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Introduction: Osteoarthritis (OA) is a chronic disease with high morbidity and

disability rates whose molecular mechanism remains unclear. This study sought

to identify OA markers associated with synovitis and cartilage apoptosis by

bioinformatics analysis.

Methods: A total of five gene-expression profiles were selected from the Gene

Expression Omnibus database. We combined the GEO with the GeneCards

database and performed Gene Ontology and Kyoto Encyclopedia of Genes

and Genome analyses; then, the least absolute shrinkage and selection

operator (LASSO) algorithm was used to identify the characteristic genes, and a

predictive risk score was established. We used the uniform manifold

approximation and projection (UMAP) method to identify subtypes of OA

patients, while the CytoHubba algorithm and GOSemSim R package were used

to screen out hub genes. Next, an immunological assessment was performed

using single-sample gene set enrichment analysis and CIBERSORTx.

Results: A total of 56OA-related differential genes were selected, and 10

characteristic genes were identified by the LASSO algorithm. OA samples were

classified into cluster 1 and cluster 2 subtypes byUMAP, and the clustering results

showed that the characteristic genes were significantly different between these

groups. MYOC, CYP4B1, P2RY14, ADIPOQ, PLIN1, MFAP5, and LYVE1 were highly

expressed in cluster 2, and ANKHLRC15, CEMIP, GPR88, CSN1S1, TAC1, and SPP1

were highly expressed in cluster 1. Protein–protein interaction network analysis

showed that MMP9, COL1A, and IGF1 were high nodes, and the differential genes

affected the IL-17 pathway and tumor necrosis factor pathway. The GOSemSim R

package showed that ADIPOQ, COL1A, and SPP1 are closely related to the

function of 31 hub genes. In addition, it was determined that mmp9 and Fos

interact with multiple transcription factors, and the ssGSEA and CIBERSORTx

algorithms revealed significant differences in immune infiltration between the

two OA subtypes. Finally, a qPCR experiment was performed to explore the

important genes in rat cartilage and synovium tissues; the qPCR results showed

that COL1A and IL-17A were both highly expressed in synovitis tissues and

cartilage tissues of OA rats, which is consistent with the predicted results.
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Discussion: In the future, common therapeutic targets might be found

forsimultaneous remissions of both phenotypes of OA.
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1 Introduction

Osteoarthritis (OA), the most common form of arthritis, is

characterized by chronic pain and high incidence (1) and disability

(2) rates. OA arises from a complex process involving the cartilage,

bone, synovium, ligaments, infrapatellar fat pads, meniscus, and

muscles (3). Among them, the representatives that are most often

studied are two significantly altered hallmarks, cartilage apoptosis

and synovitis, whose discovery has often been considered a

breakthrough in research on optimal treatment strategies for OA.

Synovial inflammation usually occurs in the early stage of OA.

Synovial inflammation can lead to the infiltration of inflammatory

cells and the release of inflammatory factors, which can lead to

cartilage destruction and joint dysfunction (4). However,

unambiguous therapeutic targets and the correlation between the

two phenotypes remain to be discovered, and we hoped in this

research to identify genes or pathways significantly related to both

synovitis and cartilage apoptosis to further interrogate the

mechanism and effective therapeutic targets.

Clinical basic and systems biology studies have been performed

to detect the pathogenesis of OA (5). Many OA-related protein

markers or pathways play a role in the development and

progression of OA, including endoplasmic reticulum, stress

marker glucose‐regulated protein 78 (GRP78), and Bcl2‐

associated athanogene 1 (bag1) (6). Transient receptor potential

vanilloid 1 (TRPV1) is closely related to pain perception by OA

patients (7). What is more? The roles of disintegrin and

metalloproteinase with thrombospondin motif 5 (ADAMTS5) and

follistatin-like protein 1 (FSTL1) in OA diagnosis and prognosis (8)

have been reported. As for pathways, the Ca2+/CaMKII/Nrf2

signaling pathway could inhibit M1 macrophage polarization to

attenuate synovium in OA (7), and a promotional effect of the

JUNB/FBXO21/ERK axis on cartilage degeneration in osteoarthritis

by autophagy inhibition (9) was also reported. However, the studies

above only explored the mechanism or potential target from the

perspective of a single phenotype, and their sample numbers were

limited. A systematic high-throughput analysis of targets and

pathways associated with two or more phenotypes of OA is needed.

Some systematic bioinformatic analyses have partly improved

on the defects above. The FoxO and IL-17 signaling pathways are

likely to regulate OA progression according to Kyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment, and ubiquitylation

was found to be a key bioactive reaction in OA after analyzing the

molecular function and protein–protein interaction (PPI) results

(9). Abnormally methylated differentially expressed genes (DEGs)
02
in OA such as COL3A1, LUM, and MMP2 are potential methylation

biomarkers of OA, andTHBS2might play a role in the end stage of the

disease (10). However, these studies all have defects as they lackmulti-

omics analyses and are pending multi-dimensional validation.

Recently, a bioinformatics-led investigation used the Gene Ontology

(GO) and KEGG databases, the CIBERSORTx method, and the

ConsensusClusterPlus R package to perform enrichment and

immune infiltration analyses before ultimately differentiating

immunity patterns into two clusters and validating the expressions

of TCA1, TLR7,MMP9, CXCL10, CXCL13,HLA-DRA, ADIPOQ, and

SPP1 using qPCR in chondrocytes (5). However, a synovitis analysis

was not performed in this comprehensive and systematic research.

Therefore, a systematic, multi-dimensional analysis covering multiple

phenotypes should be performed.

In this study, we combined genes from the Gene Expression

Omnibus and GeneCards databases to find OA-related genes, then

constructed a riskmodel and used the receiver operating characteristic

(ROC) curve to screen out and evaluate 10 characteristic genes.

Network analysis and functional analysis of two subtypes were

performed to estimate the degrees of immune infiltration, and the

results were finally validated by qRT-PCR in rats’ tissues.
2 Methods

2.1 Data download

We first downloaded the following five datasets associated with

osteoarthritis from the Gene Expression Omnibus (GEO) database:

GSE55457 (11), GSE12021 (GPL96) (12), GSE55235 (11),

GSE12021 (GPL97) (12), and GSE82107 (13). Among these,

the GSE55457, GSE12021 (GPL96), and GSE55235 datasets were

used as osteoarthritis diagnostic model training sets, whereas the

GSE12021 (GPL97) and GSE82107 datasets were used as

osteoarthritis diagnostic model validation sets.

The osteoarthritis diagnostic model training sets were created

by extracting and merging a common expression profile from

GSE55457, GSE12021 (GPL96), and GSE55235, which contain 10

osteoarthritic synovial tissue samples and 10 control synovial tissue

samples, 10 osteoarthritic synovial tissue samples and 9 control

synovial tissue samples, and 10 osteoarthritic synovial tissue

samples and 10 control synovial tissue samples, respectively. We

used the “Combat” function in the sva R package (14) to correct a

batch effect of merged data of 30 osteoarthritic synovial tissue

samples and 29 control synovial tissue samples. The distribution of
frontiersin.org
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target gene-expression levels before and after the correction was

visualized by box plot.

GSE12021 contains 10 osteoarthritic synovial tissue samples

and 4 control synovial tissue samples, whereas GSE82107 contains

10 and 7 samples, respectively. All the samples are of human origin,

and all the datasets are from the GPL97 platform (Table 1).
2.2 Identification of OA DEGs

We input the keywords “synovitis” and “chondrocyte

apoptosis” into the GeneCards database to obtain synovitis-

related and chondrocyte apoptosis-related genes (15)

(Supplementary Table 1). Then, we defined osteoarthritis-related

genes by taking the intersection of synovitis-related genes,

chondrocyte apoptosis-related genes, and osteoarthritis diagnostic

model training sets. The results are shown using Venn diagrams.

To estimate the impact of osteoarthritis-related gene-expression

levels on the severity of osteoarthritis, differential gene-expression

analysis of OA and control samples of integrated datasets was

performed using the limma R package (16). A differential gene was

defined by a threshold of |fold change (FC)| > 1.5 and p< 0.05; genes

with FC > 1.5 and p< 0.05 were considered up-regulated genes and

those with FC< -1.5 and p< 0.05 were considered down-regulated

genes. We took the intersection of differential genes and x1-related

genes and obtained differentially expressed osteoarthritis-

related genes. The results are visualized using volcano plots.
2.3 Constructing a forest model and
nomogram model

We used the least absolute shrinkage and selection operator

(LASSO) analysis method to perform dimension reduction analysis

and obtained the characteristic genes from differentially expressed

osteoarthritis-related genes. For normalized gene-expression values

of weighted coefficients penalty of the characteristic genes, we

established a risk score formula and visualized them by forest maps.

riskScore =  o
i
Coefficient (genei)*mRNA Expression (genei)

A nomogramwas constructed according to selected characteristic

genes to forecast the prevalence of OA. Then, the model’s accuracy

was tested using an independent validation dataset.
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2.4 The molecular subtype of OA

Uniform manifold approximation and projection (UMAP), a

non-linear dimensionality-reduction algorithm, was used to

partition and compress a group of patients into clusters based on

the given feature. Then, the characteristic genes provided the basis

to identify these patients’ subtypes using the umap R package (17).

2.5 The assessment of biological
characteristics among subtypes
of OA patients

Gene function enrichment could be performed by GO enrichment

analysis from different dimensions and levels, i.e., biological process,

molecular function, and cellular component categories (18). The KEGG

database extensively includes related genomes, biological pathways,

drugs and diseases, and so on (19). We used the clusterProfiler R

package (20, 21) to perform GO functional annotation and KEGG

pathway enrichment to identify the significantly enriched biological

processes of DEGs of different subtypes in OA patients, with the

significance threshold of enrichment analysis set at p< 0.05.

Gene set enrichment analysis (GSEA) could confirm whether a

group of pre-defined genes was statistically different between two

biological states; this approach is commonly used to estimate a

sample’s pathway and biological process activity (22). To analyze

the differences in biological processes of different subtypes of

OA patients, we downloaded “c5.go.v7.4.entrez.gmt” and

“c2.cp.kegg.v7.4.entrez.gmt” based on gene-expression profile data

(23). Then, GSEA was performed with the clusterProfiler R package

to analyze enrichment and visualize the dataset.

Gene set variation analysis (GSVA) is a non-parametric

unsupervised analysis method able to convert a gene’s expression

matrix to a gene set’s expression matrix between different samples to

estimate gene set enrichment in order to assess metabolic pathway

enrichment among samples (24). To study the variation in biological

processes among different subtypes, we used the GSVA R package

(24) on account of the gene-expression profile of different samples of

OA subtypes. The reference dataset “h.all.v7.4.symbols.gmt” was

downloaded from the MSigDB database (23) to calculate a single

sample’s enrichment score for each hallmark.

2.6 PPI analysis

There are universal inter-relationships between genes, especially

between those able to regulate the same biological process. To reveal
TABLE 1 The datasets are from the GEO database.

GSE GPL Species Tissue Source OA sample number Control sample number

GSE55457 GPL96 Homo sapiens Synovium 10 10

GSE12021 GPL96 Homo sapiens Synovium 10 9

GSE55235 GPL96 Homo sapiens Synovium 10 10

GSE12021 GPL97 Homo sapiens Synovium 10 4

GSE82107 GPL570 Homo sapiens Synovium 10 7
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the connection between patients with different subtypes of OA, we

constructed PPI networks on account of their DEGs. We obtained

PPI data from STRING (25), using a score of 700 points as the

threshold. After exporting PPI data, we conducted a further analysis

using Cytoscape (Institute for Systems Biology, Seattle, WA, USA)

(26), which contains the following 12 algorithms (27): Betweenness,

BottleNeck, Closeness, ClusteringCoefficien, Degre, DMN,

EcCentricity, EPC, MCC, MNC, Radiality, and Stress. We

calculated the top 30 nodes in each algorithm and defined the

“hub node” as the gene that appeared in at least five algorithms.

Hub nodes have a greater level of connection with others and are

extremely important in regulating all biological processes.

MicroRNA (miRNA) is a type of non-coding single-stranded

RNAmolecule coded by endogenous genes that measure 19-25 nt in

length and play important roles in regulating biological evolution.

MiRNA can influence the expression of target genes by post-

transcriptional regulation during the processes of tumor incidence

and development, biological development, organogenesis,

epigenetic regulation, virus resistance, and so on. MiRNA and

target genes usually exist in a one-to-many or many-to-one

“regulate or be regulated” relationship (28). To analyze the

connection between hub genes and miRNAs, we obtained hub

gene–related miRNAs from Starbase (http://starbase.sysu.edu.cn/),

which can provide predictions from a total of seven prediction

procedures (TargetScan, microT, miRmap, picTar, RNA22, PITA,

and miRanda), and we chose the relationships between miRNAs

and messenger RNAs (mRNAs) that could be found in at least two

of the procedures. We then constructed mRNA–miRNA regulatory

networks and visualized them using Cytoscape.

Transcription factors (TFs) can control gene expression by

interacting with target genes. We examined the relationships between

TFs and hub genes from theMIRNet network to contrast hub gene–TF

networks and analyze hub genes’ regulatory reactions. The hub gene–

TF networks were then visualized by Cytoscape.
2.7 Identification and correlation analysis
of immune cell infiltration among different
subtypes in OA patients

The immune microenvironment is an integrated system that

encompasses immune cells, inflammatory cells, fibroblasts, the

mesenchyme, and various cytokines and chemokines. The

analysis of immune cell infiltration in samples could play an

important role in disease research and treatment prognosis.

Single-sample GSEA (ssGSEA) is an extension of the GSEA

method. In this research, we used ssGSEA to calculate the

concentrations of 28 kinds of immune cells (29), then visualized

the immune cell composition by box plot. Differences in immune

cell proportions were estimated by the Wilcoxon test, and p< 0.05

was seen as statistically significant. CIBERSORx is based on

machine learning and could extend this algorithm framework to

analyze gene-expression profiles specific to certain cell types

without the cells’ physical dissociation. RNA sequencing data

were used to estimate the immune cell abundance (30). We

estimated the abundance of 22 kinds of immune cells in OA
Frontiers in Immunology 04
patients of different subtypes from the dataset with the

CIBERSORTx algorithm and drew a heatmap of immune cell

infiltration correlation using the Corrplot R package (31).

The quantification of immune activity levels in tumor samples

and the reflection of stromal and immune gene signatures by

ESTIMATE analysis is a gene expression-based algorithm. The

difference in immune scores of patients was estimated using the

“estimate” R package (32) to calculate the hub genes’ correlations

with immune scores.
2.8 Animal experiments

We bought three-month-old male-specific pathogen–free

Sprague–Dawley rats from the Shanghai Institute of Planned

Parenthood Research–BK Laboratory Animals Co., Ltd.

(Shanghai, China) and divided them into two groups (n = 6

each). All procedures and protocols used in this study were

approved by the ethical committee of Xin Hua Hospital, which is

affiliated with the Shanghai Jiao Tong University School of

Medicine (approval no. XHEC-F-2022-014). The rats were treated

according to the 3R principles and housed at a temperature of 22 ±

2°C, under a 12-h light/dark cycle and humidity of 40-70%. All rats

were intraperitoneally injected with 3% sodium pentobarbital (0.1

mL/100 g; Sigma-Aldrich, USA). Additionally, in the OA group, we

injected 0.1ml of MIA (30 mg/mL; Aladdin Biochemical

Technology Co., Shanghai, China) in the right knee joint space,

whereas the control group received an equivalent volume of normal

saline 0.9%. Each rat was reared for 4 weeks; then, we extracted

cartilage tissues and synovial tissues after euthanasia. Next, the

genes in the tissues were detected by qRT-PCR. As stated in the

above results, MMP9, COL1A, and IGF1 were identified as high

nodes interacting with 53, 47, and 4 genes, respectively. While

MMP9 and FOS as hub genes interacted with 33 and 32 TFs,

respectively. What is more? The PPI results showed that the

differential genes may be enriched in the IL-17 pathway and

other pathways. So, we chose MMP9, COL1A, IGF1, and IL-17

pathway-related proteins (IL-17A, Jak 2, JNK, MAPK 1, and STAT

3) to verify the expression of them. The primer sequences of each

gene are shown in Table 2.
2.9 Statistical analysis

Data processing and analysis were completed in the R statistical

language (version 4.1.1; R Foundation for Statistical Computing,

Vienna, Austria). Continuous variables were compared between two

groups by independent t-test to estimate normally distributed variables’

statistical significance, while two separate sets of variables were

compared by Wilcoxon rank-sum test to estimate non-normally

distributed variables’ statistical significance. Pearson correlation was

used to calculate different genes’ correlation coefficients. The partial

ROC (pROC) R package (33) was used for ROC curve analysis, and the

area under the ROC curve (AUC) calculation was performed to

evaluate the diagnostic model’s accuracy. All two-sided p values<

0.05 were considered statistically significant.
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3 Results

3.1 Expression of OA-related genes
in OA patients

As shown in the flow chart (Figure 1), we first merged three

datasets—GSE55457, GSE12021 (GPL96), and GSE55235—into a
Frontiers in Immunology 05
consolidated data set then removed significant batch effects

(Figures 2A, C) between two groups of data to obtain gene-

expression profiling data with consistent expression levels

(Figures 2B, D). The consolidated data included 30 OA samples

and 29 control samples. To screen OA-related genes, we searched

keywords “synovitis” and “chondrocyte apoptosis” and found 795

synovitis-related genes and 3,353 chondrocyte apoptosis-related
FIGURE 1

The flow chart.
TABLE 2 The primer sequences.

Gene Forward primer sequence Reverse primer sequence

Gapdh TCACTGCCACTCAGAAGACT ACATTGGGGGTAGGAACACG

mmp9 GGTCCCCCTACTGCTGGTCCT CGAGAACTTCCAATACCGACC

FOS GGAGGACCTTATCTGTGCGT TGCGGTTGCTTTTGATTTTT

COL1A TATGTATCACCAGACGCAGAAGT GCAAAGTTTCCTCCAAGACC

IGF1 ACGGGCATTGTGGATGAGTG TGTGTCGATAGGGGCTGGGA

JNK GGAGGAGCGAACTAAGAATGG ACTGCTGTCTGTATCCGAGGC

JAK2 CCCTGGCTGTCTATAACTCC TCTGTACCTTATCCGCTTCC

stat3 TTAACATTCTGGGCACGAAC TCAGTGACAATCAAGGAGGC

IL-17A CTACCTCAACCGTTCCACTT ACTTCTCAGGCTCCCTCTTC

MAPK1 GGGCAGTTCTGGTCGTAGTGG GGAAGGATTCAGGGCAGGGA
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genes in GeneCards (14) then took the intersection with the

consolidated gene-expression profiling data and obtained 401

OA-related genes (Figure 2E).

The variance analysis between OA samples and control samples

obtained 577 differential genes, which included 338 up-regulated

genes and 239 down-regulated genes (Figure 3A). To analyze the

two groups’ functional differences, we assessed the impacts of DEGs

on the related biological functions of patients. For functional

annotation of DEGs, GO enrichment analysis showed highly

significant enrichment in the “myeloid leukocyte migration”,

“leukocyte chemotaxis”, and “extracellular matrix” biological

processes (Figure 3B); in the “collagen-containing extracellular

matrix” and “endoplasmic reticulum lumen MHC protein

complex” cellular components (Figure 3C); and in the

“glycosaminoglycan binding”, “cytokine activity”, “receptor ligand

activity”, and “signaling receptor activator activity” molecular
Frontiers in Immunology 06
functions (Figure 3D). These genes were also enriched in

“rheumatoid arthritis”, “tumor necrosis factor (TNF) signaling

pathway” , “IL-17 signaling pathway,” and “osteoclast

differentiation” pathways in KEGG (Figure 3E). Taking the

intersection of DEGs and OA-related genes, they yielded 56

differentially expressed OA-related genes (Figure 3F), including

27 up-regulated genes and 29 down-regulated genes. The RCircos

R package was used to annotate up- or down-regulated genes on

chromosomes (34) and showed that these genes appeared in a

similar position (Figures 3G, H).
3.2 Risk model construction

At this point, we performed ssGSEA to measure per-sample

immune cell infiltration levels of control and OA groups, and the
B

C D

E

A

FIGURE 2

Data sets integration. (A, C) The maps of gene expression levels of integrated samples; the horizontal axis is the samples, and the vertical axis is the
gene expression levels. (B, D) The maps of gene expression levels of integrated samples after the batch effects were removed; the horizontal axis is
the samples, and the vertical axis is the gene expression levels. (E) The Venn map of OA-related genes; pink represents gene expression data in the
training set, yellow means chondrocyte apoptosis-related genes, and blue means synovitis-related genes.
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results showed that multiple immune cells’ infiltration levels were

different between these two groups (p< 0.05) (Figure 4A).

Specifically, the concentrations of gamma delta T-cells, immature

B-cells, immature dendritic cells, and macrophages of OA samples

were higher than those of the control samples.

We then analyzed the correlation in expression levels of 27

up-regulated genes and 29 down-regulated genes among the
Frontiers in Immunology 07
OA group and control group. The results showed that in the

normal group, the expression levels of up-regulated

(Figure 4B) and down-regulated (Figure 4D) genes were

mostly positively correlated (p<0.05). In the OA sample

group, the expression levels of up-regulated (Figure 4C) and

down-regulated (Figure 4E) genes were mostly negatively

correlated (p<0.05).
B

C D

E F

G H

A

FIGURE 3

The functional enrichment analysis of differentially expressed genes (DEGs). (A) The volcano map of DEGs; the horizontal axis is log2FoldChange and
the vertical axis is -log10(P-value); red nodes represent the up-regulated DEGs, blue nodes represent the down-regulated differentially expressed
genes, and grey nodes mean the genes with no significant differences in expression level. (B–E) The BP, CC, MF, and KEGG analysis in GO terms of
DEGs; the horizontal axis is gene ratio, the vertical axis is GO terms, the node sizes mean the genes’ numbers under each GEO term, and the color
of the nodes means the significance level. (F) The volcano map of differentially expressed OA-related genes; the horizontal axis is log2FoldChange
and the vertical axis is -log10(P-value); red nodes represent the up-regulated differentially expressed genes, blue nodes represent the down-
regulated differentially expressed genes, and grey nodes means the genes with no significant differences in expression level. (G, H) The chromosome
annotation of up or down-regulated differentially expressed genes. (KEGG, Kyoto Encyclopedia of Genes and Genome; GO, the Gene Ontology; BP,
biological process; CC, cellular component; MF, molecular function).
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To estimate differentially expressed OA-related genes’ impact

on OA patients, we used the LASSO algorithm to identify the

following 10 characteristic genes with a great impact on OA among

56 differentially expressed OA-related genes: CX3CR1, GADD45B,

PTGS1, EFEMP2, PGF,MFAP4, CLU, CDH11, VEGFC, and ANPEP

(Figures 5A, B). An OA predictive risk score was estimated by

multiplying and adding the 10 characteristic genes’ coefficients and

gene-expression values. Each normalized expression value of the

weighted penalty coefficient of characteristic genes was expressed by

forest mapping (Figure 5C), and the predicted risk score of each

sample was calculated to draw the ROC curve. The results included

an AUC of 0.965 in the training set (Figure 5D). We then performed

model validation involving the independent test data sets GSE12021

(GPL97) and GSE82107, and the AUCs were 0.95 and 0.736
Frontiers in Immunology 08
(Figures 5E, F), which indicated that the model prediction is good

for OA patients. Similarly, the 10 characteristic genes were analyzed

to predict OA ROC curves separately, and the results showed that

all these genes had good predictive efficacy (Figure 5G).

Considering patients’ predicted risk scores and the 10

characteristic genes, we built a nomogram model to predict OA

patients’ prevalence rates and correct the nomogram model

(Figures 6A, B). To assess the predictive model’s accuracy and

predict the net benefits of patients who received intervention

according to the model, we divided both OA samples and control

samples into two groups, where the first group contained 15 OA

samples and 15 control samples and the second group contained 15

OA samples and 14 control samples. The ggDCA R package (35)

was used for decision curve analysis, and the predicted lines lying
B C

D E

A

FIGURE 4

The correlation analysis. (A) The different enrichment levels of immune cells between OA samples and control samples; the horizontal axis is the
immune cell, and the vertical axis is the enrichment level; *means the significant p-value was less than 0.05, **means the p-value was less than 0.01,
and ***means the p-value was less than 0.001. (B–C) Correlation analysis of gene expression levels of up-regulated differentially expressed OA-
related genes in both the control group and OA group; blue means positive correlation and red means negative correlation. (D–E) Correlation
analysis of gene expression levels of down-regulated differentially expressed OA-related genes in both the control group and OA group; blue means
positive correlation and red means negative correlation.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1149686
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1149686
above the standard line indicate that the decision of the nomogram

model might be beneficial for OA diagnosis (Figures 6C–F).
3.3 Identifying different OA subtypes
according to characteristic genes

Considering the 10 OA-related genes, a pair of OA subtypes,

cluster 1 and cluster 2, were identified by the UMAP algorithm

(Figure 7A), with 24 samples in cluster 1 and 6 samples in cluster 2.

The clustering results showed significant differences in

characteristic genes between the two groups (Figure 7B). The

expression levels of differentially expressed OA-related genes of

both subtypes in the control and OA groups were measured, and the

results showed that most differentially expressed OA-related genes

in the two groups were also differentially expressed in both

subtypes (Figure 7C).
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3.4 Enrichment analysis and
network analysis

To detect the biological differences between patients with the

two different OA subtypes, we first obtained 355 DEGs by analyzing

both groups of patients’ gene-expression profiles. We performed

GO annotation of these DEGs and found these genes are involved in

many biological processes (Figure 8A; Supplementary Table 2-go).

Specifically, the results showed that these genes were mainly

enriched in biological processes such as extracellular matrix

organization, extracellular structure organization, extracellular

encapsulating structure organization, and ossification (Figure 8B);

cellular components such as collagen-containing extracellular

matrix, endoplasmic reticulum lumen, platelet alpha granule, and

fibrillar collagen trimer (Figure 8C); and molecular functions such

as extracellular matrix structural constituent, glycosaminoglycan

binding, integrin binding, and amide binding (Figure 8D).
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FIGURE 5

Construction of the osteoarthritis model. (A, B) The LASSO analysis was used to identify the characteristic genes. (C) The characteristic genes’ forest
map of OA patients. (D) The ROC curve of predicted risk scores was used on the OA training set. (E) The ROC curve of predicted risk scores was
used on the OA test set GSE12021(GPL97). (F) The ROC curve of predicted risk scores was used on the OA test set GSE82107. (G) The ROC curve of
the 10 characteristic genes in OA diagnosis.
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Enrichment in KEGG pathways such as rheumatoid arthritis, PPAR

signaling pathway, protein digestion and absorption, and osteoclast

differentiation was also noted (Figure 8E; Supplementary

Table 2-kegg).

We then performed GSEA considering both subtypes of OA

patients and found that biological processes such as GO structural

constituents of ribosomes, GO oxidoreductase activity acting on

NAD pH quinone or a similar component as an acceptor, GO

mitochondrial respiratory chain complex assembly, GO ribosomal

subunit, and GOATP synthesis-coupled electron transport could be

inhibited in patients from cluster 1 (Figure 9A), while biological

processes such as GO endoplasmic reticulum lumen, GO collagen

fibril organization, GO endoderm formation, and GO

neuroinflammatory response were promoted (Figures 9B, C;

Supplementary Table 3-gsea-go). The pathway activity of patients

from the two subtype groups was analyzed, and the results showed

that pathways such as the ribosome, Parkinson’s disease, drug

metabolism cytochrome p450, and metabolism of xenobiotics by

cytochrome p450 were inhibited in cluster 1 patients (Figure 9D),

while pathways such as ECM receptor interaction, lysosome, focal
Frontiers in Immunology 10
adhesion, and Leishmania infection were promoted (Figures 9E, F;

Supplementary Table 3-gsea-kegg).

To further explore the functional differences between the two

subtypes, we used GSVA and found that biological processes such

as hallmark hypoxia, hallmark interleukin-2 STAT5 signaling,

hallmark interleukin-6 JAK/STAT3 signaling, and hallmark

inflammatory response were significantly activated in cluster 1

patients (Figure 10A). Concurrently, most of the other biological

processes, such as hallmark notch signaling, hallmark oxidative

phosphorylation, hallmark p53 pathway, and hallmark pancreas

beta cells, showed significant differences between the two groups of

patients (Figure 10A). We also analyzed the correlation between

patients’ characteristic genes and hallmark biological processes, and

the results showed that MFAP4 and hallmark TGF beta signaling,

hallmark epithelial-mesenchymal transition, or hallmark

angiogenesis were significantly positively correlated (p< 0.05),

while EFEMP2 and hallmark heme metabolism, PGF and

hallmark spermatogenesis, hallmark UV response dn, and

hallmark pancreas beta cells were significantly negatively

correlated (p< 0.05) (Figure 10B).
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FIGURE 6

The nomogram. (A) The nomogram of the 10 characteristic genes in OA diagnosis. (B) The nomogram-corrected curve. (C) The DCA curve of
predicted risk scores in the first group; blue means immediate diagnosis and pink represents the score risk model. (D) The DCA curve of the
characteristic genes in the first group; blue means immediate diagnosis and pink means the combination of the characteristic genes. (E) The DCA
curve of predicted risk scores in the second group; blue means immediate diagnosis and pink represents the score risk model. (F) The DCA curve of
the characteristic genes in the second group; blue means immediate diagnosis and pink means the combination of the characteristic genes.
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3.5 Network analysis between two
subtypes of patients

To analyze the impact of the two subtypes of patients’ DEGs on

osteoarthritis patients’ biological functions, we first built subtypes of

patients’ DEGs-related PPI networks and visualized the results

using Cytoscape. The PPI networks contained 451 interaction

pairs and 349 DEGs, with an average node degree of 2.58, an

average local clustering coefficient of 0.404, and a PPI enrichment p-

value< 1.0 (15). Among them, mmp9, COL1A, and IGF1 were high-

degree nodes that interacted with 53, 47, and 4 genes, respectively

(Figure 11A). To analyze the effects of genes in the PPI network on

osteoarthritis, we performed enrichment analysis involving genes

from the network and determined that these genes mainly affected

biological processes like ossification, collagen metabolic process,

and extracellular matrix organization (Figure 11B); cellular

components like collagen-containing extracellular matrix,

endoplasmic reticulum lumen, and fibrillar collagen trimer

(Figure 11C); cell functions like extracellular matrix structural

constituent, platelet-derived growth factor binding, and receptor-

ligand activity (Figure 11D); and signaling pathways like

rheumatoid arthritis, lipid and atherosclerosis, the A signaling

pathway, and the TNF signaling pathway (Figure 11E).

We used 12 algorithms of CytoHubba to calculate the top 30

nodes in each algorithm and extracted 31 genes we called hub nodes
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from at least five algorithms (Figure 11F). Then, the GOSemSim R

package was used to analyze the hub genes’ GO semantic similarity

(36), and the results showed that RPL19, RPS11, and RPL10A had

greater functional correlations with multiple genes (Figure 11G).

We built a hub gene mRNA–miRNA network. The network

contained 97 interactions, which included 14 mRNAs and 68

miRNAs, in which COL1A1 and COL1A2 hub genes could both

interact with 14 miRNAs (Figure 11H). The hub genes’ mRNA–TF

network was also built and contained 29 miRNAs and 167 TFs;

among these, hub genes mmp9 and Fos could interact with 33 and

32 miRNAs, respectively (Figure 11I).
3.6 Differences in immune characteristics
between RNA modification patterns

CIBERSORTx and ssGSEA were used to compare immune cell

infiltration levels between osteoarthritis patients of two subtypes.

ssGSEA showed that patients’ concentrations of central memory

CD4+ T-cells, central memory CD8+ T-cells, effector memory CD4+

T-cells, effector memory CD8+ T-cells, natural killer cells, and

natural killer T-cells in cluster 1 were significantly higher than

those in cluster 2 (Figure 12A). We computed the correlation of

characteristic genes and immune cells between cluster 1 and cluster

2 patients, and the results indicated that activated CD8+ T-cells and
B

C

A

FIGURE 7

Clustering OA patients by the characteristic genes. (A) The UMAP clustering results; pink means cluster 1 and blue means cluster 2. (B) The
expression heatmap of characteristic genes in two clusters; pink means cluster 1 and blue means cluster 2. (C) The expression differences of
differentially expressed OA-related genes between cluster 1 and cluster 2; the horizontal axis is the characteristic gene, and the vertical axis is the
gene expression level. ns means P≥0.05 with no statistical significance; * means P<0.05; ** means P<0.01; *** means P<0.001.
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activated dendritic cells were significantly correlated with multiple

characteristic genes’ expression levels (p< 0.05) (Figure 12B) in

cluster 1, while in cluster2, activated B-cells were significantly

related to the characteristic genes’ expression levels (p< 0.05)

(Figure 12C). The correlations of hub genes and immune cells in

cluster 1 and cluster 2 were respectively calculated, and we found

that hub gene PPARG showed a stronger correlation with multiple

immune cells in cluster 1 (p< 0.05) (Figure 12D), while hub genes

MMP1 and MMP3 were highly related to multiple immune cells in

cluster 2 (p< 0.05) (Figure 12E). We also estimated the correlation

among various immune cells of both groups of patients and found

that the correlations were weak in cluster 1 (Figure 12F), while in

cluster 2, type 1 T helper cells, activated CD8+ T-cells, macrophages,

immature B-cells, activated CD4+ T-cells, MDSCs, regulatory T-

cells, activated dendritic cells, memory B-cells, central memory

CD8+ T-cells, natural killer T-cells, natural killer cells, central

memory CD4+ T-cells, type 17 T helper cells, and activated B-

cells were positively correlated; however, there were negative
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correlations among T follicular helper cells, type 2 T helper cells,

and most other immune cells (Figure 12G).

Next, CIBERSORTx was used to compare immune cell

infiltration levels between the two subtypes of patients, and the

results showed that the correlation of various immune cell

concentrations between cluster 1 and cluster 2 was significantly

different (p< 0.05) (Figures 13A, B). We then calculated the

correlations of 31 hub genes and immune cell contents separately

and found that M1 macrophages and dendritic cells were

significantly negatively correlated with multiple hub genes

(Figure 13C), while gamma delta T-cells and M0 macrophages

were significantly positively correlated with the same

genes (Figure 13D).

We compared immune scores between OA samples and control

samples and found that the OA samples’ scores were significantly

higher than those of the control samples (p< 0.05) (Figure 14A).

Then, the correlations of hub genes’ expression levels and immune

scores were calculated, and the results showed that hub genes such
B C
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A

FIGURE 8

The functional analysis of DEGs. (A) GO functional enrichment analysis of DEGs; the horizontal axis is GO terms and the vertical axis is the
significance of enrichment results. (B–D) The results of the first five items of BP, CC, and MF analysis; the node size means the genes’ number which
was enriched under each term; different line colors mean different biological functions. (E) The KEGG enrichment analysis; different node colors
mean different gene expression levels and the quadrilateral color means the Z-score of KEGG pathways.
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as FABP4, EGR1, ADIPOQ, PPARG, and LEP were negatively

correlated with immune scores, while hub genes such as COL1A2,

MMP1, TIMP1, BGN, and COL1A1 were positively correlated with

them (p< 0.05) (Figure 14B). To estimate the ability to distinguish

the two subtypes of OA according to hub genes, we computed the

AUC score using the ROC curve and found that genes such as

TNFSF11, VCAM1, CCL3, CLU, FABP4, and THBS2 could

distinguish between the two subtypes very well (Figure 14C).
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3.7 RT-qPCR validation results

As mentioned above, we used 2-month-old SD rats for the

following studies. After KOA modeling, the same batch of rats were

randomly selected for knee joint staining to verify the success of

KOA model (Supplementary Figure 1). After KOA modeling,

cartilage tissue, and synovial tissue were collected from two

groups of rats for PCR verification. The expression levels of the
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FIGURE 9

GSEA. (A, B) The GSEA-GO analysis; the biological process is inhibited (A) and the biological process is activated (B) in cluster 1; the horizontal axis is
the enrichment score, and the vertical axis is GO terms. The color means the p-value and the node size means the enriched genes’ number. (C) The
first four items of GO terms. (D, E) The GSEA-KEGG analysis; the biological process is inhibited (D) and the biological process is activated (E) in
cluster 1; the horizontal axis is the enrichment score, and the vertical axis is KEGG terms. The color means the p-value and the node size means the
enriched genes’ number. (F) The first four items of KEGG terms.
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COL1A, Fos, IGF1, mmp9, IL-17A, Jak2, JNK, MAPK1, and STAT3

nodes were verified in PCR rats’ tissues, and the results are shown in

Figure 15. All the genes tested were different in the OA group, but

this trend was not completely consistent. Only COL1A and IL-17A

were highly expressed in cartilage and synovium, which is

consistent with the bioinformatics prediction.
4 Discussion

Osteoarthritis (OA) is the most common joint disease and

shows an increased incidence with age (37). An imbalance in the

catabolism and anabolism of cartilage (38) and pain-related

synovitis (39) could affect the development of OA, and synovium

might induce an early response in OA by regulating cartilage

development and proteolysis (40). Thus, both synovium and

cartilage are important in OA progression and could underly the

therapeutic potential in OA. Synovial inflammation can induce

articular cartilage injury, while cartilage injury can further aggravate

synovial inflammation (41). To date, however, no well-defined

target or treatment mechanism exists for either phenotype, so we

performed a bioinformatics analysis on the results of microarray

and high-throughput technology, identified and validated in vivo

the DEGs associated with both synovitis and cartilage apoptosis,

then analyzed immune cell infiltration and subtype classification for

an in-depth understanding of the mechanisms of OA.

The present study considered 577 differently expressed genes

and 401 synovitis or chondrocyte apoptosis-related genes whose

intersection revealed 56 differential expressed OA-related genes.

Several biological processes, cellular components, and molecular

functions were enriched categories in the GO analysis of DEGs,

while KEGG analysis revealed the DEGs were involved in the TNF

signaling pathway, IL-17 signaling pathway, and other pathways.

TNF-a transmits signals through TNF receptor 1 (TNF1) and TNF

receptor 2 (TNF2) in the TNF pathway (42), and TNF-a can also be

released by adipose tissue to negatively regulate by promoting

matrix metalloproteinase generation and inhibiting proteoglycans
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or type II collagen synthesis (43). Intra-articular injection of IL-17-

neutralizing antibodies could decrease the expression of joint-

degeneration markers (44), and a holistic study showed that hub

genes in OA were significantly enriched in the IL-17 signaling

pathway (45). These conclusions are consistent with the results of

our analysis and the fact that pathway protein interleukin-1A was

highly expressed in the synovium and cartilage of OA rats.

The levels of multiple immune cells in OA samples, such as

gamma delta T-cells, immune B-cells, immature dendritic cells, and

macrophages, were higher than those in the control group

according to ssGSEA, and 10 characteristic genes were identified

from 56 differential expressed OA-related genes by LASSO

algorithms, i.e., CX3CR1, GADD45B, PTGS1, EFEMP2, PGF,

MFAP4, CLU, CDH11, VEGFC, and ANPEP. We then calculated

predictive risk scores and used ROC curves to obtain results

showing that these genes have good predictive abilities; moreover,

the nomogram model decisions, which were made based on the

predicting risk scores and 10 characteristic genes, might be

beneficial to OA diagnosis.

We then used UMAP methods to divide OA patients into

cluster 1 and cluster 2. Notably, most of the genes differentially

expressed between OA and control samples were also differentially

expressed between these two clusters, such as IGF1, MMP9, and

CX3CR1. Also, a PCR experiment in rats’ tissues showed that the

level of IGF1 in OA rats’ synovium was higher than that in control

rats, but the trend was exactly opposite in the cartilage, while the

trends of MMP9 were the same in both tissues with low expression

in OA samples and high expression in control samples, contrary to

the bioinformatic analysis results. Insulin-like growth factor 1 (IGF-

1) can promote longitudinal bone growth (46) and support

chondrocyte survival, proliferation, or cartilage matrix synthesis

via PI3K/AKT, MAPK, and NF-kB pathways (47, 48); however,

whether its expression level will change with OA progression and

tissue type and finally lead to the difference between rats and human

patients and between cartilage and synovium needs to be

elaborated. Still, the differentially expressed level of insulin-like

growth factor 1 in the synovium of OA was first mentioned in this
BA

FIGURE 10

GSVA. (A) The difference in hallmark between the two subtypes of patients; the horizontal axis is the hallmark, and the vertical axis is GSVA scores;
pink means cluster 1 and blue means cluster 2, *means the significant p-value was less than 0.05, **means the p-value was less than 0.01, and
***means the p-value was less than 0.001. (B) The correlation of characteristic genes and hallmark; the horizontal axis is hallmark, and the vertical
axis is characteristic genes; the node size means the significance level and the node color means the correlation level.
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study and might be a new therapeutic target in synovitis in early-

stage OA. Additionally, studies focusing on OA showed that it may

be a potential diagnostic marker of OA given the higher levels

recorded in OA cartilage tissue than in control cartilage tissue (49,

50) and with its leading role in the intima layer’s macrophages in

early-stage OA synovitis (51). Our analysis concerning MMP9 also

found an expression difference between OA and control samples,
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but the trends were totally different and remain to be further

investigated by different experimental or modeling methods.

A total of 355 DEGs were identified from the expression profiles

of the two OA subtypes and subsequently enriched using GO,

KEGG, and GSEA. Then, functional differences between the two

subtypes were analyzed using GSVA. Subsequently, we constructed

a PPI network of DEGs among OA subtypes and identified three
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FIGURE 11

The differentially expressed genes (DEGs)-associated networks. (A) DEGs’ protein-protein interaction (PPI) network; the blue node represents DEG,
and the pink node means hub genes. (B–E) The BP, CC, MF, and KEGG analysis of genes’ GO terms in the PPI network; the node color means
genes’ expression level, and the different line color means different biological functions. (F) The genes frequency tables of 12 algorithms; the
horizontal axis is genes, and the vertical axis is frequency. (G) The GO semantic similarity scores of hub genes in DEGs’ PPI network; the horizontal
axis is the similarity level, and the vertical axis is the gene. (H) Hub genes’ mRNA-miRNA network; the pink node means hub genes and the blue
node means miRNA. (I) Hub genes’ mRNA-TF network; the pink node means hub genes and the blue node means TF.
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highly connected nodes: MMP9, COL1A, and IGF1. The results of

the gene-enrichment analysis showed that these genes were mainly

enriched in the IL-17 pathway, TNF pathway, and other signaling

pathways. Both MMP9 and IGF1 have been discussed previously,

while COL1A is often considered a marker of osteoblast

differentiation (52), and the polymorphism of the transcription
Frontiers in Immunology 16
factor SP1 binding site is closely related to bone mass and fracture

(53). Simultaneously, as a fibrosis mark, COL1A could also promote

articular cartilage repair after injury (54). The PCR results in rat

tissues showed that the expression level of COL1A in the OA group

was higher than that in the control group both in cartilage tissues

and synovial tissues, which indicated that the repair mechanisms in
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FIGURE 12

The immune characteristics-ssGSEA between two subtypes of OA patients. (A) The content histogram of immune cells between cluster 1 and cluster 2
patients; the blue means cluster 2 sample while the pink one means cluster 1 sample; the horizontal axis is the immune cell, and the vertical axis is cell
content. (B, C) The correlation of characteristic genes and immune cells between cluster 1 and cluster 2; the node size means significance and the node
color means correlation; the horizontal axis is the immune cell and the vertical axis is characteristic genes. (D, E) The correlation of hub genes and
immune cells between cluster 1 and cluster 2; the node size means significance and the node color means correlation; the horizontal axis is the immune
cell, and the vertical axis is the hub gene. (F, G) The correlation analysis of immune cells in cluster 1 and cluster 2; red means negative correlation while
blue means positive correlation. ns means P≥0.05, with no statistical significance; * means P<0.05; ** means P<0.01; *** means P<0.001.
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the cartilage of OA rats might be activated, while synovium might

also undergo fibrosis. We also first looked at the effect of COL1A on

synovitis in OA.

A total of 31 hub genes were found and the GOSemSim R

package showed that ADIPOQ, COL1A1, and SPP1 were closely

related to the function of several genes. Adiponectin (ADIPOQ) is

released from adipose tissue and plays an important role in bone

formation and resorption (55); it is involved in the inflammatory
Frontiers in Immunology 17
response and triggers cartilage damage by up-regulating the

expression of cytokines, matrix-degrading enzymes, and

chemokines in chondrocytes and synovial fibroblasts (56).

Phosphoprotein 1 (SPP1) is an extracellular matrix adhesion

molecule that plays important roles in bone mineralization,

immune response, tumor metastasis, inflammation, and

angiogenesis (57), and it has also been identified to be a regulator

of the PI3K/AKT pathway and could influence chondrocyte status
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FIGURE 13

The immune characteristics-CIBERSORTX between two subtypes of OA patients. (A, B) The correlation of immune cells’ content between cluster 1
and cluster 2 patients; pink means positive correlation while blue means negative correlation. (C, D) The correlation of immune cells and hub genes
between cluster 1 and cluster 2 patients; the horizontal axis is the hub gene, and the vertical axis is the immune cell; red means positive correlation
while blue means negative correlation. The node size means significance and the node color means correlation. *means the significant p-value was
less than 0.05, **means the p-value was less than 0.01, and ***means the p-value was less than 0.001.
B CA

FIGURE 14

The immune score calculation. (A) The immune score of OA samples and control samples; red means OA samples while blue means control
samples; the vertical axis is the immune score. (B) The correlation of immune score and hub genes in all the OA samples; the horizontal axis is the
correlation, and the vertical axis is hub genes. (C) AUC and 95% AUC in the ROC curve of hub genes, the blue node means lower 95% AUC, yellow
means upper 95% AUC, pink means AUC, the horizontal axis is hub genes, and the vertical axis is AUC values.
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in OA (58). These findings are consistent with the results of our

analysis, but experimental verification of ADIPOQ and SPP1 is

lacking in the present study.

We constructed mRNA-miRNA and mRNA-TF networks of hub

genes and found that COL1A1 and COL1A2 interacted with 14

miRNAs, respectively, while MMP9 and Fos interacted with 33 and

32 TFs, respectively. During rat tissue’s PCR validation, the expression

of Fos was increased in synovium but decreased in cartilage from the

OA group compared to the control group. C-fos could form a

heterodimeric AP-1 complex with C-Jun (59). Previous studies have

shown that C-fos could promote osteoclast fusion and accelerate

osteoclastogenesis via the ERK/C-Fos/NFATc1 pathway (60), and C-

Fos/AP-1 could also drive synovialmesenchymal stemcells to generate

pannus, invade the cartilage and bone, and release interleukin-1b (61),
which eventually activates downstreammatrix metalloproteinase and

induces cartilage destruction via C-Fos/AP-1 (62). Therefore, the

synovium of our OA rats might be activated by C-Fos, while the

cartilagemight be in the compensatory stage of repair after injury. The

conclusion needs to be further verified.

Finally, we used ssGSEA and CIBERSORTx algorithms to

compare the immune status between the two subtypes. The

results showed that there were differences in the concentrations of

immune cells, the correlation between characteristic genes and

immune cells, the correlation between hub genes and immune

cells, and the correlation between the content of immune cells

between cluster 1 and cluster 2 patients. What is more? The results

of ROC curve analysis and AUC scores showed that TNFSF11,

VCAM1, CCL3, CLU, FABP4, and THBS2 could effectively

distinguish the two subtypes of OA. This analysis helps to further

the understanding of the immune status contrast between OA and

control samples and between the two subtypes of OA.

However, there were limitations in this study; for example, in

vivo verification experiments were only performed on synovium

and cartilage tissues of MIA-intervened OA rats, without the use of

different modeling methods or other species. In addition, only qRT-

PCR was used to verify the bioinformatics analysis results, and no

other experiments, such as western blotting, immunofluorescence,

or immunohistochemistry, were used to validate at the cell or tissues

level, so the validation results are limited, while further validation of

10 key genes could also provide more information for our research

on OA, which is also the shortcoming of the study.
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In summary, the present study screened several genes and

pathways closely related to synovitis and cartilage degradation in

OA through bioinformatics analysis. Notable genes include

CX3CR1, GADD45B, PTGS1, EFEMP2, PGF, MFAP4, CLU,

CDH11, VEGFC, ANPEP, MMP9, COL1A, Fos, IGF1, ADIPOQ,

and SPP1. Key pathways include the IL-17 signaling pathway, TNF

signaling pathway, and p53 pathway. The expression levels of

MMP9, COL1A, Fos, IGF1, and IL-17 pathway-related proteins

IL-17A, ERK1, JAK2, JNK, MAPK1, and STAT3 were confirmed

by RT-PCR in rats’ tissues, with IL-17A highly expressed in both

synovium and cartilage of KOA rats and with lower expressions of

MMP9 in both tissues; the former two findings are consistent with

the prediction, while the latter finding is the exact opposite. These

results suggest that chondrocyte repair or synovial fibrosis might

exist in OA rats, and the IL-17 pathway might also be activated in

OA rats. The IL-17A, COL1A, and MMP9 screening performed in

this study might yield therapeutic targets for synovitis and cartilage

apoptosis in OA.
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FIGURE 15
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