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Subtype classification based
on t cell proliferation-related
regulator genes and risk model
for predicting outcomes of
lung adenocarcinoma

Qin Yang1, Weiyuan Zhu1 and Han Gong2*

1School of Basic Medicine, Shaoyang University, the First Affiliated Hospital of Shaoyang University,
Shaoyang, Hunan, China, 2Molecular Biology Research Center and Center for Medical Genetics,
School of Life Sciences, Central South University, Changsha, Hunan, China
Background: Lung adenocarcinoma (LUAD), the major lung cancer histotype,

represents 40% lung cancers. Currently, outcomes are remarkably different in

LUAD patients with similar AJCC/UICC-TNM features. T cell proliferation-related

regulator genes (TPRGs) relate to the proliferation, activity and function of T cells

and tumor progression. The values of TPRGs in classifying LUAD patients and

predicting outcomes remain unknown.

Methods: Gene expression profile and corresponding clinical data were

downloaded from TCGA and the GEO databases. We systematically analyzed

the expression profile characteristics of 35 TPRGs in LUAD patients and

investigated the differences in overall survival (OS), biology pathway, immunity

and somatic mutation between different TPRGs-related subtypes. Subsequently,

we constructed a TPRGs-related risk model in TCGA cohort to quantify risk

scores using LASSO cox regression analysis and then validated this risk model in

two GEO cohorts. LUAD patients were divided into high- and low-risk subtypes

according to the median risk score. We systematically compared the biology

pathway, immunity, somatic mutation and drug susceptibility between the two

risk subtypes. Finally, we validate biological functions of two TPRGs-encoded

proteins (DCLRE1B and HOMER1) in LUAD cells A549.

Results: We identified different TPRGs-related subtypes (including cluster 1/

cluster A and its counterpart cluster 2/cluster B). Compared to the cluster 1/

cluster A subtype, cluster 2/cluster B subtype tended to have a prominent survival

advantage with an immunosuppressive microenvironment and a higher somatic

mutation frequency. Then, we constructed a TPRGs-related 6-gene risk model.

The high-risk subtype characterized by higher somatic mutation frequency and

lower immunotherapy response had a worse prognosis. This risk model was an

independent prognostic factor and showed to be reliable and accurate for LUAD

classification. Furthermore, subtypes with different risk scores were significantly

associated with drug sensitivity. DCLRE1B and HOMER1 suppressed cell

proliferation, migration and invasion in LUAD cells A549, which was in line with

their prognostic values.
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Conclusion:We construed a novel stratificationmodel of LUAD based on TPRGs,

which can accurately and reliably predict the prognosis and might be used as a

predictive tool for LUAD patients.
KEYWORDS

immunity, lung adenocarcinoma, mutation, predictive risk model, T cell proliferation-
related regulator genes, tumor microenvironment
1 Introduction

Lung cancer is the world’s leading cause of cancer death. Non-

small cell lung cancer (NSCLC) comprises 85% of all lung cancers.

Lung adenocarcinoma (LUAD) is the major NSCLC histotype,

which accounts for 40% of all lung cancers (1). Due to highly

heterogeneous nature and wide range of mutations, LUAD

treatment is still particularly challenging. Targeted therapies that

inhibit multiple oncogenic drivers and immune checkpoints have

showed promise for the treatments of lung cancer, particularly

LUAD, in recent years (2, 3). Currently, traditional AJCC/UICC-

TNM stratification systems are the mainstay clinical determinants

of the prognosis of LUAD prognosis. However, outcomes are

remarkably different in patients with similar AJCC/UICC-TNM

features after receiving the same treatments. To choose the best

therapy for individual patient, we still need prognostic models that

can better classify LUAD patients based on the likely outcome.

The reasons for outcomes are embedded into tumor tissue and

complex interactions between tumor tissue and tumor

microenvironment (TME) (4, 5). In NSCLC TME, T cells

dominate immune cell infiltrates (6). Upon recognition of

antigens, T cells proliferate and acquire capacity to kill tumor

cells and secrete cytokines to coordinate the immune response. T

cell proliferation modulates TME by affecting the clustering and T

cell population. T cell proliferation has long been used as a tumor-

reactivity marker and is positively associated with outcomes of

immune checkpoints inhibitors (7–9). However, abundant evidence

argues that T cell proliferation is imperfect for measuring tumor-

reactivity and outcomes (8, 10–15). Recently, Mateusz Legut et al.,

for the first time, defined T cell proliferation-related regulator genes

(TPRGs) (16, 17). In that article, many positive TPRGs that enhance

T cell functions are identified (17). Therefore, comprehensive
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analysis of the molecular characteristics and clinical relevance in

TPRGs and their relationships with TME will enhance

understanding of TPRGs and improve anti-tumor strategies.

In this study, we investigate prognostic value of TPRGs and

identify TPRGs-related subtypes in LUAD cohort from The Cancer

Genome Atlas (TCGA). Our findings reveal that the TPRGs-related

subtypes have obviously different clinical prognosis and

characteristics. Additionally, we establish and validate a 6-gene risk

model for predicting the overall survival (OS) based on differentially

expressed genes (DEGs) between TPRGs-related subtypes. We also

systematically compare the differences (including biology function and

pathway, somatic mutation, immunity and drug susceptibility)

between patients of different subtypes. At last, we validate biological

functions of two TPRGs-encoded proteins (HOMER 1 and

DCLRE1B) in LUAD cells A549. Our results show that TPRGs play

an essential role in tumor progression and lays a foundation for

implementing rational intervention strategies in cancer.
2 Materials and methods

2.1 Dataset acquisition

By conducting the R package “TCGAbiolinks” (18), we obtained

the gene expression matrix of TCGA-LUAD (including 524 tumor and

58 normal specimens) and corresponding clinicopathological data.

Detailed, the workflow type was set to “STAR-Counts” form and

then expression matrix was collated as the “FKPM” format. Patients

with survival time less than 1 month were excluded from subsequent

analyses. Simple nucleotide variations data in format of “maf” were

retrieved from TCGA portal (TCGA-LUAD project) and copy number

variation (CNV) data were obtained from the term “GDC TCGA-

LUAD” of UCSC Xena website (http://xena.ucsc.edu/). We obtained

two external microarray datasets GSE31210 (including 246 LUAD

patients and survival imformation) and GSE68465 (including 442

LUAD patients and survival imformation) from the GEO database.

A total of 35 TPRGs were extracted from the published studies (16).
2.2 Identification of the prognostic genes
and TPRGs-related clusters

We used the univariate Cox regression method to screen TPRGs

with prognostic value and obtained 5 TPRGs. Based on the
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expression (log2 transform) of 5 TPRGs, we performed the R

package “Consensus-ClusterPlus” (19) to classify LUAD patients

into two TRPG-related subtypes, with the arguments of clusterAlg =

“km” and distance = “euclidean”. We conducted the R package

“factoextra” to perform the PCA algorithm for visualizing the

distribution of two TRPG-related subtypes.
2.3 Biological processes quantification

We performed the R package “Gene set variation analysis

(GSVA)” (20) to assess the enrichment scores of three gene sets

for each LUAD patient (including v2022.1 versions of

HALLMARK, KEGG, and GO-BP) from the MSigDB database

(downloaded on 17 November 2022). We performed the limma

package to investigate the differences in the pathway activity of

distinct subtypes.
2.4 TME infiltration and genomic
alteration analysis

The infiltration scores of TCGA-LUAD patients were retrieved

from the ImmuCellAI online tool (http://bioinfo.life.hust.edu.cn/

ImmuCellAI#!/) (21). Besides, we conducted the R package “estimate”

to evaluate the scores of TME infiltration (including immune, stromal,

and ESTIMATE score) in each subtype (22). We utilized the

CIBERSORT approach to evaluate the infiltration proportions of 22

immune cells in each LUAD patient (23). We performed the maftools

package (24) to read the “maf” file of LUAD patients and compare the

incidence of somatic mutations between distinct LUAD subtypes.
2.5 Gene clustering based on DEGs of
TPRGs-related subtypes

After deletion of genes that were lowly expressed in at least half of

the LUAD patients (FPKM< 1), we utilized the R package “limma” to

explore dysregulated genes between two TPRGs-related subtypes with

|log2FC| >1 and p-adjust< 0.05 as thresholds. Consistent with previous

method, we utilized consensus clustering algorithm to identify LUAD

patients into two gene subtypes.
2.6 Construction and validation of a
6-gene risk model for LUAD patients

To evaluate the survival time of each LUAD patient, we first

performed the univariate Cox regression analysis on the

dysregulated genes to obtain DEGs with prognostic value. Then,

least absolute shrinkage and selection operator (LASSO) cox was

executed to generate a risk model, with the arguments of 10-fold

cross-validation and 1000 permutations. The final risk score of each

LUAD patient was defined based on the following specific formula:

Risk   score =o
n

i=1
Coefi  �Expi, which i means one of 6 genes

(CCNA2, HMMR ANLN, NKX2-1, SFTPB and KRT6A). Then,
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our team divided LUAD patients into two subgroups (high-risk and

low-risk) according to the median risk score. We used previous two

external cohorts to validate the robustness of this risk model and

conducted the receiver operating characteristic (ROC) curve to

evaluate the performance. In addition, we combined univariate and

multivariate Cox analyses to validate the independence of this

risk model.
2.7 Prediction of immunotherapy response
and chemotherapy susceptibility

Tumor immune dysfunction and exclusion (TIDE) was an

online tool to predict patient immunotherapy response based on

immune-related biomarkers (25). By uploading transcriptional

profiles of LUAD patients to TIDE, we obtained TIDE scores and

the reaction to immunotherapy of each LUAD patient. By

performing the R package “oncoPredict”, we estimated the

sensitivity of about 200 drugs for each LUAD patient based on

pharmacogenomic data of genomics of drug sensitivity in cancer

(GDSC) 2 database as training dataset (26).
2.8 Cell lines and cell culture

LUAD cell line A549 was purchased from the Cell Bank of Type

Culture Collection of the Chinese Academy of Sciences, Shanghai

Institute of Cell Biology. A549 cells were grown in RPMI 1640

medium (Gibco, United States) supplemented with 10% fetal bovine

serum at 37°C in a humidified atmosphere containing 5% CO2.
2.9 Antibodies, siRNAs and reagents

Rabbit DCLRE1B antibody and mouse Homer1 antibody were

purchased from omnimabs Co., Ltd (Alhambra, USA). Mouse b-actin
antibody was purchased from ProMab Co., Ltd (California, USA).

DCLRE1B siRNA and Homer1 siRNA were purchased from Shanghai

GenePharma Co., Ltd (Shanghai, China). GP-transfect-Mate

transfection kit was purchased from Shanghai GenePharma Co., Ltd

(Shanghai, China). siRNAs targeting DCLRE1B and HOMER1 and

their siRNA negative controls were transfected into A549 cells

according to the manufacturer’s instructions by using GP-transfect-

Mate transfection kit. siRNAs targeting DCLRE1B (siDCLRE1B-1:

5 ’CCAUAUGGAGAUCUGCCAUTT3 ’ , s iDCLRE1B-2 :

5’CCGGACUCUGUACAGCAAUTT3’ and siDCLRE1B-3:

5’GGAUCAAGAAGCAGUUGUUTT3’). siRNAs targeting

HOMER1 (siHOMER1-1: 5’GCAUCAUCUUUCGAAAUUUTT3’,

siHOMER1-2: 5 ’GGUACCCACCAGCAAGCAUTT3 ’ and

siHOMER1-3: 5’GCACUCGAGCUCAUGUCUUTT3’).
2.10 RT-qPCR and western blot

2 ug RNA was reverse transcribed using RevertAid-TM M-

MuLV Reverse Transcription kit according to the manufacturer’s
frontiersin.org
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instructions and then cDNA was restored in -20°C. RT-qPCR

reaction conditions were 94 °C for 20 s followed by 40 cycles of

72 °C for 20 s and 55°C for 10 s. RT-qPCR primers for DCLRE1B

(forward : 5 ’GACCCACCCTACGATTGCTA3 ’ , r evers :

5’AGACTGTCCTGAAAGCCTCC3’). RT-qPCR primers for

HOMER1 (forward: 5’GCACTCGAGCTCATGTCTTC3’, reverse:

5’CCACTGGCCAAACTTCTGAG3’). RT-qPCR primers for b-
actin (forward: 5’CATTAAGGAGAAGCTGTGCT3’, revers:

5 ’GTTGAAGGTAGTTTCGTGGA3 ’). Western blot were

performed according to our previous protocol (27, 28).
2.11 Cell proliferation assay, wound healing
assay and transwell assay

Cell proliferation assay, wound healing assay and transwell

assay were also carried out as we previously described (27, 28).
2.12 Statistical analysis

R software (v4.1.3) and GraphPad Prism software (v8.0.1) were

utilized to perform statistical analyses and visualization. Student’s

two-tailed t-test was used to compare the differences between

distinct LUAD subtypes. Kaplan–Meier survival analysis and the

log-rank test were used to compare the differences in survival time.

All P values were two-sided, and a P< 0.05 was considered

statistically significant unless otherwise stated.
3 Results

3.1 Landscape of TPRGs and
gene mutations

In Figure 1, a flow chart of this study is showed. Transcription

profile of TCGA-LUAD dataset was uesd for exploring the

expression of the TPRGs. We found that there were 19 up-

regulated TRPGs and 12 down-regulated TRPGs in the tumors in

contrast to adjacent normal tissues (Figure 2A). STRING platform

was used to analyze the potential biofunctional network associated

with TPRGs (Figure 2B). Then, we explored the incidence of

somatic mutations and CNVs for the TPRGs. The result showed

that 134 of 557 patients (24.06%) have genetic alterations in TPRGs.

Among them, AHNAK had the highest mutation frequency (11%),

followed by ITM2A (2%) and MS4A3 (2%) (Figure 2C). The result

of CNVs incidence showed that CNV alteration was prevalent in all

TPRGs. Among them, B2M, DCLRE1B, MOMER1 showed

remarkable copy number amplification, while ATF6B, CD19,

CDK2, CLIC1, CXCL12, HLA-A, IFNL2 and NGFR showed

significant copy number deletions (Figure 2D). We utilized

univariate cox analysis to explore relevance of TPRGs with

prognosis. Forest plot showed that CD19 was a protective factor,

while CDK1, HOMER1, RAN and DCLRE1B were risk

factors (Figure 2E).
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3.2 Subtype classification based on
OS-related TPRGs and enrichment analysis

We performed a consensus clustering analysis based on those 5

prognostic TPRGs (CD19, CDK1, HOMER1, RAN and DCLRE1B).

By using cumulative distribution function (CDF), we divided

LUAD into 2 TPRGs-associated subtypes (clusters 1 and 2)

(Figures 3A, B and Table 1). When k = 2, the change of CDF

value was relatively smooth (Figure 3A), and the heatmap of

consensus matrix was relatively distinct (Figure 3B). Kaplan–

Meier curve showed that the cluster 1 tended to have a longer OS

(Figure 3C). The PCA algorithm also demonstrated that the cluster

1 was clearly separated from the cluster 2 (Figure 3D). Combining

these results, we confirmed that the optimal cut-off of k-value was 2,

and obtained two TPRGs-related subtypes. We also compared the

expressions of the 5 prognostic TPRGs in the two clusters. A higher

expression of protective factor CD19 and lower expressions of risk

factors (including CDK1, DCLRE1B, HOMER1 and RAN) were

found in the cluster 1 (Figure 3E). We further analyzed the

enrichment score of cancer-related pathway in the two clusters.

Our analysis result revealed that cluster 1 had a significantly lower

proto-oncogene carcinogenic pathway activity than cluster

2 (Figure 3F).

To further explore expression profiles of the TPRGs in TME of

LUAD, we performed single-cell RNA sequencing analyses and

clustering using a single-cell dataset GSE139555. Distributions of

ten types of immune cells (including B, CD4+ T conv, CD8+ T,

CD8+ Tex, DC, Mono/Macro, NK, plasma, T prolif and Treg) were

identified in Figure 4A. Among those immune cells, T prolif cells

had the highest T cell proliferation scores based on the expression

levels of TRPGs, followed by B cells and plasma cells (Figures 4C,

D). In addition, we measured expressions of the 5 prognostic

TPRGs (including CDK1, DCLRE1B, HOMER1 and RAN) in the

ten types of immune cell (Figure 4B).
3.3 Characterization of TME cell infiltration
and gene mutation

To better understand the interaction between TPRGs and TME,

we investigated the immune cell infiltration in clusters 1 and 2. First,

we used ESTIMATE method to calculate the Stromal score,

Immune score and ESTIMATE score in the two clusters, and

found the cluster 1 had higher infiltration than the cluster 2

(Figure 5A). We also utilized the ImmuCellAI to obtain the

Infiltration scores in LUAD and the result also showed that the

cluster 1 had a higher level of immune infiltration than the cluster 2

(Figure 5B). Furthermore, cell infiltrations of 22 immune cells in

TME were compared using CIBERSORT. The two clusters showed

distinct immune infiltration patterns that eleven types of immune

cells were significantly differently infiltrated (Figure 5C). Moreover,

we investigated and compared the incidence of somatic mutations

between clusters 1 and 2. For the cluster 1, 332 of 372 patients

(89.25%) had somatic mutations (Figure 5D). For the cluster 2, 125

of 130 samples (96.15%) had somatic mutations (Figure 5D). The
frontiersin.org
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cluster 1 patients had lower somatic mutation frequencies in some

important anti-oncogenes (for example, TP53 and KRAS) than the

cluster 2 patients (Figure 5D).
3.4 Gene clustering

By performing R package “limma”, we found 103 up-regulated genes

and 77 down-regulated genes between the two TPRGs-related clusters.

Based on the expression profiles of these dysregulated genes, we

conducted an unsupervised clustering analysis. K = 2 was the optimal

number for clustering with the distinct heatmap (Figures 6A, B). As
Frontiers in Immunology 05
shown in heatmap (Figure 6C), two subtypes (clusters A and B) had

significantly distinct expression profiles. The resemblance between

cluster A and cluster 1, or cluster B and cluster 2 was remarkable

according to DEGs expression heatmap (Figure 6C). Moreover, similarly

with the OS in the clusters 1 and 2 (Figure 3C), the cluster A had longer

OS than the cluster B (Figure 6D). Subsequently, we compared DEGs

between the clusters A and B (Figure 6E). To explore potential biological

function and pathway of the DEGs, we compared 50 hallmark pathways

using GSVA. Up-regulated hallmark gene sets in the cluster A were

mainly enriched in metabolisms (including heme metabolism,

adipogenesis, bile acid metabolism and fatty acid metabolism) and

p53, while the up-regulated hallmark gene sets in the cluster B were
FIGURE 1

The flow chart.
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mainly enriched in the e2f targets, G2m checkpoint, spermatogenesis and

mTORC1 signaling (Figure 6F).
3.5 Construction of a predictive risk model

We first identified TPRGs-related differentially expressed genes

(DEGs) between gene cluster A and gene cluster B. Then, we conducted

a univariate Cox regression analysis to obtain DEGs with prognostic value

according to the threshold of P value< 0.05. At last, we constructed the

6-gene signature using the LASSO Cox model with the parameters of

10-fold cross-validation and 1000 reps (Figures 7A, B). The risk score of

each LUAD patient according to the formula:

Riskscores = 0:00053 ∗Exp CCNA2 + 0:04793 ∗Exp HMMR+

0:07896 ∗ Exp ANLN + ( − 0:02199) ∗ Exp NKX2 − 1+

( − 0:00044) ∗Exp SFTPB + ð − 0:0938 ∗Exp KRT6A :
Frontiers in Immunology 06
The 6-gene risk model divided TCGA-LUAD patients into high-

and low-risk subtypes based on the median risk scores. The high-risk

subtype had a significantly worse clinical outcome than the low-risk

subtype (Figure 7C). The 6-gene risk model showed a good sensitivity

and specificity in stratifying TCGA-LUAD patients using ROC curves

(for 1-year, areas under the curve (AUC) = 0.78; for 2-year, AUC = 0.75;

for 3-year, AUC = 0.69) (Figure 7D). To determine whether the 6-gene

risk model was an independent factor, we combined muinltivariate and

univariate Cox regression analyses. The forest plot showed that the 6-

gene risk model was an independent risk factor even when combined

with various clinical features (Figures 7E, F). The predictive ability of the

6-gene risk model was further validated in two external GEO cohorts

(GSE31210 and GSE68465) (Figures 7G–J). In both of the two GEO

datasets, Kaplan-Meier curves showed significant shorter OS for the

high-risk subtype (Figures 7G, I). For the GSE31210, the AUCs at 1-, 3-

and 5-year were 0.77, 0.76 and 0.67, respectively (Figure 7H). For the

GSE68465, the AUCs at 1-, 3- and 5-year were 0.69, 0.69 and 0.68,
0
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Landscape of T cell proliferation-related regulator genes (TPRGs) in LUAD. (A) Differentially expressed TPRGs in normal tissue and tumor tissue. (B) Potential
biofunctional network associated with TPRGs from the STRING platform. (C) Mutation waterfall plots of 557 LUAD patients from the TCGA-LUAD cohort. (D)
Copy number variation (CNV) frequency of TPRGs in the TCGA-LUAD cohort. (E) Hazard ratios (HR) forest plot of 5 TPRGs with prognostic values. HR > 1
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respectively (Figure 7J). Collectively, those results verified that the

TPRGs-related risk model classified the patients well and showed a

good sensitivity and specificity.
3.6 Associations of the 6-gene risk model
with clinical features

To investigate the relevance between risk model and other

clinical variables, we performed survival analyses according to
Frontiers in Immunology 07
various clinical parameters (including age (≥ 65/>65), gender

(female/male), stage (I-II/III-IV) and N (0/1-3)). In each stratum

of the above clinical features, the high-risk subtype had significant

worse survival outcome than the low-risk subtype (Figure 8). These

results demonstrated that our risk model still had a reliable ability to

predict OS within each stratum and could be applicable for LUAD

patients stratified by different clinical parameters.

We compared C-index of our risk model with a few published

models (including PMC7433810, PMC8017122, PMID34108619,

PMC8050921, PMC8867215, PMC7658576, PMC8567176 and
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++

+ ++
++ +

+++++++++++++++++++++++++++++
++++++++++++++

+
+++

++++
++++

++
+ +p=0.00013

0.00

0.25

0.50

0.75

1.00

0 24 48 72 96 120 144 168 192
Time(months)

O
ve

ra
ll 

Su
rv

iv
al

Cluster + +Cluster1 Cluster2

302 91 39 15 8 7 6 3 3 1

113 35 9 4 2 0 0 0 0 0Cluster2

Cluster1

0 24 48 72 96 120 144 168 192
Time(months)

C
lu

st
er

0

2

4

6

−2 0 2 4 6
Dim1 (41.4%)

D
im

2 
(1

9.
5%

)

group
Cluster1

Cluster2

**** **** **** ** ****

0

2

4

6

8

CDK1
RAN

HOMER1

DCLR
E1B

CD19

lo
g2

(E
xp

re
ss

io
n+

1)

group
Cluster1

Cluster2

**** **** **** **** **** **** ****

0.2

0.4

0.6

0.8

G2M
_C

HECKPOIN
T

MYC_T
ARGETS_V

1

PI3K
_A

KT_M
TO

R_S
IG

NALIN
G

DNA_R
EPA

IR

GLY
COLY

SIS

E2F
_T

ARGETS

OXIDAT
IVE_P

HOSPHORYLA
TIO

N

En
ric

hm
en

t S
co

re

group
Cluster1

Cluster2

FE

C

A B

D

FIGURE 3

Subtype classification based on 5 prognostic T cell proliferation-related regulator genes (TPRGs) and enrichment analysis. (A) Consensus clusters by
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PMC8929513), and our TGPGs risk model had the highest C-index

(Figure 9A). Then we compared accuracy of our risk model and two

risk models (PMC8050921 and PMC8867215) with relatively

higher C-index. ROC curves for 1-year showed that our risk

model had a better accuracy than the other two risk models (for

our risk model, AUC = 0.78; for PMC8050921, AUC = 0.71; for

PMC8867215, AUC = 0.69) (Figure 9B). Moreover, we constructed

a prognostic nomogram using factors using T, N, stage and risk

score (Figure 9C). The nomogram could reliably predict 1-, 2-, and

3-year OS of LUAD patients (Figure 9D).
3.7 Function and pathway
enrichment analyses

To explore the association of risk scores to biological behaviors,

functional annotations of TCGA-LUAD was used for the high- and

low-risk subtypes. The top 5 gene hallmarks of Gene Set Enrichment

Analysis (GESA) and 18 Kyoto Encyclopedia of Genes (KEGG)

pathways with |correlation| > 0.3 & p< 0.05 were visualized

(Figure 10). For the high-risk subtype, the GESA result was enriched

in hallmark e2f targets, hallmark epithelial mesenchymal transition,

hallmark G2M checkpoint, hallmark mTORC1 signaling and hallmark

myc targets v1 (Figure 10A). In Figure 10B, the correlation heatmap
Frontiers in Immunology 08
showed that the low-risk subtype was mainly enriched in metabolic-

related functions and pathways (including taurine and hypotaurine

metabolism, fatty acid metabolism, glycerophospholipid metabolism

and alpha linolenic acid metabolism), while the high-risk subtype was

mainly enriched in tumor-related pathways and functions (for

instance, p53 signaling pathway, nucleotide excision repair,

homologous recombination, DNA replication, mismatch repair, cell

cycle and small cell lung cancer).
3.8 Somatic mutation frequency and
predictability of immunotherapy response

To explore the relevance of the risk model and somatic mutation in

TCGA-LUAD, we counted incidence of genetic alterations in the high-

and low-risk subtypes. For the high-risk subtype, 188 of 200 samples

(94%) had genetic alterations (Figure 11A). For the low-risk subtype,

182 of 198 samples (91.92%) had genetic alterations (Figure 11B).

Compared with the low-risk subtype, the high-risk subtype had higher

genetic alteration frequencies in TP53, TTN, MUC16, LRP1B, ZFHX4

and USH2A (Figures 11A, B). Somatic mutation burden has been

widely described as a biomarker for response to immune checkpoint

inhibitors (29–32). Because of the obviously differences in somatic

mutation frequency between the high- and low-risk subtypes, we used
TABLE 1 Clinical features of patients in subtypes 1 and 2.

Name Clinical features Subtype 1
(N=231)

Subtype 2
(N=100)

Total (N=331) P

OS Alive 176 (76.2%) 57 (57%) 233 (70.4%) < 0.001

Dead 55 (23.8%) 43 (43%) 98 (29.6%)

Age <= 65 107 (46.3%) 54 (54%) 161 (48.6%) 0.244

> 65 124 (53.7%) 46 (46%) 170 (51.4%)

Gender Female 125 (54.1%) 42 (42%) 167 (50.5%) 0.043

Male 106 (45.9%) 58 (58%) 164 (49.5%)

Stage I 130 (56.3%) 44 (44%) 174 (52.6%) 0.007

II 56 (24.2%) 22 (22%) 78 (23.6%)

III 33 (14.3%) 25 (25%) 58 (17.5%)

IV 12 (5.2%) 9 (9%) 21 (6.3%)

T T1 76 (32.9%) 22 (22%) 98 (29.6%) 0.023

T2 127 (55%) 62 (62%) 189 (57.1%)

T3 17 (7.4%) 11 (11%) 28 (8.5%)

T4 11 (4.8%) 5 (5%) 16 (4.8%)

N N0 158 (68.4%) 55 (55%) 213 (64.4%) 0.045

N1 43 (18.6%) 24 (24%) 67 (20.2%)

N2 29 (12.6%) 21 (21%) 50 (15.1%)

N3 1 (0.4%) 0 (0%) 1 (0.3%)

M M0 219 (94.8%) 91 (91%) 310 (93.7%) 0.29

M1 12 (5.2%) 9 (9%) 21 (6.3%)
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the TIDE algorithm (25) to explore if the risk scores could reflect the

immunotherapeutic benefit in LUAD patients. The boxplot indicated

that the high-risk subtype had higher TIDE scores (Figure 11C) and a

significant lower immunotherapy responder number (91/209) than the

low-risk subtype (121/209) (chi-square tests, p = 0.0033) (Figure 11D).

The high-risk subtype characterized by higher somatic mutation

frequency and lower immunotherapy response had a worse

prognosis (Figures 7, 11).
3.9 Drug sensitivity analyses

To help doctors make better drug treatments for different risk

groups, we compared the half-maximal inhibitory concentration

(IC50) values of drugs between the high- and low-risk subtypes by

performing the oncoPredict package. The results indicated that

Dabrafenib, Birabresib, I-BET-762, BI-2536 and LCL-161 had

higher IC50 in the low-risk subtype, suggesting that these drugs are

more resistant in the LUAD patients with low risk (Figures 12A–E).

In contrast to that, the IC50 values of Ribociclib, Doramapimod,

GSK269962A, PF-4708671 and SB-505124 were higher for the high-
Frontiers in Immunology 09
risk subtype, indicating that these drugs are more effective in the

patients with low-risk scores (Figures 12F–J). These drug sensitivity

analyses might guide individualized treatment strategies.
3.10 Functional validation of DCLRE1B
and HOMER1

According to our prognostic value analysis, DCLRE1B and

HOMER1 were risk factors in LUAD (Figure 2D). Currently, their

cellular effects in lung cancer are unclear. To validate the cellular effects

of HOMER1 and DCLRE1B, we performed MTT, wound healing and

transwell assays in LUAD cells A549 (Figures 13, 14). As showed in

Figure 13, DCLRE1B could be knocked down by three siRNAs

(siDCLRE1B-1, siDCLRE1B-2 and siDCLRE1B-3) and HOMER1

also could be scilenced by thee siRNAs (siHOMER1-1, siHOMER1-2

and siHOMER1-3) at both mRNA (Figure 13A, B) and protein

(Figure 13C, D) levels. The siDCLRE1B-1, siDCLRE1B-2,

siHOMER1-1 and siHOMER1-3 were chosen as optimal siRNAs for

further experiments. After transiently transfected with siRNAs,

significant decreases in cell proliferation (Figure 13E, F), migration
B

C

D

A

FIGURE 4

Overview of single cells from lung adenocarcinoma tissues and normal tissues. (A) Distributions of ten types of immune cell in tissues. (B) Expression
profiles of 5 prognostic T cell proliferation-related regulator genes in the ten major types of immune cells. (C) The deeper the color, the higher the T
cell proliferation score. (D) T cell proliferation scores in the ten major types of immune cells.
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(Figure 14A, B) and invasion (Figure 14C, D) were observed in

DCLRE1B- and HOMER1-silenced A549 cells compared with each

control. These cellular effects of DCLRE1B and HOMER1 were in line

with their prognostic values.
4 Discussions

The most commonly diagnosed lung cancer is NSCLC, of which

is mainly LUAD. Recent advance in LUAD treatment targeting
Frontiers in Immunology frontiersin.o10
oncogenic drivers and immune checkpoints has shifted the

paradigm of therapies, leading to a durable response and

prolonged OS (33). However, tumor shrinkage or extended

survival is still limited to a small portion of patients. Moreover,

LUAD patients with similar AJCC/UICC-TNM features have

distinct outcomes. It is getting clearer that the reason should be

sought in the malignant cells and in the multiple interactions

between malignant cells and TME (5). The composition of a

tumor is not only a group of heterogeneous malignant cells, but

also a TME that contains infiltrating immune cells, extracellular

matrix molecules, etc. The TME differs across individual patients
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FIGURE 5

Characterization of tumor microenvironment (TME) cell infiltration and somatic mutation in clusters 1 and 2. (A) Analysis of differences in TME scores
(including Stromal score, Immune score and ESTIMATE score). (B) Analysis of differences in Infiltration score. (C) Boxplot shows the infiltration
abundance of 22 immune cells obtained from CIBERSORT analysis. (D, E) Comparison of the top 20 genes with the highest somatic mutation
frequency in the two clusters. ∗ P< 0.05, ∗∗ P< 0.01, ∗∗∗ P< 0.001, ∗∗∗∗ P< 0.0001 and ns represents nonsense.
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and will, in turn, determine tumor characteristics and patient

outcomes (34). At present, TME represents an element of

increasing interest for prognostic tool and a therapeutic target in

different cancers including LUAD (5, 35). Classifying patients into

subtypes and constructing a sensitive and accurate risk model based

on TPRGs in tumor may contribute to predicting prognosis

for LUAD.

Our current study aims to classify LUAD patients and

construct a risk model for predicting outcomes. The risk model

showed reliability and accuracy in outcome prediction. The 6-

gene risk model can classify LUAD patients into distinct subtypes
Frontiers in Immunology 11
(high- and low-risk subtypes). The high-risk subtype was strongly

associated with shorter OS of LUAD patients stratified by various

clinical parameters. To explore the possible reasons, we

performed functional and pathway enrichment analysis,

somatic mutation frequency analysis and immunotherapy

response analysis. Low-risk patients with longer OS were

enriched in some important metabolic pathways (including

fatty acid metabolism, heme metabolism, adipogenesis, bile acid

me t abo l i sm , t au r in e and hypo t au r in e me t abo l i sm ,

glycerophospholipid metabolism and alpha linolenic acid

metabolism), while the high-risk patients with shorter OS were
B

C
D

E F

A

FIGURE 6

LUAD clustering (cluster A and cluster B) based on differentially expressed genes (DEGs) between clusters 1 and 2. (A) Identification of consensus
clusters (clusters A and B) based on DEGs between cluster 1 and cluster 2. (B) Clustering heatmap of clusters (A, B) Consensus k=2.
(C) Heatmap shows the DEGs expression profiles in the different LUAD clusters (including cluster 1, cluster 2, cluster A and cluster B). (D) Kaplan–
Meier survival curves of overall survival in the clusters (A, B, E) Volcano plot for DEGs analysis between clusters (A, B, F) Gene Set Variation Analysis
of T cell proliferation-related regulator genes in clusters (A, B).
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enriched in oncogenic signaling pathways (including, E2f targets,

G2m checkpoint, myc targets v1 and mTORC1). Oncogenic

pathways in cancer cells can impair induction or execution of

the local anticancer immune response (36). Oncogenic pathways

also regulated immune checkpoint proteins and cancer immune

surveillance, and ultimately favor resistance to immune

checkpoint therapies (37). Thus, the activation of oncogenic

pathways in high-risk patients may one important reason why

high-risk patients had worse outcomes. High-risk subtype had

higher genetic alteration frequencies in several important cancer-

related genes, such as TP53, MUC16 and LRP1B. Around half of

cancers have gene mutations in tumour suppressor Functional

defect of TP53 results in carcinogenesis and drug resistance of

cancer cells (38). Aberrantly expressed MUC16 is found in

various cancers, which plays important roles in carcinogenesis,

anti-cancer immune response and acquired resistance to drugs

(39, 40). MUC16 is potential target for monoclonal antibodies

and immunotherapy (39). Putative tumor suppressor LRP1B is

frequently inactivated in cancers. LRP1B has been emerged as a a

potential therapy target and associated with cancer responses to

immune checkpoint inhibitor therapies (41). The results of

immunotherapy response analyses showed that high-risk

patients had higher TIDE scores and a significant lower

immunotherapy responder number. Those results together

suggested a less likely immunotherapeutic benefits for the high-

risk patients. Drug efficacy or therapy is associated with drug

sensitivity and individual variation. Thus individualized

therapies based on subtypes will reduce ineffective treatments

in LUAD patients. We compared the drug sensitivity between

LUAD patients with different risk scores. Ten drugs with

significantly differential sensitivity were found. The sensitivity

prediction showed that Dabrafenib, Birabresib, I-BET-762, BI-

2536 and LCL-161 were a better choice for high-risk patients,

while Ribociclib, Doramapimod, GSK269962A, PF-4708671 and

SB-505124 were more effective in low-risk patients. We notice

that certain signaling pathways (for example, myc targets, e2f

targets and mTORC1 signaling) by which some of those drugs

exert their antitumor effects were enriched in our enrichment

analyses (Figure 3, 6, 9). For example, I-BET-762 and Birabresib

are bromodomain and extra-terminal inhibitors. I-BET-762 not

only reduces cell proliferation and c-myc expression in NSCLC

tumor but also altered immune populations in lung (42–44).

NSCLC cells treated with Birabresib leads to myc down-

regulation and cell proliferation inhibition (45). PF-4708671

stimulates S6K1 phosphorylation, which plays a key role in cell

growth is dependent upon mTORC1 (46, 47). Ribociclib, a cyclin-

dependent kinases CDK 4/6 inhibitor, has showed anti-tumor

benefit in NSCLC (48). CDK 4/6 phosphorylate and inactivate

retinoblastoma protein and subsequently negatively control e2f

(49, 50). Cyclin D is a common downstream pathway for mTOR

signaling (49).

Our results of single-cell RNA sequencing analyses and

clustering showed that T prolif cells had the highest T cell

proliferation scores based on the expression levels of TRPGs

among ten types of immune cells. In the original study, most of

these TPRGs have been demonstrated to increase the proliferation
B
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G H

I J

A

FIGURE 7

A 6-gene risk model based on differentially expressed genes (DEGs)
between clusters (A) and (B, A) Partial likelihood deviance coefficient
profiles. (B) Least absolute shrinkage and selection operator cox
analysis of the DEGs between clusters A and (B, C) Kaplan-Meier
curves for overall survival (OS) of the high- and low-risk subtypes in
TCGA-LUAD cohort. (D) Receiver operating characteristic (ROC)
curves for 1-, 2- and 3-year of TCGA-LUAD cohort. (E) Multivariate
cox regression analyses show the hazard ratios of 6-gene risk model
and other clinic-pathological factors. (F) Univariate cox regression
analyses show the hazard ratios of the risk model and other clinic-
pathological factors. (G) Kaplan-Meier curves for OS of the high-
and low-risk subtypes in GEO-LUAD cohort (GSE31210). (H) ROC
curves for 1-, 2- and 3-year of GEO-LUAD cohort (GSE31210).
(I) Kaplan-Meier curves for OS of the high- and low-risk subtypes in
GEO-LUAD cohort (GSE68465). (J) ROC curves for 1-, 2- and 3-
year of GEO-LUAD cohort (GSE68465).
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FIGURE 8

Associations of risk scores with clinical characteristics by stratification analyses. Kaplan‑Meier survival curves for overall survival of LUAD patients
stratified by age (A), gender (B), clinical stage (C) and N stage (D).
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FIGURE 9

Prognostic nomogram combing key clinical features. (A) Comparison of C-Index between our TPRGs risk model and a few published models
(including PMC7433810, PMC8017122, PMID34108619, PMC8050921, PMC8867215, PMC7658576, PMC8567176 and PMC8929513). (B) Receiver
operating characteristic curves for 1-year using our risk model and two other published models (PMC8050921 and PMC8867215). (C) A nomogram
combining T, N, stage and risk score predicts 1-, 3-, and 5-years survival. (D) Calibration curves test the agreement between observed and predicted
overall survival at 1-, 3-, and 5-year.
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and activation of primary human CD4+ and CD8+ T cells and their

secretion of key cytokines (17). TPRGs-related T cell proliferation

can leads to better outcomes in LUAD patients, but doesn’t have to.

T cells, the major tumor infiltrating immune cells of TME (51),

comprises of various T cell subsets. T cell subsets and some other

types of immune cells exert both tumor-antagonizing and tumor-

promoting activities in the lung TME (52). For example, contrary to
Frontiers in Immunology 14
the immune-boosting functions of CD+8 T cells (15), Treg are well-

known for their immune-suppressing activities (53). Moreover, in

the TME, expanded T cell clones that do not recognize tumor cells

are mentioned and, vice versa, small T cell clones present tumor

inhibitory ability (15). It is noteworthy that not all of the TPRGs

restrict to T cells. For example, TPRGs CDK1 and CXCL12 are

expressed in both T cells and various cancer cells. A systematic pan-
BA

FIGURE 10

Function and pathway enrichment analyses in high- and low-risk subtypes. (A) Gene set enrichment analysis of the top 5 gene hallmarks significantly
enriched in high-risk subtype. (B) Kyoto encyclopedia of genes enrichment analysis of high-risk subtype and low-risk subtype.
B

C D

A

FIGURE 11

Somatic mutation frequency and immunotherapy response analyses. (A, B) The top 20 genes with the highest somatic mutation frequency in high-
risk subtype (A) and low-risk subtype (B). (C) TIDE prediction scores for immunotherapy response in the high- and low-risk subtypes. (D) The
difference of high- and low-risk subtypes between non-responders (NR) and responders (R).
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FIGURE 12

Comparison of anti-tumor drug sensitivity between the high- and low-risk subtypes. (A) BI-2536, (B) dabrafenib, (C) I-BET-762, (D) LCL-161,
(E) Birabresib, (F) doramapimod, (G) GSK269962A, (H) PF-4708671, (I) ribociclib, (J) SB-505124.
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FIGURE 13

Validation of cell proliferation for DCLRE1B and HOMER1 in LUAD cell line A549. A549 cells were transiently transfected with siRNA (siDCLRE1B-1,
siDCLRE1B-2, siDCLRE1B-3, siHOMER1-1, siHOMER1-2 or siHOMER1-3) or with its corresponding negative control (siNC). RT-qPCR (A, B) and
western blot (C, D) were used to measure DCLRE1B and HOMER1 expressions.(E, F) MTT assay was used to measure cell proliferation. The data were
presented as the mean ± standard deviation. ∗ P< 0.05, ∗∗ P< 0.01 and ∗∗∗ P< 0.001.
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cancer analysis shows that oncogene CDK1 is an immunological

and prognostic biomarker, which may influence tumor immunity

mainly by mediating the migration of immune cells to TME, and is

positively associated with tumor mutational burden and

microsatellite instability (54). CXCL12 is highly enriched in

fibroblasts (16). Fibroblasts in bladder cancer parietal tissue

promote bladder carcinogenesis and progression by paracrine

secretions of CXCL12 into TME to interact specifically with

CXCR4 receptors (a specific receptor for CXCL12, expressed in T

cells and macrophages in tumor tissues) and promote the

proliferation of depleted T cells in cancer tissues (16). Those
Frontiers in Immunology 16
studies reveal complicated roles of TRPGs in cancer by regulating

immune cells and cancer cells. Considering that functions of the

TPRGs have already been explored in T cells (17), we further

validated cellular effects of two TRPGs (including DCLRE1B and

HOMER1) in LUAD cells. As a result, DCLRE1B and HOMER1

suppressed cell proliferation, migration and invasion, which line

with their prognostic values (risk factors). The biological functions

and underlying molecular mechanisms of those TRPGs need to be

investigated in the future.

Overall, our study proposed a TPRGs-related 6-gene risk model

for subtype classification and OS prediction in LUAD. The LUAD
B

C D

A

FIGURE 14

Validation of cell migration and invasion for DCLRE1B and HOMER1 in LUAD cell line A549. A549 cells were transiently transfected with siRNAs
(siDCLRE1B-1, siDCLRE1B-2, siHOMER1-1 or siHOMER1-3) or with its corresponding negative control (siNC). (A, B) Wound healing assay was used to
measure cell migration. (C, D) Transwell assay was used to measure cell invasion. Representative images were shown on the right. The data were
presented as the mean ± standard deviation. ∗ P< 0.05.
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subtypes divided by the risk model showed remarkably differences

in biology function and pathway, mutation status, immunity and

drug susceptibility. High-risk subtype characterized by higher

somatic mutation frequency and lower immunotherapy response

had a shorter OS. The subtypes with different risk scores were

significantly associated with drug sensitivity. Furthermore, TPRGs-

encoded proteins DCLRE1B and HOMER1 suppressed cell

proliferation, migration and invasion, which was in line with their

prognostic values. This risk model showed a good reliability and

accuracy in training and validation cohorts, and might serve as a

potential prognostic biomarker in clinical use.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

QY and HG contributed the idea for the article, performed the

experiments and analyses, and wrote the manuscript. WZ revised
Frontiers in Immunology 17
the manuscript. All authors contributed to the article and approved

the submitted version.
Funding

This study was funded by the Scientific Research Foundation of

Hunan Provincial Education Department [grant number

20B528, 21B0694].
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy
in lung cancer. Surg Pathol clinics (2020) 13(1):17–33. doi: 10.1016/j.path.2019.11.002

2. Saito M, Suzuki H, Kono K, Takenoshita S, Kohno T. Treatment of lung
adenocarcinoma by molecular-targeted therapy and immunotherapy. Surg Today
(2018) 48(1):1–8. doi: 10.1007/s00595-017-1497-7

3. Kleczko EK, Kwak JW, Schenk EL, Nemenoff RA. Targeting the complement
pathway as a therapeutic strategy in lung cancer. Front Immunol (2019) 10:954. doi:
10.3389/fimmu.2019.00954

4. O'Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T
cell-based immunotherapy. Nat Rev Clin Oncol (2019) 16(3):151–67. doi: 10.1038/
s41571-018-0142-8

5. Genova C, Dellepiane C, Carrega P, Sommariva S, Ferlazzo G, Pronzato P, et al.
Therapeutic implications of tumor microenvironment in lung cancer: Focus on
immune checkpoint blockade. Front Immunol (2021) 12:799455. doi: 10.3389/
fimmu.2021.799455

6. Stankovic B, Bjorhovde HAK, Skarshaug R, Aamodt H, Frafjord A, Muller E, et al.
Immune cell composition in human non-small cell lung cancer. Front Immunol (2018)
9:3101. doi: 10.3389/fimmu.2018.03101

7. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1
blockade induces responses by inhibiting adaptive immune resistance. Nature (2014)
515(7528):568–71. doi: 10.1038/nature13954

8. Scheper W, Kelderman S, Fanchi LF, Linnemann C, Bendle G, de Rooij MAJ,
et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human
cancers. Nat Med (2019) 25(1):89–94. doi: 10.1038/s41591-018-0266-5

9. Pasetto A, Gros A, Robbins PF, Deniger DC, Prickett TD, Matus-Nicodemos R,
et al. Tumor- and neoantigen-reactive T-cell receptors can be identified based on their
frequency in fresh tumor. Cancer Immunol Res (2016) 4(9):734–43. doi: 10.1158/2326-
6066.CIR-16-0001

10. Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ,
et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated
compartment within human melanoma. Cell (2019) 176(4):775–89.e18. doi: 10.1016/
j.cell.2018.11.043

11. Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, et al. Global
characterization of T cells in non-small-cell lung cancer by single-cell sequencing.
Nat Med (2018) 24(7):978–85. doi: 10.1038/s41591-018-0045-3
12. Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, et al. Clonal
replacement of tumor-specific T cells following PD-1 blockade. Nat Med (2019) 25
(8):1251–9. doi: 10.1038/s41591-019-0522-3

13. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, et al. Lineage tracking reveals
dynamic relationships of T cells in colorectal cancer. Nature (2018) 564(7735):268–72.
doi: 10.1038/s41586-018-0694-x

14. Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, et al. Single-cell
profiling of breast cancer T cells reveals a tissue-resident memory subset associated with
improved prognosis. Nat Med (2018) 24(7):986–93. doi: 10.1038/s41591-018-0078-7

15. van der Leun AM, Thommen DS, Schumacher TN. CD8(+) T cell states in
human cancer: insights from single-cell analysis. Nat Rev Cancer (2020) 20(4):218–32.
doi: 10.1038/s41568-019-0235-4

16. Hou J, Wen X, Lu Z, Wu G, Yang G, Tang C, et al. A novel T-cell proliferation-
associated regulator signature pre-operatively predicted the prognostic of bladder
cancer. Front Immunol (2022) 13:970949. doi: 10.3389/fimmu.2022.970949

17. Legut M, Gajic Z, Guarino M, Daniloski Z, Rahman JA, Xue X, et al. A genome-
scale screen for synthetic drivers of T cell proliferation. Nature (2022) 603(7902):728–
35. doi: 10.1038/s41586-022-04494-7

18. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al.
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
Nucleic Acids Res (2016) 44(8):e71. doi: 10.1093/nar/gkv1507

19. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics (2010) 26(12):1572–3. doi:
10.1093/bioinformatics/btq170

20. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf (2013) 14:7. doi: 10.1186/1471-2105-14-7

21. Miao YR, Zhang Q, Lei Q, Luo M, Xie GY, Wang H, et al. ImmuCellAI: A unique
method for comprehensive T-cell subsets abundance prediction and its application in cancer
immunotherapy. Adv sci (2020) 7(7):1902880. doi: 10.1002/advs.201902880

22. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

23. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12
(5):453–7. doi: 10.1038/nmeth.3337
frontiersin.org

https://doi.org/10.1016/j.path.2019.11.002
https://doi.org/10.1007/s00595-017-1497-7
https://doi.org/10.3389/fimmu.2019.00954
https://doi.org/10.1038/s41571-018-0142-8
https://doi.org/10.1038/s41571-018-0142-8
https://doi.org/10.3389/fimmu.2021.799455
https://doi.org/10.3389/fimmu.2021.799455
https://doi.org/10.3389/fimmu.2018.03101
https://doi.org/10.1038/nature13954
https://doi.org/10.1038/s41591-018-0266-5
https://doi.org/10.1158/2326-6066.CIR-16-0001
https://doi.org/10.1158/2326-6066.CIR-16-0001
https://doi.org/10.1016/j.cell.2018.11.043
https://doi.org/10.1016/j.cell.2018.11.043
https://doi.org/10.1038/s41591-018-0045-3
https://doi.org/10.1038/s41591-019-0522-3
https://doi.org/10.1038/s41586-018-0694-x
https://doi.org/10.1038/s41591-018-0078-7
https://doi.org/10.1038/s41568-019-0235-4
https://doi.org/10.3389/fimmu.2022.970949
https://doi.org/10.1038/s41586-022-04494-7
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1002/advs.201902880
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.3389/fimmu.2023.1148483
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1148483
24. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res (2018) 28(11):1747–
56. doi: 10.1101/gr.239244.118

25. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response.NatMed (2018) 24(10):1550–8.
doi: 10.1038/s41591-018-0136-1

26. Maeser D, Gruener RF, Huang RS. oncoPredict: an r package for predicting in
vivo or cancer patient drug response and biomarkers from cell line screening data.
Briefings Bioinf (2021) 22(6). doi: 10.1093/bib/bbab260

27. Yang Q, Zhu L, Ye M, Zhang B, Zhan P, Li H, et al. Tumor suppressor 4.1N/
EPB41L1 is epigenetic silenced by promoter methylation and MiR-454-3p in NSCLC.
Front Genet (2022) 13:805960. doi: 10.3389/fgene.2022.805960

28. YangQ, ZhuM,Wang Z, Li H, ZhouW, Xiao X, et al. 4.1N is involved in a flotillin-1/
beta-catenin/Wnt pathway and suppresses cell proliferation and migration in non-small cell
lung cancer cell lines. Tumour Biol (2016) 37(9):12713–23. doi: 10.1007/s13277-016-5146-3

29. Sholl LM, Hirsch FR, Hwang D, Botling J, Lopez-Rios F, Bubendorf L, et al. The
promises and challenges of tumor mutation burden as an immunotherapy biomarker:
A perspective from the international association for the study of lung cancer pathology
committee. J Thorac Oncol (2020) 15(9):1409–24. doi: 10.1016/j.jtho.2020.05.019

30. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al.
Development of tumor mutation burden as an immunotherapy biomarker: utility for
the oncology clinic. Ann Oncol (2019) 30(1):44–56. doi: 10.1093/annonc/mdy495

31. Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The challenges of
tumor mutational burden as an immunotherapy biomarker. Cancer Cell (2021) 39
(2):154–73. doi: 10.1016/j.ccell.2020.10.001

32. Leader AM, Grout JA, Maier BB, Nabet BY, Park MD, Tabachnikova A, et al. Single-
cell analysis of human non-small cell lung cancer lesions refines tumor classification and
patient stratification.Cancer Cell (2021) 39(12):1594–609.e12. doi: 10.1016/j.ccell.2021.10.009

33. Pan Y, Han H, Labbe KE, Zhang H, Wong KK. Recent advances in preclinical
models for lung squamous cell carcinoma. Oncogene (2021) 40(16):2817–29. doi:
10.1038/s41388-021-01723-7

34. Bremnes RM, Busund LT, Kilvaer TL, Andersen S, Richardsen E, Paulsen EE,
et al. The role of tumor-infiltrating lymphocytes in development, progression, and
prognosis of non-small cell lung cancer. J Thorac Oncol (2016) 11(6):789–800. doi:
10.1016/j.jtho.2016.01.015

35. Ilie MD, Vasiljevic A, Raverot G, Bertolino P. The microenvironment of
pituitary tumors-biological and therapeutic implications. Cancers (2019) 11(10). doi:
10.3390/cancers11101605

36. Spranger S, Gajewski TF. Impact of oncogenic pathways on evasion of antitumour
immune responses. Nat Rev Cancer (2018) 18(3):139–47. doi: 10.1038/nrc.2017.117

37. Kobayashi Y, Lim SO, Yamaguchi H. Oncogenic signaling pathways associated
with immune evasion and resistance to immune checkpoint inhibitors in cancer. Semin
Cancer Biol (2020) 65:51–64. doi: 10.1016/j.semcancer.2019.11.011

38. Wang Z, Strasser A, Kelly GL. Should mutant TP53 be targeted for cancer therapy?
Cell Death differentiation (2022) 29(5):911–20. doi: 10.1038/s41418-022-00962-9
Frontiers in Immunology 18
39. Aithal A, Rauth S, Kshirsagar P, Shah A, Lakshmanan I, Junker WM, et al.
MUC16 as a novel target for cancer therapy. Expert Opin Ther targets (2018) 22(8):675–
86. doi: 10.1080/14728222.2018.1498845

40. Felder M, Kapur A, Gonzalez-Bosquet J, Horibata S, Heintz J, Albrecht R, et al.
MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol cancer
(2014) 13:129. doi: 10.1186/1476-4598-13-129

41. Principe C, Dionisio de Sousa IJ, Prazeres H, Soares P, Lima RT. LRP1B: A giant
lost in cancer translation. Pharmaceuticals (2021) 14(9):836. doi: 10.3390/ph14090836

42. Berger NA, Scacheri PC. Targeting epigenetics to prevent obesity promoted
cancers. Cancer Prev Res (2018) 11(3):125–8. doi: 10.1158/1940-6207.CAPR-18-0043

43. Zhang D, Leal AS, Carapellucci S, Zydeck K, Sporn MB, Liby KT.
Chemoprevention of preclinical breast and lung cancer with the bromodomain
inhibitor I-BET 762. Cancer Prev Res (2018) 11(3):143–56. doi: 10.1158/1940-
6207.CAPR-17-0264

44. Leal AS, Williams CR, Royce DB, Pioli PA, Sporn MB, Liby KT. Bromodomain
inhibitors, JQ1 and I-BET 762, as potential therapies for pancreatic cancer. Cancer
letters (2017) 394:76–87. doi: 10.1016/j.canlet.2017.02.021

45. Riveiro ME, Astorgues-Xerri L, Vazquez R, Frapolli R, Kwee I, Rinaldi A, et al.
OTX015 (MK-8628), a novel BET inhibitor, exhibits antitumor activity in non-small
cell and small cell lung cancer models harboring different oncogenic mutations.
Oncotarget (2016) 7(51):84675–87. doi: 10.18632/oncotarget.13181

46. Pearce LR, Alton GR, Richter DT, Kath JC, Lingardo L, Chapman J, et al.
Characterization of PF-4708671, a novel and highly specific inhibitor of p70 ribosomal
S6 kinase (S6K1). Biochem J (2010) 431(2):245–55. doi: 10.1042/BJ20101024

47. Park JH, Pyun WY, Park HW. Cancer metabolism: Phenotype, signaling and
therapeutic targets. Cells (2020) 9(10):2308. doi: 10.3390/cells9102308

48. Liu C, Lu H, Wang H, Loo A, Zhang X, Yang G, et al. Combinations with
allosteric SHP2 inhibitor TNO155 to block receptor tyrosine kinase signaling. Clin
Cancer Res (2021) 27(1):342–54. doi: 10.1158/1078-0432.CCR-20-2718

49. Schettini F, De Santo I, Rea CG, De Placido P, Formisano L, Giuliano M, et al.
CDK 4/6 inhibitors as single agent in advanced solid tumors. Front Oncol (2018) 8:608.
doi: 10.3389/fonc.2018.00608

50. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin d as a
therapeutic target in cancer. Nat Rev Cancer (2011) 11(8):558–72. doi: 10.1038/nrc3090

51. Sokratous G, Polyzoidis S, Ashkan K. Immune infiltration of tumor
microenvironment following immunotherapy for glioblastoma multiforme. Hum
Vaccines Immunother (2017) 13(11):2575–82. doi: 10.1080/21645515.2017.1303582

52. Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, et al. The lung
microenvironment: an important regulator of tumour growth and metastasis. Nat Rev
Cancer (2019) 19(1):9–31. doi: 10.1038/s41568-018-0081-9

53. Tanaka A, Sakaguchi S. Targeting treg cells in cancer immunotherapy. Eur J
Immunol (2019) 49(8):1140–6. doi: 10.1002/eji.201847659

54. Yang Y, Liu Q, Guo X, Yuan Q, Nian S, Kang P, et al. Systematic pan-cancer
analysis identifies CDK1 as an immunological and prognostic biomarker. J Oncol
(2022) 2022:8115474. doi: 10.1155/2022/8115474
frontiersin.org

https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.3389/fgene.2022.805960
https://doi.org/10.1007/s13277-016-5146-3
https://doi.org/10.1016/j.jtho.2020.05.019
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1016/j.ccell.2020.10.001
https://doi.org/10.1016/j.ccell.2021.10.009
https://doi.org/10.1038/s41388-021-01723-7
https://doi.org/10.1016/j.jtho.2016.01.015
https://doi.org/10.3390/cancers11101605
https://doi.org/10.1038/nrc.2017.117
https://doi.org/10.1016/j.semcancer.2019.11.011
https://doi.org/10.1038/s41418-022-00962-9
https://doi.org/10.1080/14728222.2018.1498845
https://doi.org/10.1186/1476-4598-13-129
https://doi.org/10.3390/ph14090836
https://doi.org/10.1158/1940-6207.CAPR-18-0043
https://doi.org/10.1158/1940-6207.CAPR-17-0264
https://doi.org/10.1158/1940-6207.CAPR-17-0264
https://doi.org/10.1016/j.canlet.2017.02.021
https://doi.org/10.18632/oncotarget.13181
https://doi.org/10.1042/BJ20101024
https://doi.org/10.3390/cells9102308
https://doi.org/10.1158/1078-0432.CCR-20-2718
https://doi.org/10.3389/fonc.2018.00608
https://doi.org/10.1038/nrc3090
https://doi.org/10.1080/21645515.2017.1303582
https://doi.org/10.1038/s41568-018-0081-9
https://doi.org/10.1002/eji.201847659
https://doi.org/10.1155/2022/8115474
https://doi.org/10.3389/fimmu.2023.1148483
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Subtype classification based on t cell proliferation-related regulator genes and risk model for predicting outcomes of lung adenocarcinoma
	1 Introduction
	2 Materials and methods
	2.1 Dataset acquisition
	2.2 Identification of the prognostic genes and TPRGs-related clusters
	2.3 Biological processes quantification
	2.4 TME infiltration and genomic alteration analysis
	2.5 Gene clustering based on DEGs of TPRGs-related subtypes
	2.6 Construction and validation of a 6-gene risk model for LUAD patients
	2.7 Prediction of immunotherapy response and chemotherapy susceptibility
	2.8 Cell lines and cell culture
	2.9 Antibodies, siRNAs and reagents
	2.10 RT-qPCR and western blot
	2.11 Cell proliferation assay, wound healing assay and transwell assay
	2.12 Statistical analysis

	3 Results
	3.1 Landscape of TPRGs and gene mutations
	3.2 Subtype classification based on OS-related TPRGs and enrichment analysis
	3.3 Characterization of TME cell infiltration and gene mutation
	3.4 Gene clustering
	3.5 Construction of a predictive risk model
	3.6 Associations of the 6-gene risk model with clinical features
	3.7 Function and pathway enrichment analyses
	3.8 Somatic mutation frequency and predictability of immunotherapy response
	3.9 Drug sensitivity analyses
	3.10 Functional validation of DCLRE1B and HOMER1

	4 Discussions
	Data availability statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


