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Ulsan, Republic of Korea
Innate immunity is an important first line of defense against pathogens, including

viruses. These pathogen- and damage-associated molecular patterns (PAMPs

and DAMPs, respectively), resulting in the induction of inflammatory cell death,

are detected by specific innate immune sensors. Recently, Z-DNA binding

protein 1 (ZBP1), also called the DNA-dependent activator of IFN regulatory

factor (DAI) or DLM1, is reported to regulate inflammatory cell death as a central

mediator during viral infection. ZBP1 is an interferon (IFN)-inducible gene that

contains two Z-form nucleic acid-binding domains (Za1 and Za2) in the N-

terminus and two receptor-interacting protein homotypic interaction motifs

(RHIM1 and RHIM2) in the middle, which interact with other proteins with the

RHIM domain. By sensing the entry of viral RNA, ZBP1 induces PANoptosis, which

protects host cells against viral infections, such as influenza A virus (IAV) and

herpes simplex virus (HSV1). However, some viruses, particularly coronaviruses

(CoVs), induce PANoptosis to hyperactivate the immune system, leading to

cytokine storm, organ failure, tissue damage, and even death. In this review,

we discuss the molecular mechanism of ZBP1-derived PANoptosis and pro-

inflammatory cytokines that influence the double-edged sword of results in the

host cell. Understanding the ZBP1-derived PANoptosis mechanism may be

critical for improving therapeutic strategies.
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Introduction

Innate immunity and virus

Innate immunity is the first line of defense against viral infections in host cells. The

pro-inflammatory response of innate immunity induces the migration of immune cells,

including macrophages and neutrophils, to remove infectious agents (1, 2). The innate

immune system is activated by the viral pathogen-associated molecular patterns (PAMPs)

and damage-associated molecular patterns (DAMPs) by pattern recognition receptors

(PRRs), such as Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-like
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receptors (RLRs), nucleotide-binding oligomerization domain

(NOD)-like receptor family proteins (NLRs), absent in melanoma

2 (AIM2), and Z-DNA binding protein 1 (ZBP1). For example,

several TLRs are involved in the detection of b-coronaviruses. TLR7
senses severe acute respiratory syndrome coronavirus (SARS-CoV),

Middle East respiratory syndrome coronavirus (MERS-CoV) (3),

and murine hepatitis virus (MHV) (4), and TLR2 senses SARS-

CoV-2 (5). RIG-I senses viral RNA, including IAV (6–9) and

hepatitis C virus (HCV) (10). Subsequently, TLR- and RLR-

mediated signaling leads to the secretion of type 1 interferons

(IFNs), that stimulate the expression of IFN-stimulated genes

(ISGs) in infected and neighboring cells, thereby inducing an

antiviral state. In particular, some PRRs, including NLRs and

AIM2, assemble a large prote in complex known as

inflammasome, comprising a sensor, an adaptor, and an effector.

They are assembled after sensing viral infections and activate the

programmed cell death (PCD) pathway. The most well-established

PCDs are pyroptosis, apoptosis, and necroptosis. These PCD

pathways are activated against various viral infections to remove

infected cells and suppress viral spread. Some viruses derive the

crosstalk between the multiple PCD pathways known as

PANoptosis, including IAV (11–14) and HSV1 (15–18) infection.

PANoptosis occurs via PANoptosome, wherein the key molecules

of pyroptosis, apoptosis, and necroptosis simultaneously interact

with each other (14, 18–22). In this review, we summarize the

molecular mechanisms of each PCD and PANoptosis against

viral infection.
ZBP1

At first, ZBP1 was considered as the cytosolic DNA sensor (23,

24). However, Zbp1–/–and wild type (WT) mice displyed a similar

phenotype in B-DNA-induced innate immune activation (23–25).

ZBP1 comprises three parts: the N-terminal Z-DNA binding

domain (ZBD), the receptor-interacting protein homotypic

interaction motifs (RHIM), and the C-terminal signal domain

(SD) (26–29). The N-terminal ZBD, also called the Za1 and Za2,
binds to the left-handed helical Z-conformation nucleic acid (Z-

NA) (30, 31). Za domains, particularly the Za2 domain, are known

to play a critical role in the activation of PCDs (18, 30, 32–34). For

example, the deficiency of the Za domains or Za2 alone limits

ZBP1-RIPK3-mediated inflammatory cell death after IAV infection

(30, 34). In addition to Za domains, ZBP1 has two RHIMs that

interact with other RHIMs in RIPK1 and RIPK3 (26, 30, 35, 36).

The C-terminal SD of ZBP1 participates in the type 1 IFN response

induced by ZBP1 (29).

ZBP1 has recently been shown to act as a central regulator of

PANoptosis, by defending against viral infections, such as IAV (11,

34) and HSV1 (18). In contrast, some viruses cause cell death that

severely impacts host health. For example, SARS-CoV-2, the

causative virus of coronavirus disease 19 (COVID-19), activates

multiple inflammatory cell death pathways and induces the

hyperactivation of cytokine secretion, which results in severe

symptoms (32, 37–39). Thus, the regulation of the adverse

mechanisms of PCD is essential for protecting the host from death.
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ZBP1-NLRP3 inflammasome

The inflammasome mediates pyroptosis by forming a large

prote in complex af ter sens ing PAMPs and DAMPs.

Inflammasomes induce the activation of protease enzyme families

such as caspase-1, 4, 5, and 11, which process GSDMD and release

the N-terminus to oligomerize and form pores in the plasma

membrane after their cleavage (40–42). Activated caspase-1

cleaves the end to release IL-1b and IL-18. There are five well-

known inflammasome sensors: NLRP1 (43), NLRP3 (44–46),

NLRC4 (47, 48), AIM2 (49–52), and pyrin (53). Some other

innate sensors have also been reported to initiate inflammasome

assembly under specific conditions, such as NLRP6 (54), NLRP9

(55), NLRP12 (56), interferon-g-inducible protein 16 (IFI16) (57),

RIG-I (58), and myxovirus resistance protein A (MxA) (1). These

sensors interact with apoptosis-associated speck-like protein

containing CARD (ASC), an adaptor molecule, to activate

caspase-1. Among them, NLRP3 has been extensively studied in

various stimuli, from endogenous danger signals (44–46) to gram-

positive (59) and gram-negative bacteria (60–62). In addition,

NLRP3 senses RNA viruses, IAV (11, 63–66), and West Nile

virus (WNV) (67), in addition to DNA viruses, HSV-1 (68, 69) to

activate the antiviral immune response.

Two signals are required to activate the NLRP3 inflammasome.

First, the priming signal from stimuli promotes the NF-kB and ERK

pathways, which may elevate the gene expression of inflammasome

components and manage post-translational modifications of

NLRP3, such as ubiquitination (70), phosphorylation (71, 72),

and SUMOylation (73). Subsequently, the activation signal

stimulates NLRP3 activation, which may be due to specific

cellular stress patterns such as K+ efflux (74, 75) and

mitochondrial dysfunction (76, 77). The activated NLRP3

inflammasome contains NLRP3, caspase-1, and ASC and

facilitates IL-1b maturation (78). Notably, regardless of the

presence of stimuli, ASC specks can be released into the

extracellular space and oligomerized in the neighboring

macrophages via a prion- l ike mechanism in Arf6– /–

macrophages (79).

Recently, the interaction between ZBP1 and NLRP3

inflammasome has been revealed in several viral infections. ZBP1

detects IAV infection and activates the NLRP3 inflammasome to

induce inflammatory cell death (11, 30, 80). And NLRP3

inflammasome activation was diminished during IAV infection in

Zbp1–/– bone marrow-derived macrophages (BMDMs) (11). In

addition, the Za2 domain of ZBP1 influences the activation of

NLRP3 inflammasome and PANoptosis (30). ZBP1 can interact

with IAV nucleoprotein (NP), polymerase subunit PB1, and IAV Z-

RNA (11, 34), thereby activating the NLRP3 inflammasome via the

RIPK1-RIPK3-caspase-8 axis (11). Overall, these results indicate

that ZBP1 is an essential regulator of the NLRP3 inflammasome in

response to viral infection.

In this review, we summarize the role of ZBP1 as an essential

regulator of innate immune response and cell death during viral

infection. Herein, we describe how ZBP1 senses the entry of viral Z-

RNA and stimulates the inflammatory cell death pathway. We also

describe a newly emerging concept of inflammatory cell death,
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PANoptosis, which leads to host survival when balanced or fetal

symptoms and even death when exacerbated, which may be a

decisive target in various viral diseases.
ZBP1 and PCDs

ZBP1 senses viral genome and plays a key
role as a central mediator of PCDs

The sensing of viral elements by the innate immune system induces

inflammatory cell death pathways. After ZBP1 senses viral Z-RNA, a

cascade of pro-inflammatory cytokines occurs, and PCDs are induced

individually or together through crosstalk for host defense (Figure 1).
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ZBP1 induces pyroptosis during viral
infection

Pyroptosis is a form of inflammatory cell death, typically

mediated by inflammasomes. The term pyroptosis was first defined

in 2001 semantically distinguishing pyroptosis and apoptosis (81).

Canonical pyroptosis is regulated by inflammasome activation, which

cleaves GSDMD and releases IL-1b and IL-18 (40, 41, 82). Gasdermin

E (GSDME), another member of the gasdermin (GSMD) family, is

also involved in pyroptosis via caspase-3 and -8 activation by

undergoing cleavage and releasing N-terminus, thereby forming

channels on the cell membrane (83, 84). The inflammasome is a

multi-protein complex containing parts of a sensor, adaptor, and

effector that assemble in response to the virus entry. The assembly of
FIGURE 1

ZBP1-derived PANoptosis ZBP1 senses viral nucleic acids (Z-NA) and interacts with RIPK1 (not shown) and RIPK3 via RHIM domains to recruit
caspase-8. The ZBP1-RIPK3-caspase-8 complex induces three major inflammatory cell death pathways: GSDMD-mediated pyroptosis, caspase-3/
caspase-7-mediated apoptosis, and MLKL-mediated necroptosis. RIPK3 and caspase-8 induce NLRP3 inflammasome assembly via ASC and pro-
caspase-1. After assembly, mature caspase-1 cleaves GSDMD to form pores in the plasma, leading to pyroptosis. Caspase-8 stimulates the secretion
of caspase-3 and caspase-7. ZBP1-RIPK3 activates MLKL-mediated necroptosis. Created with BioRender.com.
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the inflammasome begins to sense certain stimuli through its sensor

protein (85). For example, poly (dA:dT) is recognized by AIM2 (86),

and NLRC4 detects Salmonella flagellin (87). Subsequently, pro-

caspase-1 proteins form oligomers and activate caspase-1.

Furthermore, the activated caspase-1 can proteolytically cleave the

cytokines pro–IL-1b and pro–IL-18 into their bioactive forms to

induce pro-inflammatory responses.

The relationship between the NLRP3 inflammasome and ZBP1 is

well established. The ZBP1-NLRP3 inflammasome facilitates the

maturation of pro-inflammatory cytokines, including IL-1b and IL-

18, and GSDMD by activating caspase-1. IL-1b and IL-18 are

processed into their active forms to upregulate the pro-

inflammatory signaling pathway (88, 89). Simultaneously, GSDMD

is cleaved by caspase-1 and it self-oligomerizes to form a pore in the

membrane, releasing cytokines to induce inflammatory cell death

through a process called pyroptosis (40–42). During IAV infection,

ZBP1 activates the NLRP3 inflammasome and induces pyroptosis in

BMDMs. Pyroptosis-associated cytokines, IL-1b and IL-18, were

significantly reduced in Zbp1–/– BMDMs (11). In BMDMs, ZBP1-

induced pyroptosis is regulated by RIG-I-MAVS and TLR signaling

pathways during IAV infection (13). However, in MHV infection,

Zbp1–/– mice survived more than WT mice after IFN-g treatment

(32). Similar to the ZBP1-NLRP3 inflammasome, the ZBP1-AIM2

inflammasome facilitates the expression of pyroptotic markers, such

as caspase-1, GSDMD, and GSDME, and inflammasome activation is

reduced in Zbp1–/– BMDMs in response to HSV-1 infection (18).
ZBP1 induces apoptosis during viral
infection

Apoptosis was first structurally distinguished from cell death and

found to be involved in PCD in the development of Caenorhabditis

elegans (90). Apoptosis is triggered by numerous stimuli, including

viruses, and mediated by successive caspase reactions. This activation

occurs via the initiator caspase, which is present upstream of the

effector (or executioner) caspase. The apoptotic initiator caspase

contains caspases-2, -8, -9, and -10, and effector caspases contain

caspase-3, -6, and -7. These effector caspases play a central role in

apoptosis by catalyzing their substrates.

ZBP1-associated apoptosis is also mediated by caspase-8, caspase-

3, and caspase-7. Caspase-8 activates caspase-3, which promotes the

maturation of GSDME to form pores in the membrane. Additionally,

caspase-7 is activated by caspase-8. In Zbp1–/– BMDMs, caspase-8, -3,

and -7 are downregulated during HSV-1 and IAV infection (11, 18).

Additionally, the activation of caspase-8, -3, and -7 was attenuated in

Zbp1–/– and Zbp1DZa2/DZa2 BMDMs than in WT during MHV

infection with IFN-b treatment (32).
ZBP1 induces necroptosis during viral
infection

Necroptosis and apoptosis differ in their morphology and

molecular pathways. Apoptosis is characterized by cell shrinking,

nuclear fragmentation, intra-nucleosomal cleavage, and membrane
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blebbing (91, 92). In addition, cells exposed to apoptosis show

engulfment signals that are then detected by phagocytes. Necroptosis

is characterized by a bursting membrane, cell lysis, and pro-DAMP

release (93–95). Necroptosis is mediated by RIPK3, which interacts

with other RHIM domain-containing molecules via the RHIM domain

at the C-terminus (96). Similarly, ZBP1 induces necroptosis via the

activation of RIPK3, which phosphorylates MLKL via its kinase

domain. Phosphorylated MLKL is then inserted into the membrane,

which constitutes a necroptotic pore. During HSV-1 infection,

necroptotic markers, phosphorylated RIPK3 and MLKL, are reduced

in Zbp1–/– BMDMs (18). The HSV1 viral protein ICP6 induces

necroptosis in RHIM-RIPK3-MLKL dependent manner in ZBP1

deficient cells (97). After sensing IAV Z-RNA, ZBP1 induces RIPK3-

MLKL-dependent necroptosis (98). In murine cytomegalovirus

(MCMV) infection, ZBP1 regulates necroptosis with RIPK3,

independent of RIPK1 (99). The phosphorylation of MLKL and

RIPK3 was downregulated in the absence of the ZBP1 and Za2
domains of BMDMs during MHV infection with IFN-b treatment

(32). The Za2 domain of ZBP1 senses vaccinia virus (VV) and induces

necroptosis (100). In a study, after SARS-CoV-2 infection, the mRNA

levels of ZBP1 andMLKL were increased in mouse neurons and brains

(101). The expression of ZBP1, RIPK3, and caspase-8 was found to be

increased in blood samples of patients with severe COVID-19, as

analyzed using expression quantitative trait loci (eQTL) (102).
ZBP1-PANoptosis: a double-edged
sword

PANoptosis

PANoptosis is a unique inflammatory cell death process

controlled by the PANoptosome, which reacts to specific

stimuli, including viruses. The term PANoptosis was established

based on studies that revealed a crosstalk between pyroptosis,

apoptosis, and necroptosis. The crosstalk was first observed

between pyroptosis and apoptosis (103, 104). Subsequently, the

overlapping functions of caspase-8 and caspase-1/NLRP3 for

pyroptotic, apoptotic, and necroptotic molecules were identified

(61, 105, 106). ZBP1 (11), TAK1 (19, 107), and caspase-6 (14)

were recently found to solidify the concept of PANoptosis.

Additionally, the Za2 domain of ZBP1 has been shown to be an

essential component of IAV (30) and HSV1 (18)-induced

PANoptosis. Furthermore, the roles of PANoptosis and cytokine

storms in coronavirus infection have been studied (32, 37, 108).

Overall, PANoptosis has been implicated in defense against

various pathogens, including viruses (Figure 2).
ZBP1 regulates PANoptosis as a central
upstream molecule

ZBP1 has been investigated as a necroptotic sensor; however,

recently, it has also been revealed to regulate multiple inflammatory

cell death processes, including PANoptosis. The first study of ZBP1-
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derived PANoptosis reported that ZBP1 regulates NLRP3

inflammasome activation to induce PANoptosis via RIPK1-RIPK3-

caspase-8 axis during IAV infection. This study suggests that ZBP1 is

a central molecule that senses IAV infection by detecting the IAV

viral proteins, NP and PB1 (11). IAV Z-RNA also induces PCD by

activating ZBP1 and resulting in RIPK1 recruitment and caspase-8

activation (34). Furthermore, the Za2 domain of ZBP1 regulates

PANoptosis and NLRP3 inflammasome during IAV infection (30).
ZBP1-PANoptosis defends host against
viral infection

Several studies have established the crosstalk theory that explains

the co-activation of pyroptosis, apoptosis, and necroptosis
Frontiers in Immunology 05
(PANoptosis). Since the first crosstalk between pyroptosis and

apoptosis was revealed, ZBP1 showed a critical role in the crosstalk

between inflammatory cell deaths. ZBP1 has been studied as a

necroptotic sensor (99, 109). However, the regulatory role of ZBP1

was identified in multiple inflammatory cell death pathways. First,

ZBP1 stimulates not only NLRP3 inflammasome activation but also

apoptosis and necroptosis during IAV infection (11). This study

suggests that ZBP1 is a key regulator of the three delegable

inflammatory cell death pathways. ZBP1 was found to be highly

expressed in IAV-infected WT BMDMs, while being downregulated

in IAV-infected Ifnar1–/– BMDMs. IL-1b and IL-18 levels were

reduced in Zbp1–/– BMDMs. The scientists observed an interaction

between ZBP1 and RIPK3 using immunoprecipitation in IAV-

infected WT BMDMs, which induced apoptosis and necroptosis

during IAV infection (110, 111). Subsequently, the Za2 domain of
FIGURE 2

PANoptosome and PANoptosis against IAV, HSV1, and SARS-CoV-2 infections The three viruses, IAV, HSV1, and SARS-CoV-2, were established as
the models of PANoptosis. During IAV infection, ZBP1 senses viral dsRNA and recruits RIPK3, RIPK1, caspase-6, and caspase-8 to assemble the
PANoptosome, causing GSDMD-mediated pyroptosis, caspase-3 and -7-mediated apoptosis, and MLKL-mediated necroptosis. During HSV1
infection, AIM2, the dsDNA sensor, senses HSV1 dsDNA and recruits ZBP1 and pyrin during PANoptosis. During SARS-CoV-2 infection, ZBP1 interacts
with the NLRP3 inflammasome via an unknown mechanism and induces PANoptosis. Created with BioRender.com.
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ZBP1 regulates influenza-inducible PANoptosis and NLRP3

inflammasome (30). The absence of the Za2 domain of ZBP1

induced the downregulation of caspase-1 activation and GSDMD

cleavage during IAV infection, which is a criterion for pyroptosis. The

activation of caspase-8, caspase-3, and RIPK3 lacked Zbp1DZa2/DZa2

BMDMs. These results indicated that the Za2 domain of ZBP1 is

critical for the activation of PANoptosis against IAV infection.

Additionally, the absence of ZBP1 increases cell death. In

summary, ZBP1 is beneficial for host cell survival against IAV

infection (11, 32, 34). In other viral infections, such as HSV1, ZBP1

forms a complex with AIM2 and pyrin and defends the host via the

induction of PANoptosis (18). In this study, ZBP1 cooperated with

pyrin in AIM2 inflammasome activation during HSV1 infection, and

ZBP1 induced PANoptosis in response to HSV1 infection in an

AIM2-dependent manner. Additionally, a deficiency of the Za2
domain of ZBP1 reduced HSV1-induced cell death and Zbp1–/–

BMDMs. Overall, these studies suggest that ZBP1 is a central

mediator of PANoptosis against viral infections to protect host cells

from viral lethality.
ZBP1-PANoptosis increases viral lethality
through cytokine storm

PANoptosis is not always beneficial for host survival.

Dysregulation of cytokines can cause cell death, tissue damage,

and mortality due to viral infections (32, 38, 112). Immune

hyperactivation occurs as an acute induction of pro-inflammatory

cytokine secretion, resulting in a cytokine storm in b-coronavirus
infections, including those of SARS-CoV (113–118), MERS-CoV

(119–125), MHV (32, 108), and SARS-CoV-2 (32, 39, 126, 127).

During SARS-CoV-2 infection, co-treatment with TNF-a and IFN-

g, which mimics the cytokine storm, induces PANoptosis in vitro

and in vivo, viral lethality, and severe symptoms, such as tissue

damage (37). Robust release of cytokines has been suggested to

correlate with lung injury and multiple organ failure (Figure 3)

(128–130). After screening a publicly available dataset, various pro-

inflammatory cytokines were found to be upregulated in patients

with severe COVID-19. Co-treatment with IFN-g and TNF-a
significantly induced PANoptosis in BMDMs and THP-1 cells via

the STAT1-interferon regulatory factor 1 (IRF1)-inducible nitric

oxide synthase (iNOS)-nitric oxide (NO) axis. NO induces

apoptosis by activating caspase-8 (131, 132). Similarly, Ripk3–/–

Casp8–/– BMDMs were rescued from PANoptosis induced by IFN-g
and TNF-a when compared with Ripk3–/– BMDMs. Moreover,

Ripk3–/–Fadd–/– BMDMs were saved from PANoptosis induced by

co-treatment with IFN-g and TNF-a. Overall, the RIPK1-FADD-

CASP8 axis induces PANoptosis by IFN-g and TNF-a co-

treatment. In the in vivo experiment, the levels of serum lactate

dehydrogenase (LDH) and immune cells in the blood were reduced

in STAT1–/– and RIPK3–/–Casp8–/– mice co-treated with IFN-g and
TNF-a. Blocking IFN-g and TNF-a using neutralizing antibodies

significantly increased the survival of SARS-CoV-2-infected mice

when compared to that of an isotype control. Collectively, IFN-g
and TNF-a play critical roles in the induction of PANoptosis and

cytokine storms during SARS-CoV-2 infection. Similarly, the Za2
Frontiers in Immunology 06
domain of ZBP1 upregulates PANoptosis and cytokine storm

during b-coronavirus, SARS-CoV-2, and MHV infections with

IFN treatment (32). Interestingly, delayed IFN-b release and

STAT1 activation were observed in MHV infection, which

mirrors the biology of human b-coronavirus. IFN-b treatment a

few days after MHV and SARS-CoV-2 infection induces the

activation of PANoptosis markers, including caspase-1, GSDMD,

GSDME, caspase-8, -3, -7, MLKL, and RIPK3. Delayed IFN-b
treatment influences the pathogenesis of MERS-CoV in a mouse

model (3) and delayed IFN-a2b treatment upregulates mortality in

patients with SARS-CoV-2 (133). These results indicate that

delayed cytokine release favors b-coronavirus lethality. ZBP1 was

then used to identify the sensing mechanism of b-coronavirus
among ISGs significantly upregulated by MHV infection in

immortalized BMDMs (iBMDMs). ZBP1-deficient mice showed

no significant difference in the presence or absence of IFN-b, and
ZBP1 was highly expressed in the lungs of mice infected with MHV

following IFN-b treatment than in the lungs of MHV-infected and

untreated mice. Similarly, a deficiency of the Za2 domain of ZBP1

reduces cell death during MHV infection. However, IFN-b
treatment did not induce any changes in cell death during IAV

infection in Zbp1–/– and Zbp1DZa2 mice. Moreover, Zbp1–/– and

Zbp1DZa2 mice showed the downregulation of PANoptosis markers

compared to WT mice during MHV infection with IFN-b
treatment. In a very recent study, it was observed that the

deletion of ZBP1 or RIPK3 reduced the secretion of inflammatory

cytokines and chemokines and attenuated immune cell infiltration

and lung damage during SARS-CoV-2 infection in vivo (39).
Viral immune evasion

The virus can evade the host immune system through viral

components including viral proteins. Viral immune evasion helps

viruses grow, transmit, and survive in the host body to escape the

host immune system, thereby causing failure in the immune

response (134). The virus has diverse strategies for escaping the

host immune system. They inhibit signaling pathways by targeting

specific immune signaling-mediated proteins, such as inhibiting

IRF9 (also known as p48) (135, 136) or blocking the

phosphorylation of STAT1 (135, 137, 138). ZBP1 has also been

reported as a target of viral evasion strategies (26, 99, 139, 140). An

MCMV viral protein, M45, is considered to suppress the interaction

of the ZBP1-RIPK1/RIPK3 and downstream signaling pathway

depending on the RHIM domain (26), and ZBP1-RIPK3

interaction occurs in M45mutRHIM MCMV infection but not in

WT MCMV (11, 99). This study identified ZBP1 as a target of

MCMV evasion. VV viral protein, E3, which contains the Za
domain inhibits IFN and RIPK3-dependent necroptosis with

ZBP1 during VV infection (140). Additional studies about viral

evasion strategies are suggested from an RHIM-dependent

perspective (141).

Other viral proteins may disrupt the inflammatory cell death

signaling pathway. The nonstructural protein (NS1) is a well-

known IAV viral protein that inhibits the transcription of

antiviral genes and intracellular ISGs, including protein kinase R
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(PKR) (142) and 2,’ 5’-oligoadenylate synthetase (2’-5’ OAS), by

binding to viral RNA to prevent detection by ISGs (143). The other

IAV viral protein, PB1, particularly PB1-F2, directly interacts with

MAVS (144, 145). PB1-F2 induces pyroptosis by interacting with

the NLRP3 inflammasome, which causes an increased production

of IL-1b (146). Additionally, the substitution of an amino acid

(Asn66Ser) is known to inhibit type 1 and type 3 IFNs (147).

Similarly, HSV can evade the host immune system through various

mechanisms. Similar to IAV, HSV represses the IFN response

through viral proteins, including ICP0, ICP27, ICP34.5, Us3, and

vhs. Each protein inhibits IFN expression in diverse ways. ICP0

modifies IRF3 and IRF7 (148, 149), and ICP27 reduces IFN and
Frontiers in Immunology 07
cytokine expression by inhibiting IRF3 and NF-kB activation (150).

Downstream molecules of the IFN signaling pathway, such as

STAT1, are also targeted by HSV viral proteins. In addition, HSV

viral proteins ICP4, ICP27, ICP34.5, and gJ inhibit apoptosis in

various ways, such as caspase inhibition and downregulation of Fas

ligand (151). Coronavirus impedes the innate immune system using

viral proteins, nonstructural proteins (Nsp), and open reading

frames (OFR). Nsp1 inhibits the IFN signaling pathway,

particularly SARS-CoV-2 Nsp1, which suppresses the promoter

activity of IFN-stimulated response elements (ISREs) (152). Nsp3,

the largest protein encoded by the coronavirus genome, can bind to

IRF3 and suppress the phosphorylation and nuclear translocation of
FIGURE 3

The consequence of PANoptosis: a double-edged sword in viral pathogenesis ZBP1-mediated PANoptosis can protect the host against viral
infections, such as IAV and HSV1. However, it can trigger cytokine storms and cause cancer, tissue damage, autoinflammation, and multiple-organ
failure. Created with BioRender.com.
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IRF3, thereby leading to the inhibition of the IFN signaling pathway

(153). Moreover, Nsp13 and Nsp15 can modify the viral RNA to

escape from the guards of the host. The 5’-ppp moiety, a type of

RIG-I ligand, is regulated by Nsp13 (154, 155), and Nsp15 removes

the 5’-polyuridine (polyU) region from 5’-polyU-containing,

negative-sense RNAs, which helps viral RNA to hide from

cytosolic dsRNA sensors, including PKR, MDA5, and OAS/RNase

L (156). The ORF family also antagonizes the host inflammatory

and IFN signaling pathways (157–167). These numerous strategies

allow viruses to evade the host innate immune system, particularly

the IFN signaling pathway, and these strategies may evolve owing to

the importance of IFN in defending the host from viruses.
Cytokine storm-related cytokines: IFNs and
TNF

IFNs and TNF are essential components of the innate immune

system. IFN secretion is activated when PRRs (RIG-I) sense viral

components and stimulate IRF3, which induces the secretion of

type 1 IFNs. Secreted IFNs are then detected by IFNAR1/2, and the

STAT1 signaling pathway is induced (80, 168). ZBP1 is also a

downstream molecule in the IFN pathway. Induction of IRF9 by the

STAT1 pathway stimulates ZBP1 expression in Ifnar1–/–, Stat1–/–,

and Irf9–/– cells, and ZBP1 activation was abolished (11). IFNs are

required to induce ZBP1-derived inflammatory cell death. IFNs

mediate pyroptosis (11, 169), necroptosis (170), and apoptosis (171)

associated with ZBP1. Therefore, IFN is critical for PANoptosis.

Cytokine storms, which compensate for severe viral lethality in the

host, are also related to IFNs. One of the well-studied theories about

the relationship between IFNs and cytokine storms is the delayed

activation of IFN. IFN delay enhances cytokine secretion and

disease during viral infections (3, 133, 172). During MERS-CoV

infection, IFN-b delay enhances pro-inflammatory cytokines

released in monocytes, macrophages, and neutrophils (3).

Delayed type 1 IFN signaling promotes SARS-CoV infection

(172). Besides, CD4+ and CD8+ T cells, which are involved in

adaptive immune, are reduced in severe COVID-19 (173, 174), and

Th17 CD4+ T cells, which act in a pro-inflammatory role, are

increased (126). In a recent study, SARS-CoV-2 revealed that can

directly infect T lymphocytes in a spike-ACE2/TMPRSS2-

independent manner (175). The dysregulated immune system

induces non-specific immune cells and the release of pro-

inflammatory factors (176, 177). In conclusion, the IFN secretory

pathway may burst during the late phase of viral infection and

promote host survival.
Concluding remarks

In this review, we summarize the molecular-based mechanism

of inflammatory cell death by focusing on viruses that cause all

three major cell deaths. Considering IAV and HSV1 infections,

ZBP1-derived PANoptosis plays an important role in host survival.

However, side effects such as a cytokine storm in coronavirus
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infections lead to systemic inflammation, organ failure, and even

death of the host. Therefore, virus-induced cell death must be

controlled to reduce the hyperactivation of the immune response

by conducting virus-specific studies. There are differences in the

viral infection method, viral life cycle, and immune evasion

strategies for each virus. In addition, various viral proteins help

viruses evade and cause confusion in the host immune system.

Further studies should be conducted to elucidate the exact

mechanism through which the cytokine storm occurs.

The regulation of cytokines and signaling pathways is important

for controlling the pathogenesis of the hyperactivated immune

system. In particular, TNF and IFN-g synergize cytokine storms

by generating a feedback loop in coronavirus infection. Thus, the

neutralization of TNF and IFN-g may be valuable to rescue

excessive cytokine secretion (178). This process is induced by the

caspase-8-JAK1/2-STAT1 axis (178). Inhibitors of molecules that

participate in this signaling pathway, such as STAT1 or JAK1/2

inhibitors, would be effective. In the case of JAK1/2 inhibitors,

baricitinib received an emergency use authorization to cure

COVID-19 in 2020. Collectively, pro-inflammatory cytokines

must be regulated to rescue the host from the cytokine storm

l o o p a n d s u b s e q u e n t l e t h a l s ymp t om s , s u c h a s

systemic inflammation.

Other strategies that target inflammasome components,

including sensors, ZBP1, NLRP3, and downstream molecules,

caspases, RIPK1, RIPK3, and ASC may be helpful. In caspase-8

and MLKL double-knockout (DKO) mice, weight loss induced by

SARS-CoV-2 infection was abolished, although the viral burden did

not change (179). Casp8–/–Ripk3–/– DKO mice were rescued from

viral lethality induced by TNF and IFN-g co-treatment but not

Ripk3–/– mice (37). These results indicate that the components of

PANoptosis play an important role in fatal cytokine storms. If we

can directly control ZBP1 and NLRP3, this may be an efficient

method. One of the possible strategies is by using ADAR1. ADAR1

acts as a repressor of the ZBP1-NLRP3 inflammasome and causes

multiple inflammatory cell deaths (33). Additionally, there are other

studies on the capacity of ADAR1 for suppressing ZBP1-mediated

PCD (180–183). Collectively, we can overcome ZBP1-derived

multiple inflammatory cell death and severe signs, such as

cytokine storms, using molecular-based therapeutic strategies.

Furthermore, IFN delay causes hyperactivated secretion of

cytokine (3, 133, 172). Thus, IFN therapy, which is used for the

treatment of viral infection, would be harmful to patients with

COVID-19 by eliciting excessive activation of cytokines. Therefore,

treatment should be administered with caution after further

research. In summary, the unresolved questions need to be

addressed to develop a strong defense strategy against viral

infections and to control multiple inflammatory cell deaths.
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