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MiR-199a-5P promotes
osteogenic differentiation of
human stem cells from apical
papilla via targeting IFIT2 in
apical periodontitis
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Introduction: Periapical alveolar bone loss is the common consequence of

apical periodontitis (AP) caused by persistent local inflammation around the

apical area. Human stem cells from apical papilla (hSCAPs) play a crucial role in

the restoration of bone lesions during AP. Studies have recently identified the

critical role of microRNAs (miRNAs) involved in AP pathogenesis, but little is

known about their function and potential molecular mechanism, especially in the

osteogenesis of hSCAPs during AP. Here, we investigated the role of clinical

sample-based specific miRNAs in the osteogenesis of hSCAPs.

Methods: Differential expression of miRNAs were detected in the periapical

tissues of normal and patients with AP via transcriptomic analysis, and the

expression of miR-199a-5p was confirmed by qRT-PCR. Treatment of hSCAPs

with miR-199a-5p mimics while loaded onto beta-tricalcium phosphate (b-TCP)
ceramic particle scaffold to explore its effect on osteogenesis in vivo. RNA

binding protein immunoprecipitation (RIP) and Luciferase reporter assay were

conducted to identify the target gene of miR-199a-5p.

Results: The expression of miR-199a-5p was decreased in the periapical tissues

of AP patients, and miR-199a-5p mimics markedly enhanced cell proliferation

and osteogenic differentiation of hSCAPs, while miR-199a-5p antagomir

dramatically attenuated hSCAPs osteogenesis. Moreover, we identified and

confirmed Interferon Induced Protein with Tetratricopeptide Repeats 2 (IFIT2)

as a specific target of miR-199a-5p, and silencing endogenous IFIT2 expression

alleviated the inhibitory effect of miR-199a-5p antagomir on the osteogenic

differentiation of hSCAPs. Furthermore, miR-199a-5p mimics transfected

hSCAPs loaded onto beta-tricalcium phosphate (b-TCP) scaffolds induced

robust subcutaneous ectopic bone formation in vivo.

Discussion: These results strengthen our understanding of predictors and

facilitators of the key AP miRNAs (miR-199a-5p) in bone lesion repair under
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periapical inflammatory conditions. And the regulatory networks will be

instrumental in exploring the underlying mechanisms of AP and lay the

foundation for future regenerative medicine based on dental mesenchymal

stem cells.
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1 Introduction

Apical periodontitis (AP) is a common oral disease

characterized by alveolar bone destruction and inflammatory

disorder of periapical tissues, which often cause the severe arrest

of root development, resulting in masticatory dysfunction and even

loose or lost teeth that reduce the quality of life of individuals (1, 2).

In the acute stages of AP, serous exudation, tissue edema, dilatation,

and hyperemia of periodontal vascular are the main manifestations,

while patients with AP in the chronic inflammatory stage usually

exhibit a pathological condition with the formation of inflammatory

granulation tissue in the apical area, finally leading to periapical

bone destruction (3, 4). However, the exact mechanisms that

contributed to these clinical and pathological manifestations

remain unclear.

As a subgroup of dental mesenchymal stem cells (MSCs),

human stem cells from apical papilla (hSCAPs) can be obtained

from the apical tissue of underdeveloped permanent teeth and have

been identified as promising seed cells in tissue engineering due to

their self-renewal and multi-lineage differentiation potential (5–7).

Owing to the capacity to diverge into distinct cell lineages, such as

odontogenic, neurogenic, chondrogenic and osteogenic, hSCAPs

play a vital role in the development of the root, pulp-dentin

complex, and alveolar bone (8, 9). In particular, it has been

reported that SCAPs may have superior osteogenic differentiation

capacity compared to bone marrow mesenchymal stem cells

(BMSCs) (10). Nonetheless, it was also reported that an

inflammatory microenvironment could alter the hallmarks of

SCAPs, leading to an inhibitory or increasing effect on osteogenic

differentiation (11, 12). Effective osteogenic differentiation of MSCs

is regulated by numerous factors, including physical, chemical, and

biological factors, which may stimulate different signaling pathways,

transcription factors, and microRNAs (miRNAs), to direct MSCs

differentiated toward osteoblast lineage (13–16). However, the exact

role of miRNAs in promoting osteogenic differentiation has yet to

be fully understood.

MiRNAs are an evolutionarily conserved set of small non-

coding RNAs of approximately 18-22 nucleotides, and display

their functions mainly via binding to the 3′ untranslated regions

leading to degradation or post-transcriptional repression of the

mRNA targets (17). Studies have previously implicated the essential
02
regulatory roles of miRNAs in diverse biological or pathological

processes, including tumor metastasis, cellular differentiation,

proliferation, apoptosis, and tissue development (18–20). The

pivotal roles of miRNAs in osteogenesis, such as osteoblast

differentiation, angiogenesis, and intra-chondral bone formation

have also been identified (21–23). Additionally, previous studies

have revealed that miRNAs may play crucial roles in the

development and progression of oral diseases, such as apical

periodontitis, pulpitis and periodontitis (24–27). However, among

more than 2,000 miRNAs identified in humans, only a few were

reportedly involved in apical periodontitis (28–30) although their

role in regulating osteogenesis of hSCAPs and in clinical apical

periodontitis samples have not been validated. Therefore, it is of

significance to determine the important roles of miRNAs in

promoting osteogenesis in inflammatory periapical tissues as this

line of investigation is essential to expanding our current

endodontics knowledge and exploring new treatment strategies.

Here, to explore the role of miRNAs in the osteogenesis of

hSCAPs during AP, we conducted high-throughput microRNA

RNA-seq and validation in extensive clinical samples. We found a

novel profile of miRNA in periapical tissues with AP patients, which

is helpful to identify the impact of miRNAs which exert significant

predictors and facilitators of bone lesion repair in apical

periodontitis. Importantly, we demonstrated that miR-199a-5p

effectively promoted the osteogenic activity of hSCAPs both in

vitro and in vivo via directly regulating IFIT2 expression, which

suggests its possibility to be potentially utilized to facilitate bone

regeneration during apical periodontitis.
2 Materials and methods

2.1 Collection and high-throughput RNA-
Seq analysis of periapical tissue samples

The use of patient samples was approved by the Ethics

Committee of the Affiliated Stomatological Hospital of

Chongqing Medical University. Samples of periapical tissue were

acquired from each patient with informed written consent. All

relevant procedures were performed following the approved

guidelines. As is recommended by the clinical guidelines for
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endodontics, the diagnosis of apical periodontitis is based on the

history, clinical examination, and periapical radiographic images

(31). According to the correct clinical diagnosis, the periapical

tissue samples were obtained from patients with severe periapical

infection requiring extraction and whose roots had not yet been

subjected to physiological resorption. The health control tissue

samples were obtained from retained deciduous anterior teeth

with a remaining root length greater than 2/3 and without

carious. Furthermore, non-peer patients with systemic diseases

such as diabetes, heart disease, asthma, etc., and with root

resorption greater than 1/3 were excluded. A specific list of the

inclusion and exclusion criteria for apical periodontitis is described

in Table S1. The extracted teeth were placed in pre-cooled

RNALater™ reagent (Beyotime, Shanghai, China) immediately

and then rinse with cooling phosphate-buffered saline (PBS,

Hyclone, UT, USA), the periapical tissue was quickly scraped

(complete within 5 min on ice) and chilled in liquid nitrogen for

15 min, then kept at -80°C.

Periapical tissues from AP and healthy controls were subjected to

high-throughput RNA-seq analysis by BMKCloud Biotechnology

(Wuhan, China) to screen for differentially expressed miRNAs and

mRNAs. Additionally, due to the small amount of periapical tissue in

healthy controls, tissues from three different participants were pooled

in each sample for sequencing. Potential target genes of miRNA were

also predicted by bioinformatics analysis of the ENCORI database

(https://starbase.sysu.edu.cn/), and relevant pathway enrichment

analysis was performed by the DAVID website.
2.2 hSCAPs isolation, identification, and
osteogenic differentiation

The apical papillae of teeth with underdeveloped roots were

gently separated according to approved guidelines by the

Stomatological Hospital Affiliated with Chongqing Medical

University. The papilla tissues were digested with type I

collagenase (Sigma, MO, USA) solution, and then maintained in

Dulbecco’s Modified Eagle’s Medium with low glucose (L-DMEM,

Hyclone, UT, USA) containing 10% fetal bovine serum (FBS,

Hyclone, UT, USA), 1% penicillin-streptomycin at 37°C with 5%

CO2, and change the medium at 3-day intervals. Three passages of

hSCAPs were used in subsequent experiments.

Surface markers of hSCAPs were analyzed by flow cytometry on

a BD Accuri C6 flow cytometer (BD Biosciences, CA, USA). Briefly,

Cells were stained with FITC rabbit anti-CD90 (Sino-Biological,

Beijing, China), anti-CD29 (Sino-Biological, Beijing, China), and

anti-CD45 (Sino-Biological, Beijing, China). FlowJoTM software

(Tree Star, Inc., Ashland, OR, USA) was applied to analyze the

results with statistical calculations of the percentage of positive cells

for visualization in histograms.

For osteogenic differentiation induction, hSCAPs were

incubated in an osteogenic medium containing L-DMEM with

10% FBS, 100nM dexamethasone (Sigma, MO, USA), 10 mM b-
glycerophosphate (Sigma, MO, USA), and 50 ug/ml ascorbic acid

(Sigma, MO, USA).
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2.3 Transient transfection of miRNA mimic,
antagomir, NC, and siRNA

The miRNA mimics, antagomir and siRNAs were generated by

Tsingke Biotechnology Co., Ltd. (Beijing, China), and then they

were transfected into hSCAPs with HiPerFect transfection reagents

(QIAGEN, Duesseldorf, Germany) according to the producer’s

instructions. MiRNA mimics and NC were transfected at a

concentration of 20 nM, while miR-199a-5p antagomir was used

at 50 nM and incubated for 24 h. And then, the transfection

medium was replaced with a normal growth medium or

osteogenic induction medium to terminate the transfection

according to the experimental needs. The specific sequences of

miR-199a-5p mimics and antagomir are shown in Table S2.
2.4 Alkaline phosphatase assays and
alizarin red S staining

ALP staining and ALP activity quantification assays were

conducted after osteogenic induction at 3 or 7 days according to

the instructions of an NBT/BCIP staining kit (Beyotime, Shanghai,

China) and Alkaline Phosphatase Assay Kit (Nanjing Jiancheng

Bioengineering Institute, China), respectively.

Alizarin red S staining was performed to detect mineralized

nodules. Briefly, hSCAPs were first rinsed with PBS, fixed in 4%

paraformaldehyde (Solarbio, Beijing, China), and subsequently

dyed in 1% alizarin red solution (Solarbio, Beijing, China). For

semi-quantitative analysis, Image J software will be utilized to

analyze the ARs stained images, calculating the percentage of

positive areas, three different stained images of ARs will be

included in each group.
2.5 Total RNA extraction, reverse
transcription, and quantitative real-time
polymerase chain reaction

The RNAeasy™ Plus Animal RNA Isolation Kit (Beyotime,

Shanghai, China) was utilized to extract total RNA. Reverse

transcription was performed by using random hexamer primers

or miRNA-specific stem-loop RT primers followed by the

PrimeScript® RT reagent kit instructions (TaKaRa, Tokyo,

Japan), and cDNA generated from mRNA or miRNA are used as

templates for amplified with TB Green Premix Ex Taq II (TaKaRa,

Tokyo, Japan). In addition, Poly(A) was added to the 3’ end of the

miRNAs, followed by a reverse transcription reaction with Oligo

(dT)-Universal Tag reverse transcription primers to generate the

first strand of cDNA corresponding to the miRNA and then

measured by qPCR with specific forward primers and

commercially accessible reverse primers according to the

producer’s instructions (TIANGEN, Beijing, China). The relative

expression of mRNA or miRNA was assessed by standardizing with

those of GAPDH or U6, respectively. The primer sequences which

were used in this research are shown in Tables S3, S4.
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2.6 CCK-8 assay

Approximately 3×103 cells/well were incubated in a 96-well

plate and subsequently transfected with miR-199a-5p mimics,

antagomir, NC, and siRNA. After transfection, replaced the

original medium with a fresh complete medium containing 10 mL
CCK8 reagent at specific time points, and incubated with cells for 1

h, then measure the absorbance at 450nm in a microplate reader

(Perkin Elmer, Waltham, USA) and experiments were carried out

in triplicates.
2.7 Crystal violet staining assay

Seed the hSCAPs in 35-mm dishes and after the cells are

plastered, transfected with NC, miR-199a-5p antagomir, and

mimics. Crystal violet (Beyotime, Shanghai, China) staining assays

were conducted on these transfected cells at different indicated time

points following the reagent instructions. Next, dissolve the stained

cells in 33% acetic acid at room temperature, and measure the OD

value at 570-590 nm for quantitative measurements.
2.8 RNA immunoprecipitation and
RNA sequencing

RIP was performed with the Imprint® RNA immunoprecipitation

Kit (Sigma, MO, USA). Ten million cells were harvested and lysed in

mild lysis buffer (B0314, Sigma, MO, USA) with protease inhibitors

and ribonuclease inhibitors, and 5% of each cell lysate was removed as

input. Protein A magnetic Beads (B0689, Sigma, MO, USA) were pre-

incubated with anti-IgG (I5006, Sigma, MO, USA) or anti-AGO2

(ac186733, Abcam, UK) at room temperature with rotation for 30 min,

and then cell lysate was added for further incubation with rotation

overnight at 4 °C. The precipitated RNA was extracted by using an

RNA Isolation Kit with Spin Column (Beyotime, Shanghai, China)

following the producer’s instructions.

The rRNA was removed from the immunoprecipitated RNA,

and then the products were subjected to high-throughput

sequencing by Huada (BGI) Medical Laboratory Co., LTD

(Wuhan, China). Filter the sequencing data with SOAPnuke26

(32) to obtain clean data, which were then stored and mapped to

the reference genome using HISAT2. Dr. Tom’s multi-omics data

mining system (https://biosys.bgi.com) was then applied to conduct

data mining and analysis.
2.9 Western blot

Extraction of the total protein from cells in RIPA lysis buffer

(Beyotime, Shanghai, China) containing the cocktai l .

Approximately 25 mg of protein was detached via a 10% sodium

dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) gel,

and further transmitted to 0.45 µm PVDF membranes (Millipore,

MA, USA) and blocked in TBST containing 5% fat-free milk for

about 1 hour. Later, incubate the membranes with antibodies.
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Visualization of immunological assays was performed by using a

chemiluminescent ECL reagent (Beyotime, Shanghai, China).

Primary antibodies were used as follows: anti-AGO2 antibody

(Abcam, Cambridge, UK), anti-IFIT2 antibody (Proteintech,

Wuhan, China), anti-RUNX2 antibody (Abcam, Cambridge, UK),

anti-ALP antibody (Abcam, Cambridge, UK), anti-OPN antibody

(Abcam, Cambridge, UK), and anti-GAPDH antibody

(ZenBioscience, Chengdu, China).
2.10 Dual luciferase reporter analysis

293T cells are used for reporter gene assay. A wild-type reporter

vector (IFIT2-3′-UTR- WT) was produced by fusing the IFIT2 3′-
UTR sequence with the binding site of miR-199a-5p to the pmirGLO

luciferase reporter vector (Promega). In addition, the mutant reporter

vector (IFIT2-3′-UTR-MUT) was derived by inserting sentinel

mutagenesis of the miR-199a-5p binding site from the IFIT2 3′-
UTR sequence into the luciferase reporter vector. These reporter

vectors were then cotransfected withmiR-199a-5p mimics along with

293T cells by using Hieff TransTM Liposomal Transfection Reagent

(YEASEN, Shanghai, China). Eventually, a dual luciferase reporter

system (YEASEN, Shanghai, China) was applied to determine the

luciferase activity 24 hours post-transfection. Light intensities were

standardized with renilla luciferase.
2.11 In vivo ectopic bone formation and
histological evaluation

All animal experiments were conducted under the ethical

committee guidelines of the Affiliated Stomatological Hospital of

Chongqing Medical University. Cells from each group

(approximately 3×106 cells per group) were loaded on b-
tricalcium phosphate (b-TCP) porcelain granules (Bio-lu

Biomaterials, Shanghai, China) and subcutaneously implanted the

mixture into the flanks of 6-week-old BALB/c nude mice. 8 weeks

later, these implants were obtained, fixed with paraformaldehyde

(4%), decalcified in EDTA decalcification solution (Servicebio,

Wuhan, China), and embedded in paraffin. Tissues embedded

were serially sliced (5 mm) and processed for hematoxylin and

eosin (H&E; Solarbio, Beijing, China) staining and Masson

trichrome (Solarbio, Beijing, China) staining. Furthermore, the

immunohistochemistry (IHC) staining was also carried out with

anti-OCN antibodies (Abcam, Cambridge, UK) as previously

described (33). The images were acquired by digital section

scanner VS200 (Olympus, Japan).
2.12 SEM imaging and energy dispersive
spectrometry analysis

The surface morphologies of b-TCP were observed and imaged

by scanning electron microscopy (SEM, ZEISS, Sigma 300,

Germany), and the particle sizes were evaluated by Nano

Measurer 1.2 software based on its morphology map. An energy
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dispersive X-ray spectrometer (EDS, Oxford Instruments, Xplore,

UK) was used to detect the elemental composition and distribution

of the scaffolds.
2.13 Micro-CT analysis

Micro-CT scans were undertaken by Chongqing Key Laboratory

of Oral Diseases and Biology. Micro-CT images were processed by

Mimics Research 21.0 and 3 Matic Research 13.0 software to conduct

3D reconstruction and volumetric quantification. The eligible areas

within the scaffold were picked to measure total volume (CT

threshold above 4000HU) and bone volume (CT threshold between

4000HU-5500HU), for calculating the percentage of occupation of

ectopic osteogenesis.
2.14 Statistical analysis

The studies were conducted independently three times at least,

and differences in variables between groups were assessed with

Graphpad 8.0 software using a student t-test or one-way ANOVA.

p < 0.05 is regarded as statistically significant. Data were presented

as the mean ± SD.
Frontiers in Immunology 05
3 Results

3.1 Differential miRNAs expression
identified by high-throughput microRNA
RNA-seq analysis of periapical tissue
isolated from teeth with normal and
chronic apical periodontitis

To explore the role of miRNA in the osteogenic differentiation

of inflamed periapical tissue, conventional RNA-seq and

microRNA RNA-seq were conducted to determine the distinct

expression patterns of miRNA and mRNA between periapical

tissues from AP patients (S) and health controls (C). Based on

the correlation analysis between AP and control groups (Figure 1A),

two samples from each group were selected to be further analyzed.

Differential expression analysis based on |log2FC| (fold change) >1

and p-value<0.05 identified 1869 up-regulated mRNAs and 1566

down-regulated mRNAs (Figure 1B), as well as 89 up-regulated

miRNAs and 67 down-regulated miRNAs. (Figure 1C). Then, with

further parameters setting the basal expression level (counts>10), 12

up-regulated and 6 down-regulated miRNAs were detected in AP

tissues compared to healthy controls, including miR-335-5p and

miR-455-3p (Figure 1D), which were previously reported to
B C

D E

F

A

FIGURE 1

Identification of DE-miRNAs in periapical tissue. (A) Correlation analysis of the sequenced samples. (B) Volcano diagram of DE-mRNAs. (C) Volcano
diagram of DE-miRNAs. (D) Circular heatmap of 12 up-regulated and 6 down-regulated miRNAs. (E) KEGG pathway enrichment analysis of the
intersection genes between the DE-mRNAs and the predicted target genes of DE-miRNA. (F) Relative expression of the seven miRNAs in samples of
periapical tissues (AP/Control:23/13). Data were presented as the mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, ns, no
significance.
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enhance osteogenic differentiation of MSCs (34, 35), and were

chosen for subsequent bioinformatics analyses.

First, via intersecting the target genes of the 18 DE-miRNAs

predicted by databases with the DE-mRNAs identified by RNA-seq

in our study, we found 445 up-regulated mRNAs and 633 down-

regulated mRNAs, respectively (Figures S1A, B). Second, Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis was used to classify potential functions of these genes

(Figure 1E), and we found that the majority of enriched pathways

were pointed to the classic inflammation-related signaling

pathways, such as TNF and NF-KB signaling pathways (36–38),

or pathways regulating stem cell pluripotency and PI3K-Akt

signaling pathways associated with osteogenic differentiation (39).

By exploring the upstream miRNAs of the genes included in these

enriched pathways, seven miRNAs, including upregulated miR-

29b-3p and miR-223-3p, as well as down-regulated miR-335-5p,

miR-9-5p, miR-218-5p, miR-455-3p, and miR-199a-5p were

identified, indicating that these differentially expressed miRNAs

may exert osteogenesis effects in apical periodontitis. Lastly, the

expression of these miRNAs was validated by qPCR analysis of the

periapical tissues from 23 AP patients and 13 healthy controls

(Figure 1F). Consequently, the above seven miRNAs were chosen as

candidates for further study.
3.2 7 Validation of expression pattern of
the seven differentially expressed miRNAs
during osteogenic differentiation
of hSCAPs

Since the target genes of 7 miRNAs were most enriched in the

osteogenic-related signaling pathways, we isolated hSCAPs from

young permanent teeth with underdeveloped roots first (Figures

S2A, B). The expressions of surface markers were detected by FACS,

and results showed that MSC surface markers CD90 and CD29

were positive in hSCAPs but negative for hematopoietic stem cell

marker CD45 (Figure S2C). We also detected the expression levels

of these candidate miRNAs at different time points of osteogenic

differentiation of hSCAPs (Figure 2A) and found that the

expression of miR-199a-5p and miR-455-3P gradually elevated,

while miR-9-5p, miR-335-5p, and miR-223-3p expression gradually

decreased during the osteogenic differentiation of hSCAPs.

We further compared the miRNA expression profiles in hSCAPs

with that in periapical tissues to determine the candidate miRNAs

involved in periapical osteogenesis. Four miRNAs, including miR-

199a-5p, miR-9-5P, miR-455-3P and miR-223-3P, were selected and

validated by early osteogenic phenotype, Alkaline phosphatase (ALP)

staining. As demonstrated by ALP staining and ALP activity assay, the

osteogenic differentiation of hSCAPs was significantly promoted by

miR-199a-5p mimics (Figures 2B, C), which was more pronounced

than other miRNA overexpression groups. Furthermore, only the miR-

199a-5p overexpression group significantly upregulated the expression

of osteogenic marker genes RUNX2, ALP, and OCN in hSCAPs

(Figure 2D). Collectively, these data suggest that miR-199a-5p may

modulate the osteogenesis of hSCAPs.
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3.3 miR-199a-5p positively modulates the
proliferation and osteoblast differentiation
of hSCAPs

To confirm the biological function of miR-199a-5p in cell

proliferation and osteogenic differentiation of hSCAPs, we first

transfected hSCAPs with miR-199a-5p mimics, antagomir, and

negative control (NC), respectively. We found that the

accumulation level of mature miRNAs still maintained several

hundred-fold increases after transfection of miRNA mimics into

hSCAPs for several days (Figure S3). The CCK-8 assay revealed that

hSCAPs transfected with miR-199a-5p mimics exhibited increased

proliferation as compared to NC, while decreased when miR-199a-

5p was knocked down in hSCAPs (Figure 3A). Crystal violet

staining revealed statistically significant increased numbers of

cells in the miR-199a-5p overexpression group than those

transfected with NC or miR-199a-5p antagomir after seeding at

the same initial density (Figures 3B). These results reveal that miR-

199a-5p may promote the proliferation of hSCAPs and enhance

their self-renewal capacity.

Furthermore, we assessed the function of miR-199a-5p in

regulating the osteogenic differentiation of hSCAPs. The hSCAPs

transfected with miR-199a-5p mimics, antagomirs, and NC for 24h

were incubated in osteogenic induction media for 3 or 7 days. Both

the expression and activity of ALP were markedly increased in the

miR-199a-5p overexpression group (Figures 3C, D). Moreover, we

determined the expression levels of the osteoblast-relevant markers

by qPCR and found that RUNX2, OSX, ALP, and OCN expression

were significantly increased in the miR-199a-5p overexpressing

group on 3 and 7 days of osteogenic induction (Figure 3E). As

expected, we observed a significant decrease in ALP staining and

activity with inhibition of miR-199a-5p in hSCAPs. Meanwhile,

miR-199a-5p knockdown in hSCAPs led to RUNX2 and ALP

inhibition, while OSX and OCN expression were not affected.

Alizarin red staining assay and semi-quantitative analysis revealed

that miR-199a-5p overexpression remarkably enhanced calcium

nodule deposition (Figures 3F, G). The qPCR analysis showed

that miR-199a-5p expressing hSCAPs exhibited a dramatically

increased expression of ALP, OCN, OSX, and RUNX2 than those

in the control cells (Figure 3H). Taking together, we demonstrate

that miR-199a-5p may facilitate the osteogenic differentiation of

hSCAPs in vitro.
3.4 miR-199a-5p directly targets IFIT2
in hSCAPs

To identify the target mRNAs post-transcriptionally modulated

by miR-199a-5p involved in osteogenic differentiation of hSCAPs,

we performed an Ago2 RIP-sequencing. Notably, it was determined

that miR-199a-5p was enriched in the immunoprecipitates of the

anti-AGO2 group when compared with the IgG group by qPCR,

and miR-199a-5p enrichment was remarkably higher in the

overexpression group than that in the controls (Figure 4A). Next,

we performed RNA-seq analysis of differential expression genes
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enriched in AGO2 between the controls and the miR-199a-5p

overexpression group. Based on p-value (<0.05), and fold change

(>2), 135 up-regulated mRNAs were collected (Figure 4B), which

were subsequently intersected with the predicted target genes of

miR-199a-5p (Figure 4D). Consequently, 9 potential target genes

were obtained and confirmed by qPCR in RIP products (Figure

S4A). Among them, IFIT2 was the most significantly elevated one.

Furthermore, Protein-Protein Interaction networks (PPI)

analysis (Figure 4C) of the up-regulated genes in RIP-sequencing

revealed multiple IFIT family genes that are closely linked and

enriched (Figure S4B). Additionally, we conducted Gene Ontology

(GO), Reactome pathway, and KEGG pathway enrichment analysis

on these 135 significantly up-regulated genes, in which type 1

interferon signaling pathway was found to be involved

(Figures 4E-G). Moreover, overexpression of miR-199a-5p in

hSCAPs revealed a significant downregulation of IFIT2

expression at the protein level, while slightly declining expression

of IFIT2 at the mRNA level. Conversely, miR-199a-5p expression
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inhibition in hSCAPs enhanced IFIT2 expression at both mRNA

and protein levels (Figures 4H, I). A luciferase reporter assay was

conducted to confirm the direct association between the 3’UTR of

IFIT2 and miR-199a-5p (Figures 4J, K). Collectively, these results

demonstrate that miR-199a-5p binds directly to IFIT2 and acts as a

negative regulator of IFIT2 in hSCAPs.
3.5 Knockdown of IFIT2 can rescue the
impact of endogenous miR-199a-5p
reduction on osteogenesis

To investigate whether miR-199a-5p functionally targets IFIT2

in modulating hSCAPs osteogenic differentiation, we first repressed

IFIT2 expression by transfecting hSCAPs with siRNAs against

IFIT2. Three pairs of siRNA against IFIT2 were tested and IFIT2

expression was remarkably repressed by siIFIT2-1 at mRNA levels

(Figure 5A). Consequently, siIFIT2-1 was chosen in subsequent
B

C D

A

FIGURE 2

Expression patterns of the candidate miRNAs during osteogenic differentiation of hSCAPs. (A) Relative expression of the 7 screened miRNAs. (B) ALP
staining of different miRNA overexpression groups after 3 and 7 days of osteogenic induction (scale bar = 400 mm). (C) ALP activity in the different
groups. (D) The relative mRNA expression level of osteogenic marker genes RUNX2, ALP, and OCN. The data were shown as mean ± SD. *p < 0.05,
**p < 0.01, ***p < 0.001, and ****p < 0.0001.
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functional experiments. By using IFIT2-specific siRNAs, the results

revealed that the osteogenic differentiation of hSCAPs was

upregulated after IFIT2 knockdown as demonstrated by increased

osteogenesis makers, including RUNX2, ALP, and OPN at the

protein levels (Figure 5D) and RUNX2, OSX, ALP, and OCN at

the mRNA levels (Figure 5E). Furthermore, ALP staining and

quantification assay showed that IFIT2 downregulation

remarkably enhanced ALP activities of hSCAPs in the induction

of osteogenesis (Figures 5B, C). Importantly, IFIT2 silencing

markedly reversed the reduced ALP activities induced by miR-

199a-5p inhibition (Figures 5F, G). The altered expression of

RUNX2, ALP at the protein levels and RUNX2, OSX, ALP, and

OCN at the mRNA levels further reinforced a resemble rescue effect

of IFIT2 inhibition. (Figures 5H, I). Since miR-199a-5p transfected

hSCAPs showed increased proliferation, we conduct the CCK8

assay to determine if IFIT2 knockdown could rescue the

decreased proliferation of hSCAPs transfected with miR-199a-5p

antagomir. The results showed that IFIT2 silencing accelerated the

proliferation of hSCAPs transfected with antagomir (Figure 5J).

Taken together, the above results suggest that miR-199a-5p may

regulate osteogenic differentiation of hSCAPs via targeting IFIT2.
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3.6 b-TCP ceramic particles loaded with
miR-199a-5p expression hSCAPs effectively
promote bone formation in vivo

We conducted an ectopic osteogenesis assay in BALB/c nude mice

to further investigate the impact of miR-199a-5p on bone formation in

vivo. Briefly, hSCAPs were transfected with NC or miR-199a-5p

mimics and cultured for two days in osteogenic induction media.

The transfected hSCAPs were then collected and loaded onto b-
tricalcium phosphate (b-TCP) scaffolds, which subsequently were

implanted subcutaneously into the flanks of mice (n=3).

We first analyzed the characteristics of the scaffolds. SEM

imaging (Figure S5A) showed the surface morphology of the

scaffolds, and the diameter of the ceramic particles was measured

to be approximately 1.48 mm (Figure S5B). Furthermore, the

elemental analysis indicated that the scaffold was composed of

calcium, phosphate, and oxygen (Figure S5C), which contented

38.20%, 19.56%, and 41.53% by weight, respectively (Figure S5D).

The representative three-dimensional (3D) reconstruction and

micro-CT images of sagittal profiles of the retrieved scaffolds

revealed that the miR-199a-5p overexpression group had a much
B
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FIGURE 3

miR-199a-5p positively regulates the proliferation and osteogenic differentiation of hSCAPs in vitro. (A) The CCK8 assay. (B) The Crystal violet
staining and quantification assay. (C) ALP staining of different groups after 3 and 7 days of osteogenic induction (scale bar = 400 mm). (D) ALP activity
assay. (E) The relative mRNA expression level of osteogenic marker genes RUNX2, OSX, ALP, and OCN. (F) ARs staining assay (scale bar = 400 mm).
(G) Semi-quantitative analysis of ARs stained images. (H) The relative mRNA expression level of osteogenic marker genes RUNX2, OSX, ALP, and
OCN. The data were shown as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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higher density of bone formation, as well as a greater BV/TV ratio

(Figure 6A). H & E staining showed a significant increase of bone

mass on scaffolds loaded with miR-199a-5p overexpressing hSCAPs

and more collagenous tissue in Masson trichrome staining.

Furthermore, immunohistochemistry analysis showed that the

miR-199a-5p overexpression group had more OCN-positive cells

in the bone fragments, as compared to the controls (Figure 6B).

Taken together, these results indicate that miR-199a-5p

overexpression promotes the osteogenesis of hSCAPs in vivo and
Frontiers in Immunology 09
b-TCP ceramic particles loaded with miR-199a-5p expressing

hSCAPs display effective osteogenic capacity in vivo.
4 Discussion

In this study, to investigate the role of miRNAs during AP,

microRNA and mRNA sequencing were performed on the

periodical tissue samples from AP patients and healthy controls.
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FIGURE 4

miR-199a-5p directly targets IFIT2 in hSCAPs. (A) The relative expression level of miR-199a-5p in immunoprecipitates. (B) The volcano plot of
differentially enriched mRNAs in the Ago2 immunoprecipitation complex between the miR-199a-5p overexpression and the control group.
(C) Protein-Protein Interaction (PPI) analysis of the up-regulated genes. (D) Venn diagram of the intersection genes between the significantly up-
regulated mRNAs (blue) and the predicted target genes of miR-199a-5p (orange). (E) Reactome pathway analysis of the up-regulated mRNAs. (F) GO
analysis of the up-regulated mRNAs. (G) KEGG pathway enrichment analysis of the up-regulated mRNAs. (H) The relative expression level of IFIT2 at
mRNA levels. (I) The protein expression levels of IFIT2. (J) Potential binding sites between lFIT2 and miR-199a-5p. (K) Dual-luciferase reporter assay.
The data were shown as mean ± SD. **p < 0.01, ***p < 0.001, and ****p < 0.0001, ns, no significance.
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By validation in extensive clinical samples and functional

experiments, we identify a differentially expressed key miRNA

(miR-199a-5p), which plays a critical role in the osteogenesis of

hSCAPs during AP. We found that overexpression of miR-199a-5p

could promote osteogenic differentiation of hSCAPs in vivo and in

vitro by directly targeting IFIT2.

Inflammation of periapical tissues commonly presents with the

destruction of the alveolar bone, which is generally treated by

controlling the infection and eliminating the inflammation to

promote the repair of the periapical bone defects (40–43).

Currently, miRNAs, transglutaminases, and other agents have

been found to be involved in the development and progression of

oral diseases (25, 44, 45). Most importantly, miRNAs have been

implicated as valid regulators that can modulate multiple biological

processes, including bone regeneration and anti-inflammatory

response (46, 47). As Shen and Silva (25) have reported that over

100 miRNAs were differentially expressed in AP and the highest

expression of miR-10a-5p appeared to be involved in triggering

anti-inflammatory signaling and promoting healing. It is

noteworthy that different phases of inflammatory conditions may

have different effects on the bone regenerative capacity of stem cells,

as Liu et al. (2016) (48) showed that long-term exposure to pro-
Frontiers in Immunology 10
inflammatory cytokines inhibited the osteogenic differentiation of

SCAPs. However, Hess et al. (2009) (49) revealed that TNF-a
promoted osteogenic differentiation of human MSCs by triggering

the NF-kB signaling pathway. The above results indicate that there

are complex signals modulating the differentiation of stem cells

under inflammatory conditions. Therefore, we further performed

functional enrichment analysis and phenotypic validation of both

up-regulated and down-regulated miRNAs-mRNAs networks to

comprehensively identify key miRNAs that impact AP bone repair.

Previously, the role of miRNAs in apical periodontitis and pulp

diseases has been explored by microarray studies, which identified

several miRNAs that were significantly differentially expressed in AP,

including miR-181 family, miR-10a-5p, and also miR-199a-5p (28,

30). However, the AP and control samples were not probed in the

same chip, which decreased the reliabilities, while miR-199a-5p was

not further validated in extensive clinical samples. Interestingly, in our

study, we performed miRNA and mRNA sequencing of AP and

control samples in the same batch, and we found that miR-199a-5p

was one of the most differentially expressed miRNAs, which was

further validated in adequate clinical samples to guarantee that the

screened miRNAs display a stronger correlation with bone defect

repair in AP. Meanwhile, we summarized the characteristics of the
B C D
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FIGURE 5

Knockdown of IFIT2 can reverse the effect of endogenous miR-199a-5p reduction on osteogenesis. (A) The knockdown efficiency of the three pairs
of IFIT2 siRNAs. (B) ALP staining after 3 days of osteogenic induction (scale bar = 400 mm). (C) ALP activity assays. (D) The protein expression levels
of RUNX2, ALP, and OPN. (E) The relative mRNA expression level of osteogenic marker genes RUNX2, OSX, ALP, and OCN. (F) ALP staining after 3
days of osteogenic induction (scale bar = 400 mm). (G) ALP activity assay. (H) The protein expression levels of RUNX2, ALP, and OPN. (I) The relative
mRNA expression level of osteogenic marker genes RUNX2, OSX, ALP, and OCN. (J) The CCK-8 assay. The data were shown as mean ± SD. *p <
0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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patients (Figure S6A) and conducted a correlation analysis between

miR-199a-5p expression and periapical lesion status based on the

periapical index (PAI) (Figure S6B), which is the most classic scoring

system for the evaluation of AP (50). The results showed a negative

correlation between miR-199a-5p expression and periapical lesion

status (R=-0.5429) (Figures S6C–E). Subsequently, the functional

analysis indicated that miR-199a-5p enhanced osteogenesis of

hSCAPs, which may play a pivotal role in bone lesion repairment

during AP. Besides, the pathway enrichment analysis of mRNA

sequencing in clinical samples and AGO2-RIP sequencing in

hSCAPs all pointed to various inflammatory pathways, including

TNF signaling pathway and NF-kappa B signaling pathway,

indicating that the miRNA identified in our study, miR-199a-5p,

may exhibit great potency of promoting osteogenesis even in the

scenario of inflammation, which needs to be further studied, such as

the role of this key miRNA for bone defect repair under the

inflammatory microenvironment and the impact of the

immunological components, including inflammatory factors and

biological responses on bone formation.

miRNAs are considered as ‘junk’ RNA to regulate most cellular

events through identifying multiple target genes. A previous study
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has shown that miR-199a-5p overexpression could enhance

osteoblast differentiation of human MSCs through regulation of

the HIF1a-Twist1 pathway (51). However, we failed to find the

genes enriched in AGO2-RIP samples involved in the HIF1a-Twist1

pathway in our study, which indicates that miR-199a-5p could

facilitate osteogenic differentiations in different stem cells, but the

specific mechanism may be different. Another aspect, miR-199a-5p

was shown to positively regulate osteoclast differentiation by

targeting Mafb protein (52), which suggests that miR-199a-5p

may have a vital role in regulating bone homeostasis via

simultaneously mediating osteoblast and osteoclast differentiation,

but its specific role and underly mechanism needs to be

further investigated.

IFIT2, belonging to the interferon-stimulated gene (ISG) family,

is widely expressed in mammalian tissues, including bone marrow

(53). Previous studies showed that the endogenous Interferon beta

(IFNb, type-1 IFN) activity represses osteoblast differentiation in vivo

and in vitro (54, 55) and that low levels of type I IFN-induced cellular

IFN activity are commonly mirrored by ISG expression (56, 57).

Interestingly, except for IFIT2, we found that IFIT1, IFIT3, and

IFI44L were also enriched in AGO2 protein transfected with miR-
B

A

FIGURE 6

Overexpression of miR-199a-5p enhances hSCAPs osteogenic differentiation in vivo. (A) Left: Representative micro-CT images of 3D reconstruction
and sagittal profiles of bone formation in b-TCP scaffolds of miR-199a-5p mimics (n = 3) and NC groups (n = 3). The blue areas: the region of new
bone formation. Right: Quantitative analysis of BV/TV (%). The data were expressed as mean ± SD. *p < 0.05. (B) Representative images of H&E
staining, Masson’s trichrome staining and immunohistochemical staining of OCN. The black arrows: bone formation. The triangle: positive cells.
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199a-5p mimics, which strongly indicated that type-1 IFN response

was blocked in the miR-199a-5p transfected hSCAPs, that may be the

critical factor why miR-199a-5p promotes osteogenesis of hSCAPs,

but the exact mechanism needs to be fully explored in the future.

Additionally, overexpression of IFIT2 correlated with the diminished

proliferative capacity of various cells (58, 59), which is consistent with

our results that miR-199a-5p inhibiting IFIT2 expression resulted in

increased proliferation of hSCAPs. Collectively, these results reveal

that miR-199a-5p promotes osteogenesis of hSCAPs via targeting

IFIT2 and blocking the endogenous type-1 IFN response.

For the regeneration of periapical bone tissue defects, SCAPs are

valid candidates with excellent osteogenic capacity. According to the

classical strategies for biomaterial substitutes used for bone tissue

engineering (60), b-TCP ceramic particles were chosen as the

scaffold, which displays excellent biocompatibility and

osteoinductive capacities (61, 62) and is extensively used in clinical

(63). Not surprisingly, b-TCP ceramic particles loaded with miR-

199a-5p overexpressed hSCAPs exhibited more ectopic bone

formation, which suggests that miR-199a-5p overexpressed hSCAPs

hold potential for bone defects repairment and may be promising

strategies for bone tissue regeneration. Furthermore, deploying an

appropriate drug-delivery system for miR-199a-5p is needed to

address its potential in orthotopic periapical tissue repair.

In summary, in this study, we revealed the profile of miRNAs in

periapical tissues of AP patients and healthy controls by miRNA

sequencing. We found that the most differentially expressed key

miRNA (miR-199a-5p) enhanced osteogenic differentiation of

hSCAP in vivo and in vitro by targeting IFIT2. Furthermore,

immunoprecipitates significantly enriched in the anti-AGO2

group of hSCAP overexpressing miR-199a-5p were highly

correlated with the type-1 IFN signaling pathway. Taken together,

these findings suggest that increasing miR-199a-5p expression

promotes bone regeneration during AP, which may be partly

through the regulation of IFIT2 expression and type-1 IFN

signaling (Figure 7). Thus, miR-199a-5p may be potentially
Frontiers in Immunology 12
utilized as a therapeutic target to facilitate bone defect repair in

AP and to be identified as a diagnostic maker for AP.
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