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Hypothesis: inflammatory
acid-base disruption
underpins Long Covid
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Canterbury, United Kingdom
The mechanism of Long Covid (Post-Acute Sequelae of COVID-19; PASC) is

currently unknown, with no validated diagnostics or therapeutics. SARS-CoV-2

can cause disseminated infections that result in multi-system tissue damage,

dysregulated inflammation, and cellular metabolic disruptions. The tissue

damage and inflammation has been shown to impair microvascular circulation,

resulting in hypoxia, which coupled with virally-induced metabolic

reprogramming, increases cellular anaerobic respiration. Both acute and PASC

patients show systemic dysregulation of multiple markers of the acid-base

balance. Based on these data, we hypothesize that the shift to anaerobic

respiration causes an acid-base disruption that can affect every organ system

and underpins the symptoms of PASC. This hypothesis can be tested by

longitudinally evaluating acid-base markers in PASC patients and controls over

the course of a month. If our hypothesis is correct, this could have significant

implications for our understanding of PASC and our ability to develop effective

diagnostic and therapeutic approaches.
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Introduction

It is estimated that 15% of people infected with SARS-CoV-2 have long-term post-

acute symptoms, known as PASC or ‘Long Covid’ (1), with higher rates seen in women,

hospitalized individuals and those with underlying metabolic disorders (1–3). To qualify as

PASC, symptoms must last a minimum of two months, and often include a wide range of

variable symptoms. PASC can affect all ages and can occur after even mild infections. The

cause of PASC is currently debated but likely involves several different components,

including: viral dissemination and persistence, immune activation and dysregulation (e.g.

clotting, autoantibodies and reactivation of pre-existing latent viruses), cell death and tissue

damage, and long-lasting cellular changes (e.g. epigenetic changes, senescence,

fibroproliferation, metabolism alterations) (3). However, at present we lack an

integrative understanding of how these disease components interact to cause the variable

symptomology of PASC. Based on studies on acute COVID-19, PASC and the related
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myalgic encephalomyelitis (ME; chronic fatigue syndrome), we

hypothesize that an inflammatory acid-base disruption underpins

PASC and that viral proteins, both acutely and persistently-

expressed, cause disease symptomology through disseminated

tissue damage and inflammatory acid-base disruptions.
Inflammatory acid-base disruptions
in PASC

In PASC, inflammation reduces microvascular blood flow (e.g.

through endothelial inflammation, platelet and erythrocyte

aggregation, clotting and neutrophil extracellular trap formation)

(3), creating a hypoxic environment that causes cellular metabolic

changes (e.g. anaerobic respiration) and altered tissue and immune

functions (4). SARS-CoV-2 proteins also directly cause metabolic

changes (5) similar to hypoxia, increasing anaerobic respiration and

the generation of lactate and protons. Significant or persistent

production of protons can exceed the cellular and systemic

buffering capacity, causing localized or systemic acidosis that

results in a range of symptoms, including muscle fatigue similar

to that experienced after strenuous anaerobic exercise. As SARS-

CoV-2 vRNA and proteins have been found in muscle tissue (6),

this shift to anaerobic respiration may cause acidosis in skeletal,

cardiac and smooth muscle even in the absence of strenuous

exercise, leading to the most common symptoms of PASC: fatigue

and muscle weakness (3). In PASC patients, abnormally high blood

lactate has been found after even mild exertion, suggesting

metabolic dysfunction and muscle acidosis (7). In ME, muscle

usage also results in intramuscular acidosis with increased acid

clearance time (8), suggesting that post-exertional malaise may be

caused by persistent muscle acidosis following repeated use of

hypoxic and metabolically-reprogrammed muscle tissue.

However, the body compensates for acidosis in multiple ways:

by increasing the elimination of acidic compounds in the urine, by

increasing bicarbonate production in the kidneys, by altering the

expression of lactate dehydrogenase genes (LDH; mediating the

interconversion of pyruvate to lactate) and by altering respiration to

modulate the levels of CO2, and thus carbonic acid in the blood (9).

In PASC patients, hyperventilation (10) may reflect a compensatory

response to acidosis, lowering carbonic acid in the blood. However,

over-compensation can lead to alkalosis, which is also seen in acute

SARS-CoV-2 infections. 73% of patients with moderate-to-severe

COVID-19 present with either acidosis or alkalosis (11), with

acidosis or compensated respiratory alkalosis significantly

increasing the risk of death (12). Similarly, acute disease

outcomes were worse in patients with high or low blood

bicarbonate levels (13) and in those with elevated LDH (14),

suggesting that acidosis may play a role in the pathogenesis of

acute COVID-19 (15). Additionally, dehydration during the acute

infection, which can impair clearance of excess acid or base,

increases the likelihood of developing PASC (16).

The effects of acid-base imbalance can affect any tissue,

generating many of the symptoms of PASC, including brain fog,

though acidosis in the blood does not typically affect the brain as the
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blood-brain barrier (BBB) is not freely permeable to protons.

However, SARS-CoV-2 and viral proteins increase BBB

permeability (17), which may enable the flow of protons into the

brain. In addition, viral proteins have been found in the brain (3,

17) and may mediate metabolic reprogramming, inflammation and

hypoxia. The resulting anaerobic respiration may directly affect the

acid-base balance in the brain, as indicated by elevated lactate levels

in the cerebrospinal fluid (CSF) in ME patients (18). Acidosis has

been shown to impair executive functions (19), as seen in PASC

patients suffering from brain fog (3). Altered acid-base balance can

also have a myriad of additional effects, as protons may directly act

as neurotransmitters (20) and inflammation-inducing damage-

associated molecular patterns (21). Altered brain acidity affects

multiple neurological conditions, such as anxiety, possibly

through inhibitory action (22) on the TRPM3 ion channel (23),

the activity of which is reduced in PASC patients (24), and through

activation of acid-sensing ion channels (25). In addition,

extracellular acidosis can disrupt the cellular molecular clock (26),

potentially affecting circadian rhythms and causing the sleep

disturbances often reported by PASC patients (3). Sleep is critical

for glymphatic clearance (27) of metabolic and toxic substances

from the brain and its inhibition may further disrupt the acid-base

balance and cause a build-up of toxins (e.g. amyloid-b fibrils) that

could eventually lead to neurodegenerative disease.

Together, the variable tissue damage, dysregulated inflammation

and acid-base disruptions caused by persistent SARS-CoV-2

infection or proteins can cause the range of symptoms seen in

PASC (Table 1).
Hypothesis testing

We propose that acid-base disruptions underpin PASC disease.

This hypothesis can be tested by examining acid-base markers and

proxies (Table 2) in three groups of diverse participants: a) patients

with active, medically-diagnosed untreated PASC disease, b)

participants with a confirmed COVID-19 test that are at least

two-months post-infection without on-going symptoms, c)

participants that have never tested positive, have no on-going

symptoms and are serologically-negative for antibodies against

the SARS-CoV-2 N protein (avoiding miss-classification due to

vaccination with the Spike protein). It should be noted that at this

point in the pandemic, with over 680 million cases worldwide,

waning antibody levels, the presence of asymptomatic infections

and, in some areas, limited access to testing, group (c) will likely

include some participants that have been previously infected. This is

likely impossible to avoid, may somewhat reduce the effect size and

will need to be accounted for in the analysis and interpretation. All

participants should also be matched on demographic factors (i.e.

age, sex, socioeconomic factors), pre-existing co-morbidities and

vaccination status (including, manufacturer, doses and timing), as

these factors can influence immunity, metabolism and PASC

disease course (1–3, 29–31).

Blood pH, bicarbonate, CO2, and lactate can then be assessed

through arterial blood gas (ABG) measurements before, during and

after a 6-minute walk test (6-MWT). This data can be correlated
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with a physical examination, cognitive assessment, and self-

reported symptoms. It is expected that PASC patients would

show variably altered acid-base parameters at rest. During the 6-

MWT, PASC patients would be expected to show increased lactate,

decreased pH and compensating decreases in CO2 compared to

control participants. It is possible that some healthy, previously-

infected, participants would also show altered parameters due to

residual impact of the infection. If any results indicate a blood pH <

7.1 or lactate ≥ 5nmol/l then additional diagnostic exams and

treatment for acute acidosis may be needed during the testing (9).

As PASC may be a type of chronic metabolic acidosis, a single

treatment (e.g. bicarbonate) is unlikely to offer full disease

resolution, but any changes in symptomology following treatment

would further support the hypothesis.

However, a single exam may be insufficient to detect an acid-

base imbalance as PASC symptoms vary over time and are affected
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by activity levels and circadian/hormonal cycles (e.g. blood lactate

levels for a set exertion are higher in women during the mid-

follicular menstrual phase) (32). To account for this variability, the

above diagnostic tests can be supplemented with one month of

continual home monitoring using muscle oxygen saturation

(smO2) and blood lactate monitors as proxies for muscle hypoxia

and blood pH levels. This data can then be correlated with

smartwatch activity monitoring and self-reported symptom

surveys. It is expected that PASC patients would show variable

but significantly decreased smO2 and elevated lactate at rest

compared to controls, with further deviations occurring with

exertion, affecting symptomology. From these diagnostic and

home tests it should be possible to determine if PASC patients

have an acid-base imbalance and if this is correlated with activity

and symptomology. This would significantly affect our

understanding of PASC and offer the possibility of minimally-
TABLE 2 Evaluating acid-base imbalances in PASC patients.

Tests Evaluation Method

Exam and cognitive assessment

6-MWT with ABG and lactate testing

Upon arrival at the clinic participants should be seated for 30 min in a quiet room before a physical
examination and preparation of an indwelling arterial catheter. A blood sample is taken for full ABG
measurement (including lactate, bicarbonate, and anion gap) before insertion of an inter-arterial sensor
for continuous pH and blood-gas monitoring (e.g., Paratrend 7). Participants then remain seated for a
further 30min while taking the Montreal cognitive assessment before beginning the 6-MWT, with earlobe
capillary lactate measurements every minute. After the test, participants would rest, reclined for 30min
before the catheter and sensor are removed.

Home blood lactate

Home smO2

Symptom reporting

Participants would be provided with a home blood lactate meter (e.g., Abbott Lingo wearable for
continuous use or the Edge capillary home lactate meter for repeated manual measurements), a wearable
smO2 meter (e.g., Moxy sensor) and a wearable activity monitor (e.g., smartwatch). Data would be
recorded continually during the day (both at rest and during any activities) with intermittent overnight
monitoring. Participants would use a log to track their daily symptoms, activity levels and sleep, noting
any changes in symptoms/intensity as they occur.
TABLE 1 PASC symptoms and proposed disease pathways.

Organ System Symptoms Disease Pathways

Systemic Fatigue, PEM, temperature changes (fever / chills) IN, DI, AC

Circulatory system Hypoxia and reduced blood flow, clotting, bradycardia, tachycardia, fainting, chest pain, visible veins,
covid toes

TD, BF, IN, AC

Respiratory system Shortness of breath, cough, sore throat, hyperventilation / altered breathing, sneezing, sinus pain /
congestion, low oxygen saturation

TD, BF, IN, AC

Nervous system POTS, dizziness, coordination / balance issues, tremors, loss of sensation, loss/changes of smell / taste,
hearing issues, vision issues, headaches, insomnia

TD, BF, IN, DI, AC

Nervous system (cognitive) Brain fog, confusion, attention issues, memory loss, speech / language issues, emotional/mood issues TD, BF, IN, DI, AC

Musculoskeletal system Muscle pain, muscle fatigue / tightness, bone / joint pain / swelling TD, BF, IN, DI AC

Immune and lymphatic
systems

Inflammation, new allergies, anaphylaxis IN, DI, AC

Gastrointestinal system Constipation, diarrhoea, nausea, vomiting, acid reflux, abdominal pain, change in appetite, changes in
weight

TD, BF, IN, AC,
microbiome alterations

Integumentary system Rashes, hair loss, peeling skin, changes in sweat TD, BF, IN, AC

Endocrine, reproductive,
urinary systems

Menstrual changes, bladder issues, hormone changes / issues TD, BF, IN, AC
TD, tissue damage; BF, blood flow; IN, inflammation; DI, dysfunctional immunity (including viral reactivation and autoimmunity); AC, acidosis (including response mechanisms). Symptoms
based on (28). An individual’s symptom profile will likely be shaped by differences in the amount of persistent virus/proteins, the extent of viral dissemination and tissue damage, previous
infections, existing metabolic or inflammatory diseases and the impact of daily activities and circadian / hormonal cycles.
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invasive PASC diagnostic assays (e.g., capillary blood lactate levels

on exertion).
Discussion

We propose the testable hypothesis that PASC is underpinned

by an inflammatory acid-base disruption. If the proposed

evaluations confirm the hypothesis, this offers both a diagnostic

pathway for PASC and suggestions for treatment. As PASC may be

a reinforcing cycle of tissue damage, blood flow and oxygenation

impairment, dysregulated inflammation, and acid-base disruption,

then a treatment protocol could be designed to simultaneously

address each disease component through pharmaceutical and/or

non-pharmaceutical interventions. It is possible that PASC is

not the only pathogen-induced inflammatory acid-base disorder,

as several other pathogens cause persistent disease. ME, in

particular, shares many features with PASC and the symptom

profile of both diseases overlaps with that of acute and chronic

acidosis (9, 33). Thus, the proposed hypothesis may be of broader

relevance. Additionally, it is possible that even people without

persistent symptoms following SARS-CoV-2 infection harbor

residual tissue damage and viral proteins, increasing their risk of

new health conditions in the future (34). There are still many

unanswered questions and the data from this hypothesis testing is

urgently needed.
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