the exact pathogenesis of AA is still to be discovered. The

pathogenesis of AA is driven by immune factors, as the current mainstream view suggests

(11). Genetic factors may also contribute. Variants in PRDX5 and STX17, genes expressed

in the hair follicle, can impair its immune privilege and induce autoimmune responses

leading to hair loss (12). A recent study linked mutations in KRT82 to the loss of hair

follicle immune privilege and CD8+ T cell infiltration (13). These mutations may

contribute to the loss of immune privilege of the hair follicle, which may be a
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contributing factor of AA development (14, 15). Current

conventional treatments and immunobiological therapies do not

provide the durable effect or permanent reversal of AA (16, 17).

Therefore, it is essential to understand AA pathogenesis

comprehensively and identify new therapeutic targets. CD8+ T

cells have been considered the culprit in AA (18), but with the

development of cellular and molecular biology, it was discovered

that they are not the only driver of AA. In addition, studies have

revealed that numerous unconventional, such as gamma delta (gd)
T cells, interact with CD8+ T cells and influence AA pathogenesis

(19, 20), as shown in Figure 1A. Simultaneously, ADSCs, gut

microbiota, hair follicle melanocytes, and non-coding RNA may

contribute to the development of AA. However, the causal

relationship between these factors and AA is unclear. This review

will provide an overview of the relevant studies.
2 gd T cells

According to different receptor types, T cells can be classified

into two subtypes: ab T and gd T cells (21). gd T cells constitute

fewer than 5% of the population and are uncommon in the T cell

compartment of the blood and secondary lymphoid organs. Still,

they are abundant in the skin epithelial tissues (22). Antigen-

presenting cells (APCs) detect antigens with the help of the major

histocompatibility complex (MHC) molecules on their surfaces.

Unlike most human T cells that are MHC-restricted, gd T cells do

not need MHC activation to recognize antigens, as they are major
Frontiers in Immunology 02
players in innate immune responses along with inflammasomes and

INF g (23–25). Additionally, gd T cells produce cytokines in the

periphery and can be recruited to the lesion where they accumulate

(26). This process occurs more rapidly than ab T cell activation.

The ability of gd T cells to get activated without specific T cell

receptor (TCR) ligands renders them potent early inflammasome

inducers (27, 28). Depending on their cytokine production, gd T

could be classified into three subsets: IL-17 producers, IFN-g
producers, and IL-4 producers (29). High levels of IFN-g can

trigger skin-related autoimmune disorders via its expression. A

recent study revealed that gd T cells could also express natural killer

group 2D (NKG2D) (30). AA patients’ hair follicles highly express

CD1d and human major histocompatibility complex class I chain-

related gene A (MICA), which can bind to MHC-I and NKG2D

receptors and promote AA occurrence (31, 32), as shown in

Figure 1B.

The researchers compared the number and activation state of T

cells in the lesional and non-lesional scalps of AA patients to the

scalps of healthy controls. Uchida et al. (33) indicated that the

number of gd T cells was significantly higher in the scalp of AA

patients than in healthy controls. gd T cells promote inflammation,

resulting in high NKG2D and IFN-g expressions. They discovered

that gd T cells increased in both AA non-lesional and lesional scalps,

primarily in and around the hair follicle, presenting that gd T cells

play a role in the early development of AA and are agonists for the

onset of AA, thereby facilitating the identification of future

treatment targets. Additionally, their research discovered (34) that

human gd T cells have a physiological stress sentinel role, wherein
FIGURE 1

Immune responses involved by associated cells around AA hair follicles. (A) presents that the cells involved in the immune response of AA hair
follicles in anagen primarily include gd T cells, TRM cells, Treg cells, Tol DCs, iNKT 10 cells, ADSCs, and melanocytes. When immune privilege
collapses and self-antigens are exposed, AA is produced and has various effects, including activating iNKT10 cells, gd T cells, and TRM cells in the
vascular plexus around the hair follicle and suppressing Tol DCs, Treg cells, ADSCs, and melanocytes. Tol DC and Treg cells can mutually activate.
(B) indicates that TCR on gd T cells can bind to CD1d and MICA/B in hair follicle epithelial cells, and NKG2D on its surface can bind to CD8+ T cells,
release IFN-g, and activate CD8+ T cells. TRM can release CXCL9 and IFN-g and can express CD69 and CD103. Treg cells can express FOXP3, CD25,
and CD4, produce IL-2, IL-10, and TGF-b, suppress CD8+ T cells, inhibit the autoantigen production on hair follicle epithelial cells, and activate Tol
DCs. Tol DC can release retinoic acid, TGF-b, and IL-10, promote Treg cells and inhibit CD8+ T cells. iNKT 10 cells can release IL-10 to inhibit CD8+

T cells, and ADSCs can release IL-4 and IL-5 to inhibit CD8+ T cells. Hair follicle melanocytes can bind to CD8+ T cells via melanin-associated
antigens and be attacked by T cells. Hair follicle epithelial cells can bind to CD8+ T cells and activate CD8+ T cells to release INF-g. Created with
Biorender.com.
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their hyperactivity can promote autoimmunity against stressed HF

overexpressing CD1d and MICA, which is essential for the early

onset of AA. Therefore, inhibiting gd T cells in the hair follicle could

be a proper neoadjuvant method for treating acute AA.

Research on gdT cells has shown promise in the treatment of

various diseases. Targeting immune checkpoints around tumors

can improve the function of gdT cells within the tumor

microenvironment, leading to enhanced proliferation, activation

and cytotoxicity (35). Recent studies have also identified CFTR, a

regulator of chloride and ion channels primarily studied in

epithelial cells and expressed on gd T cells, as a negative regulator

of IFN-g production and antitumor immunity (36). Both genetic

overexpression and pharmacological activation of CFTR can reduce

IFN-g release by peripheral gd T cells. Thus, targeting gd T cells

around hair follicles may hold significant potential for treating

of AA.
3 Tissue-resident memory
T cells (TRM cells)

TRM cells are long-lived lymphocytes that remain in tissues,

particularly in the skin, making it an ideal location for rapidly

responding to infection (37). They are essential immunological

components that provide the organism with an immediate and

precise response to pathogen reinfection or antigen re-exposure of

peripheral tissues and are involved in early inflammation (38, 39). TRM

cells can continuously monitor and inspect tissues. When suspected

antigens and pathogens are discovered, TRM cells are activated (40,

41). It can mediate the immunological responses of other immune

cells and tissue (42). Additionally, it may produce cytokines, such as

IFN-g (43), and release cytotoxic substances, such as granzyme B and

perforin (44). TRM cells are crucial in tissue differentiation and the

early period of an inflammatory immune response. Tissue-specific

signals influence its differentiation (45). TRM cells are predominantly

generated by T cell-mediated immunological responses (46).

Simultaneously, TRM cells can recirculate memory T cells through

the blood and lymphoid organs (47). However, the number of TRM

cells decreases during recirculation. Recent research has demonstrated

that TRM cells can also be created during autoimmunity. TRM-

mediated autoimmunity is extremely devastating because

autoantigens cannot be eliminated and continue to stimulate self-

reactive TRM cells (48).

NKG2D+ andCD8+ T cells are responsible for the advancement of

AA, inducing a collapse of immunological response by activating T

cells and dendritic cells and causing perifollicular T cells to produce

IFN-g, CXCL9, and CXCL10 (5), as shown in Figure 1B. Duca et al.

(49) discovered that an AA scalp had more CD103+CD69+ TRM cells

than a non-lesional scalp via TCR sequencing of CD8 T cells. Notably,

Janus kinase inhibitors (JAKi)-treated AA patients are susceptible to

relapse during the off-drug interval. A study revealed a rise in

CD103+CD69+ TRM cells in patients who relapsed (50). This

indicates that TRM cells may be associated with AA and might be a

significant aspect of understanding why relapse arises in JAKi-based

therapy for AA, making it a good target for more research.
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Recent studies have highlighted the potential role of reducing

perifollicular TRM cells in the treatment of AA. Fatty acid-binding

proteins 4 and 5 (FABP4 and FABP5) have been shown to play

critical roles in maintaining the lifespan and function of TRM cells.

Deficiency in these proteins impairs the uptake of exogenous free

fatty acids by TRM cells and reduces their long-term survival in vivo,

without affecting central memory T cells in lymph nodes (51).

Additionally, research has demonstrated that tissue-resident

memory T helper 17 (TRM17) cell proliferation and retention in

skin requires interleukin-23 (IL-23), and blocking IL-23 can inhibit

TRM cell proliferation. This method has already been applied to the

treatment of psoriasis and holds potential for future use in AA (52).
4 Regulatory T cells (Treg cells)

Treg cells are immunosuppressive cells that inhibit the immune

response of other cells and serve as the principal regulators of self-

tolerance (53). Its absence or aberrant function results in the onset of

autoimmune disorders (54). Treg cells are a subset of T cells with a

cellular profile that express FOXP3, CD25, and CD4 (55). Dendritic

cells, specifically tolerogenic dendritic cells, may limit adaptive

immunity activation by promoting Treg cell differentiation into

suppressive subtypes (56). According to a study, transferring Treg

cells from skin-draining lymph nodes of mice with normal hair to AA-

affected ones reduced the development of generalized AA and site-

specific alopecia in the latter but did not promote hair regrowth (57).

The study discovered that the efficacy of IL-2 in treating of AA in mice

is limited. However, several studies have demonstrated that modest

doses of IL-2 injected subcutaneously into AA patients recruit

CD4+CD25+FOXP3+ Treg and induce effective hair regeneration

(58). This may be because the AA process in humans and mice

differs. There is evidence that Treg cells can directly influence hair

follicular circulation in AA mice models. Hamed et al. discovered that

a lack of Treg cells around the hair bulb leads to a reduced transition

from telogen to the anagen phase, reduced hair regeneration, and

reduced follicular stem cell differentiation, with an increase in the

proportion of the telogen phase (59). A study exhibited that

CD80CD86 double-negative C57BL/6 mice are prone to decreased

CD4+FOXP3+ Treg cells, causing spontaneous AA (60). Additionally,

studies have confirmed a decrease in FOXP3+CD39+ Treg cells in the

peripheral blood of AA patients (61). However, studies have revealed

that TGF-b secreted by Treg cells is higher in scalp and blood samples

of AA patients than in healthy controls, and IL-17 is also elevated, as

shown in Figure 1B. The researchers speculate that Treg cells are more

inclined to differentiate into IL-17a-producing cells (62). Phase 2a

randomized clinical research revealed dupilumab’s efficacy in treating

of AA patients (63–65). It has been claimed that dupilumab stimulates

hair development by enhancing Treg function, which is decreased in

typical Th2 inflammation (66, 67). Although the mechanism by which

Treg cells inhibit AA remains unclear, in the AA mouse model,

stimulation of myeloid-derived suppressor cells exosomes (MDSC-

Exo) to increase Treg cells in vivo can reduce lymphocyte proliferation

and activity around the hair follicle and promote hair growth (68),

indicating that Treg cells are effective therapeutic targets.
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5 Tolerogenic dendritic cells (Tol DCs)

Dendritic cells are well-known immunologically presenting cells,

and immature dendrit ic cel ls predominantly produce

immunomodulatory factors to mediate central and peripheral

immune responses (69). Tol DCs are a subtype of dendritic cells

that promote Treg cell activity, reduce Th1 and Th2 inflammation,

and inhibit effector T cells (70). Tol DCs may acquire tolerance to

various immune cells implicated in autoimmunity through contact-

dependent interactions and pleiotropic cytokines and metabolite

production that may treat autoimmune illnesses (71, 72). Therapies

based on the injection of Tol DCs exhibited promising results as

alternatives to immunomodulators in some chronic inflammatory

diseases and organ transplantation (73, 74) because Tol DCs can

reduce autoimmune responses without spreading widespread

immunosuppression. Tol DCs may be generated for therapeutic

applications by adopting dendritic cell vaccination protocols.

According to a survey (75), dendritic cells were cultured with drug

resistance-inducing medicines (rapamycin or dexamethasone) and

cytokines (transforming growth factor-beta (TGF-b) and interleukin-
10 (IL-10)) to develop a drug-resistant phenotype in vitro, as shown

in Figure 1B. It is efficient to reintroduce these “induced” Tol DCs

into the body. Epigenetic indicators, like DNA methylation and

histone modifications, after translation, may also be used to

influence cell phenotype and function, either directly or through

various studies highlighting the significance of numerous epigenetic

mechanisms in the establishment of DC tolerance. Tol DC is

generated during in vitro differentiation of human monocytes (76,

77). Prostaglandin E2 (PGE2) has altered the ability of Tol DC to

suppress CD8+ T cell proliferation in vitro by inducing DNA

Methyltransferase 3A (DNMT3A) upregulation, thereby mediating

immunogenic gene methylation and silencing (78). Depending on the

induction method, these cells exhibit an intermediate phenotype with

traits derived from immature and activated adult dendritic cells,

including alterations in migratory activity, anti-inflammatory

cytokine production, and the kind of T cell-induced tolerance

response (79, 80). These DCs must be loaded with disease-specific

autoantigens to develop therapeutic DCs that target specific

autoimmune disorders (81). It is now being utilized in phase I and

II clinical studies for illnesses, such as type I diabetes and multiple

sclerosis, where it has demonstrated encouraging outcomes (82).

Given the abundance of Tol DCs within the skin, epigenetic

modifications and therapies targeting epigenetic mechanisms may

offer novel avenues for modulating Tol DC adaptability in AA.

Additionally, further investigation into hair follicle-specific antigens

present in AA, such as keratins and melanocyte antigens, may prove

fruitful. However, it should be noted that no studies to date have

reported on the use of Tol DCs loaded with autoantigens for the

treatment of AA.
6 Invariant natural killer T (iNKT) cells

The association between AA and CD8+NKG2D+ effector T cell

drive has been well-documented. However, recent studies have revealed
Frontiers in Immunology 04
that iNKT cells express NKG2D receptors and rapidly release cytokines

in response to early stimulation, possibly making them necessary for

Th cell polarization by creating a cytokine environment for

conventional Th cells (83). iNKT cells are CD1d-restricted, lipid-

reactive T cells with predominantly immunomodulatory properties

to produce cytokines and chemokines and modulate other immune

cells (84). Additionally, iNKT cells can provide cytotoxic immune

responses via cytotoxic granules and death receptor pathways (85). In

arthritis, some iNKT are promoted while others are suppressed. These

findings suggest that iNKT-mediated regulation in autoimmune

diseases is dependent, at least in part, on their ability to regulate

macrophage inflammatory profiles (86).

According to Th cell nomenclature, iNKT cells are categorized

as iNKT1, iNKT2, iNKT10, and iNKT17 based on cytokine (87). In

chronic inflammation, iNKT10 cells, primarily in adipose tissue,

express the transcription factor E4BP4 and release IL-10, as shown

in Figure 1B. Chen et al. activated adipose tissue iNKT10 cells by

injecting GalCer, a traditional activator of iNKT cells,

subcutaneously into animals fed a high-fat diet, boosting M2

macrophage polarisation and alleviating chronic inflammation in

obese adipose tissue (88). Ghraieb et al. demonstrated that the

agonist-GalCer could block AA in iNKT10 cells using a humanized

mouse model of AA, allowing their expansion to produce IL-10 and

activate memory iNKT cells, thereby demonstrating the protective

effect of iNKT cells against AA in vivo (89). Targeting iNKT cells as

a treatment for autoimmune diseases such as type 1 diabetes has

been shown to have the potential to help determine the state or

severity of an immunological disease (90, 91).
7 ADSCs

ADSCs, mesenchymal stem cells (MSCs) in the stromal vascular

fraction (SVF) of adipose tissue, are more abundant in adipose

tissue, including subcutaneous adipose tissue, than in MSCs of

other origins and are an integral part of regenerative medicine (92).

These growth factors influence neighboring cell’s activity and play a

crucial role in neovascularization (93). Therefore, injecting

autologous fat into the scalp before hair transplantation can

enhance blood vessel distribution in the scalp and stimulate hair

development (94). In addition to their potential applications in

tissue repair and regeneration, ADSCs have substantial

immunomodulatory properties, such as regulating inflammatory

or autoimmune diseases, such as arthritis, colitis, and other

autoimmune disorders (95–97) . Several s tudies have

demonstrated that their internal extracellular vesicles (EVs) play

an essential role. Jafarinia et al. targeted human ADSCs, ADSCs-

EVs, and placebo via tail vein injection in a mouse model of induced

experimental autoimmune encephalomyelitis. They demonstrated

that intravenous ADSC-EV enhanced the anti-inflammatory

capacity of T cells by decreasing their proliferative capacity and

leukocyte infiltration (98). A recent study revealed that in an in vitro

model of neuropathy, ADSCs boost anti-inflammatory effects and

IL-4 and IL-5 expressions, thereby dampening the immune system

(99), as shown in Figure 1B. ADSCs have regulated intracellular

signaling pathways in adjacent cells and protect the organism by
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secreting substantial quantities of cytokines, growth factors, and

antioxidant substances into their milieu (100). However, the exact

mechanism remains unknown, and numerous studies suggest that

ADSCs are crucial for preventing cell death caused by oxidative

stress (101). ADSCs can improve the anti-aging treatment of

senescent cells and animal models of early aging by accelerating

the autophagy of mitochondria, eliminating intracellular reactive

oxygen species (ROS), and improving mitochondrial quality (102).

Additionally, ADSCs treatment can improve hair loss by

promoting mitochondrial division. Anderi et al. established the

efficacy and safety of the treatment by injecting 4–4.7×106

autologous ADSVCs into the scalps of AA patients. After three

and six months of ADSVCs treatment, all patients had hair

regrowth, enhanced hair growth, and a decreased tension test,

demonstrating the treatment’s efficacy and safety (103). A

randomized, double-blind, controlled clinical trial using adipose‐

derived stem cell constituent extract (ADSC-CE) topical solution

has the potential to serve as an alternative therapy method for hair

regrowth in AGA patients, enhancing hair density and thickness

while preserving appropriate treatment safety (104). It cannot be

denied that it could prevent AA, although its exact mechanism of

action is unknown.
8 Hair follicle melanocytes

In clinical practice, most AA patients demonstrate an

unexpected phenomenon: white hair in the lesions of balding

patients does not fall out. However, almost all black hair has

vanished. This is particularly true for early-stage AA sufferers

(105). AA patients exhibit a significant reduction in melanocytes

(106). Since melanocyte production and melanin synthesis in

mature hair follicles occur primarily during the anagen phase, a

reduction in melanocytes in the hair follicle may be associated with

the early onset of AA.

Bertolini et al. examined lesion sections from balding patients

using immunohistochemistry. They discovered that CD8+ T cells

recognized and attacked the autoantigen presented by follicular

melanocytes, providing further evidence that autoantigens are

present in follicular melanocytes of balding patients (107). AA

has been associated with melanocyte-specific antigens that have yet

to be identified. In healthy populations, melanin antigens, such as

tyrosinase, MAGE-A3, Melan-A/MART-1, gp100, and NY-ESO-1

may elicit an immune response against CD8+ T cells, but they also

protect against the formation of melanoma and are persistently

overexpressed in humans (108), as shown in Figure 1B. In vitiligo,

dendritic cells transfer antigenic proteins from normal or stressed

melanocytes, such as gp100, which are then recognized by invading

T lymphocytes and cause melanocyte death. However, it is

unknown what causes melanocytes to perish. The most

commonly recognized explanation is that oxidative stress induces

an immune response that results in melanocyte death. Melanocyte

death may occur via apoptosis, autophagy, autophagic cell death, or

ferroptosis when oxidative stress causes high levels of ROS, thereby

leading to molecular and organelle dysfunction (109). Kang et al.

discovered that oxidative stress could cause apoptosis, which is
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exacerbated by abnormal calcium accumulation in the

mitochondria, and that melanocytes experience mitochondria-

dependent apoptosis when oxidative stress increases the

expression of transient receptor potential cation channel

subfamily M member 2 (TRPM2), allowing a higher calcium

influx and consequent cell death (110). Oxidative stress has been

connected with melanocyte apoptosis. A meta-analysis indicated

that the oxidative marker levels were significantly higher in severe

AA patients than in mild to moderate AA patients (111). Multiple

studies suggest that oxidative stress may play a substantial role in

the pathogenesis of age-associated macular degeneration and

melanocyte death (112–114). The AA treatment may include

using antioxidant supplements to alleviate oxidative stress or

antioxidants in combination with other therapeutic strategies to

boost melanocyte oxidative capacity. Several studies (115–117) have

demonstrated that antioxidant supplements, such as Yucca,

polyunsaturated fatty acids, and carotenoids, preserve

melanocytes and improve the therapeutic efficacy of phototherapy

in vitiligo patients.
9 Gut microbiota

The gut microbiota is essential for maintaining healthy immune

function, regulating Treg cell activity, and monitoring the processing

and presentation of antigens (118). Immune-related problems,

especially autoimmune diseases, may develop if the gut microbial

ecology is imbalanced due to poor food, excessive use of antibiotics,

or incompetent breastfeeding (119). Gut microorganisms can

regulate specific immune cells and growth factors. Certain

probiotics, such as bifidobacteria and segmented filamentous

bacteria, can control T-helper 17 cells (120). Bacteroides fragilis

surface polysaccharide A binds to toll-like receptor 2 on dendritic

cells, inducing T reg cells to generate the anti-inflammatory

cytokine IL-10 and promoting immunological tolerance (121).

Clostridium spp., especially those belonging to clusters IV, XIVa,

and XVIII, stimulate CD4+FOXP3+ Treg cells by producing short-

chain fatty acids (SCFAs) (122). Although no microbial medications

currently target a specific disease, microbial-based methods for

preventing or curing inflammatory autoimmune disorders

provide new potential. Most of the metabolites made by microbes

in the intestine are SCFAs (123). They are formed when intestinal

flora consumes and ferments soluble fibers and oligosaccharides.

The intestinal epithelial cells readily absorb them. They are an

essential energy source for the bacteria and cells that live in and line

the gut. SCFAs control chromatin’s structure in T lymphocytes’

nucleus, making gene products more active (124), as shown in

Figure 2.

Binding of SCFAs to G protein-coupled receptor 43 (GPR43)

has been shown to be essential for the resolution of inflammatory

responses (125). While SCFAs exert systemic effects following

absorption, local application may be more relevant in the context

of AA. Indeed, enemas containing SCFAs have demonstrated

efficacy in a subset of patients with distal ulcerative colitis (126).

Furthermore, topical application of SCFAs has been shown to

promote induction of tissue plasminogen activator in airway
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epithelial cells via binding to G protein-coupled receptors, reducing

fibrin deposition and alleviating chronic sinusitis (127). These

findings suggest that topical application of SCFAs to scalp hair

follicles may hold promise for the treatment of AA.
10 Non-coding RNAs and related
regulatory proteins

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs)

are the most common non-coding RNAs. Various potential

miRNAs, lncRNAs, and regulatory proteins have been identified

in autoimmune disorders (128). Upregulated miRNAs include miR-

210 (129), miR-1246 (130), miR-17 (131), miR-34a (132), miR-101

(133), miR-27b (133), miR-142-3p (134), miR-142-5p (134), and

miR-150 (134), while downregulated miRNAs include miR-30b
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(135), miR-103 (133), miR-2355-3p (133), and miR-186-5p (134)

that stimulate their target protein expressions, as shown in Table 1.

This mismatched miRNA-target interaction causes abnormal T cell

activation (134), melanosome autophagy (137), and angiogenesis

inhibition (138), thereby damaging hair follicles and contributing to

AA. According to the bioinformatics results of Sheng et al.,

NONHSAT011665-RPS26-has-miR-186-5p may play a role in the

control of AA (139). Qi et al. demonstrated that novel treatment for

AA might lie in RP11-251G23.5 and RP11-231E19, which may play

an important role in the etiology of AA through modulation of the

cytokine-cytokine receptor interaction pathway (140).

Eomesodermin (Eomes) may play a major role in AA by

regulating immune cell infiltration and keratin-forming cell

activity, indicating that they are a possible therapeutic target for

AA (141). Several JAJ-STAT pathway components downstream of

the cytokine-containing chain (known to increase the activity and
FIGURE 2

Gut microbiota and AA. The dysregulation of gut microbiota can reduce the SCFA, stimulating the release of TNF-a, IFN-g, and IL-1b, while
suppressing Treg cells and the release of IL-10 and TGF-b, thereby fostering the AA process. Created with Biorender.com.
TABLE 1 Functional characterization of the miRNAs in AA patients.

miRNAs Expression Target gene Function Source Ref

miR-30b down IL2RA/STX17/TNXB Inhibiting autophagy of melanosomes Skin lesions in AA patients (135)

miR-210 up FOXP3 immunosuppressive functions of Treg cells Serum of AA patient (129, 136)

miR-1246 up TP53 activating immune response. Serum of AA patient (130, 136)

miR-17 up MIR17HG Promotion of autoimmune disorders Serum of AA patient (131)

miR-34a Up VEGF Inhibition of Angiogenesis Serum of AA patient (132)

miR-101 Up – Enhancing T cell responses Serum of AA (133)

miR-27b Up – Enhancing T cell responses Serum of AA (133)

miR-103 Down – Inhibiting T cell responses Serum of AA (133)

miR-2355-3p Down – Inhibiting T cell responses Serum of AA (133)

miR-142-3p Up AC9 Enhancing T cell responses Skin lesions in AA patients (134)

miR-142-5p Up SH2D1A Enhancing T cell responses Skin lesions in AA patients (134)

miR-150 Up IL2RA Activating immune response. Skin lesions in AA patients (134)

miR-186-5p Down FOX01 Related to the cell cycle Serum of AA patient (134)
fro
Interleukin 2 receptor subunit alpha (IL2RA), syntaxin17 (STX17), tenascin XB (TNXB), forkhead box P3 (FOXP3), tumor protein p53 (TP53), miR-17-92a-1 cluster host gene (MIR17HG),
vascular endothelial growth factor (VEGF), adenylate cyclase 9 (AC9), SH2 domain containing 1A (SH2D1A), and forkhead box protein O1-A (FOX01).
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survival of IFN-producing cytotoxic T cells) were upregulated in

human and mouse AA skin. Systemic injection of JAK inhibitors

reduced AA development in a mouse model (142, 143). Several

open-label phase II clinical studies have demonstrated that oral JAK

inhibitor treatment significantly promotes hair regrowth and

improves AA with assured safety and dependability (144, 145).
11 Conclusion and future perspectives

Recent studies have shed light on potential mechanisms for

inhibiting the occurrence and development of AA. Activation of

immune tolerance cells such as Treg cells and Tol DCs, along with

inhibition of immune enhancement cells such as gd T cells, TRM

cells, and iNKT cells may play a role in preventing AA.

Additionally, ADSCs and SCFAs from Gut microbiome can

improve the inflammatory manifestations of AA, and patients

may benefit more with its topical application. Reducing exposure

of hair follicle melanocytes’ antigens to CD8+ T cells may also be

effective; loading melanocyte-associated antigens through Tol DCs

could be a potential approach. Furthermore, noncoding RNAs and

regulatory proteins can release small molecules or cytokines such as

growth factors or their receptors, opening up new avenues for

AA treatment.
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Glossary

AA Alopecia areata

IFN-g interferon-gamma

ADSCs adipose-derived stem cells

KRT82 Keratin82

APCs antigen presentation cells

MHC major histocompatibility complex

MICA human major histocompatibility complex class I chain-related
gene A

NKG2D natural killer group 2D

TCR T cell receptor

MDSC-
Exo

myeloid-derived suppressor cells exosomes

TRM cells Tissue resident memory T cells

Treg cells Regulatory T cells

TGF-b transforming growth factor-beta

IL-10 interleukin-10

Tol DCs Tolerogenic dendritic cells

PGE2 Prostaglandin E2

DNMT3A DNA Methyltransferase 3A

ROS reactive oxygen species

JAKi Janus kinase inhibitors

iNK T invariant natural killer T

MSCs mesenchymal stem cells

SVF stromal vascular fraction

EVs extracellular vesicles

ADSC-CE adipose-derived stem cell constituent extract

TRPM2 transient receptor potential cation channel subfamily M member 2

SCFAs short-chain fatty acids

miRNAs MicroRNAs

lncRNAs long non-coding RNAs

IL2RA interleukin 2 receptor subunit alpha

STX17 syntaxin17

TNXB tenascin XB

FOXP3 forkhead box P3

TP53 tumor protein p53

MIR17HG miR-17-92a-1 cluster host gene

VEGF vascular endothelial growth factor

AC9 adenylate cyclase 9

SH2D1A SH2 domain containing 1A

FOX01 forkhead box protein O1-A
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GPR43 G protein-coupled receptor 43

TRM17 T helper 17
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