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infiltrating cell marker genes

Haijun Tang1†, Shangyu Liu1†, Xiaoting Luo2, Yu Sun1,
Xiangde Li3, Kai Luo1, Shijie Liao4, Feicui Li1, Jiming Liang1,
Xinli Zhan1, Qingjun Wei4, Yun Liu1* and Maolin He1*

1Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China, 2Department of Pharmacy, The First Affiliated Hospital of
Guangxi Medical University, Nanning, Guangxi, China, 3Department of Radiotherapy, The Second
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Background: Tumor infiltrating lymphocytes (TILs), the main component in the

tumor microenvironment, play a critical role in the antitumor immune response.

Few studies have developed a prognostic model based on TILs in osteosarcoma.

Methods: ScRNA-seq data was obtained from our previous research and bulk

RNA transcriptome data was from TARGET database. WGCNAwas used to obtain

the immune-related gene modules. Subsequently, we applied LASSO regression

analysis and SVM algorithm to construct a prognostic model based on TILs

marker genes. What’s more, the prognostic model was verified by external

datasets and experiment in vitro.

Results: Eleven cell clusters and 2044 TILs marker genes were identified.

WGCNA results showed that 545 TILs marker genes were the most strongly

related with immune. Subsequently, a risk model including 5 genes was

developed. We found that the survival rate was higher in the low-risk group

and the risk model could be used as an independent prognostic factor.

Meanwhile, high-risk patients had a lower abundance of immune cell

infiltration and many immune checkpoint genes were highly expressed in the

low-risk group. The prognostic model was also demonstrated to be a good

predictive capacity in external datasets. The result of RT-qPCR indicated that

these 5 genes have differential expression which accorded with the predicting

outcomes.

Conclusions: This study developed a new molecular signature based on TILs

marker genes, which is very effective in predicting OS prognosis and

immunotherapy response.

KEYWORDS

osteosarcoma, tumor infiltrating lymphocytes, single-cell RNA sequencing, risk
score, immunology
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1 Introduction

Osteosarcoma (OS), the most common primary bone tumor in

children and adolescents (1, 2), is characterized by high

aggressiveness and poor prognosis (3). It is a relatively rare

cancer with global incidence rate of approximately 4.8 per million

per year (4, 5). Although treatments including surgery,

chemotherapy and immunotherapy have made some progress in

recent years, the overall survival rate is still unsatisfactory and

fluctuates between 60% and 70% (6, 7). Therefore, it is particularly

important to identify reliable prognostic markers and construct new

molecular models to accurately predict the survival trend of patients

with osteosarcoma.

The tumor microenvironment is a harbor for tumor cells and

influences tumor development (8). Tumor infiltrating lymphocytes

(TILs), one of the most common cell composition in tumor

microenvironment, is composed of innate immune cells, adaptive

immune cells, immunoreactive cells (e.g. cytotoxic T lymphocytes)

and immunosuppressive cells (e.g. regulatory T cells) (9–11).

Secrete cytokines derived from TILs can induce migration and

aggregation of CXCR5-expressing B and T cells to suppress tumor

progress. Chemotactic B cells and T cells form well-organized

structures can prevent tumor metastasis to other sites (12, 13). In

the context of antitumor immunotherapy, TILs are gradually

gaining attention. In laryngeal squamous cell carcinoma, Sara

et al. concluded that the number of TILs was positively correlated

with PD-L1 expression and a good prognosis (14). In colorectal

cancer, Yu-jie Liang et al. concluded that patients with high levels of

Foxp3+ T cells had a better prognosis (15, 16). Thus, TILs could be

used as biomarkers with good prognostic predictive value in a

variety of tumors (12, 17). Although some prognosis gene models of

OS have been established (18), few studies have reported and

developed a prognostic risk model based on TILs in OS.

We firstly found TILs marker genes based on single cell RNA

sequencing (scRNA-seq) data. Subsequently, in order to screen the

prognostic genes and established risk model, LASSO regression

analysis and machine learning SVM algorithm were utilized.

Ultimately, we developed a prognostic risk model successfully,

which may offer a novel reference for predicting the prognosis of

OS patients.
2 Materials and methods

2.1 Preliminary experiment and raw
data acquisition

ScRNA-seq sequencing data was obtained from our previous

research, in which we collected tumor tissue from 6 OS patients

from our hospital and conducted single-cell RNA sequencing (19).

The basic information of the patients was showed in Table S1.

Tumor tissues collecting from surgery were cut into pieces of

approximately 1 mm3 in size and converted into cell suspensions

for use. The sequencing work was performed in a double-end

sequencing mode and i.e. 150 bases were measured at both Read

1 and Read 2 ends. We followed the 10X Genomics’ official process
Frontiers in Immunology 02
to perform upstream analysis using Cell Ranger software (version

4.0.0). We aligned the single-cell data with the human genome

sequencing reference library GRCh38. The barcode.tsv file, gene.tsv

file and matrix.mtx file were then derived by pairing read lengths,

generating feature barcode matrices, performing clustering and

other secondary analyses (19, 20). Furthermore, the data used for

prognostic signature model development were from TARGET

databank (https://ocg.cancer.gov/programs/target). Two external

verification databases named GSE21257 and GSE16091 were

downloaded from Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo).
2.2 Identification of TILs marker genes

In this study, single-cell RNA sequencing data was analyzed by

“Seurat” and “SingleR” R packages (21). In order to seek

osteosarcoma cells, we rigorously filtered the raw matrix data of

each cell based on three filtering criteria: nFeature_RNA > 300,

nFeature_RNA < 4500 and percent. mt < 15. First, we set the mode

to “LogNormalize” when we normalized the data through

“NormalizeData” function of the “Seurat” R package. The

normalized data was then transformed into a Seurat object, which

was processed by “FindVariableFeatures” function to identify the

genes of ideal cells. Next, “RunPCA” function of the “Seurat” R

package analyzes the top 2000 highly variable genes of the target

cells. The result of PCA were presented as PCA scatter plots. The

top 30 principal components (PCs) were identified by JackStraw

analysis. The cell clustering analysis was performed by using

“FindNeighbors” and “FindClusters” functions of the “Seurat” R

package. The clustering results were visualized as t-distributed

random neighborhood embeddings (t-SNE) by “RunTSNE”

function. We used “FindAllMarkers” function of the “Seurat” R

package to identify differentially expressed genes (DEGs) for each

cluster according to the criteria of adjusted p < 0.05 and |log2(FC)|

>0.25. The “SingleR” R package was leveraged to pair the DEGs with

marker genes from various cell types in the human primary cell

atlas, thus enabling the annotation of cell clusters. Besides, we

implement metabolomic analysis of TILs with “scMetabolism” R

package (22).
2.3 Immune-related co-expression analysis

We first extracted the expression profile data of TILs marker

genes from TARGET cohorts which includes 85 RNA expression

matrix. On the basis of expression profile data of TILs marker genes,

we calculated tumor-associated stromal scores, immune scores,

ESTIMATE scores and tumor purity using “estimate” R package

(23). We then used “WGCNA” R package to find the modules that

were most significantly positively correlated with stromal scores,

immune scores and ESTIMATE scores but most significantly

negatively correlated with tumor purity. These genes included in

the selected modules were defined as immune-associated TILs

marker genes and used in the construction of a prognostic

signature model.
frontiersin.org

https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo
https://doi.org/10.3389/fimmu.2023.1150588
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2023.1150588
2.4 Construction of a prognostic signature
based on TILs marker genes

We first integrated the expression profile data of immune

associated TILs marker genes with the clinical phenotype data of

85 TARGET cohorts, and then used univariate Cox regression

analysis to screen for genes with prognostic value. In the LASSO

regression analysis implemented by “glmnet” R package, we used

“cv.glmnet” function to perform a 10-fold cross-validation of

prognosis genes and then obtained genes with non-zero b
coefficients. Simultaneously, according to the survival status,

patients in the TARGET cohorts were assigned into survival or

death group. In the machine learning SVM regression analysis,

“svmRadial” function of the “e1071” R package was used to cross-

verify the prognostic genes and aggregate the genes with the lowest

error. The genes obtained from both analysis methods were

intersected and common genes were extracted. The multivariate

Cox regression analysis was the final step in creating the TILscore

and assessing risk. The risk score of TILScore was calculated based

on the equation “risk score = Sexpgenei*bi”. The “expgene” is the
expression value of the model gene and “b” is the risk coefficient of

the model gene. Median risk score splitted OS patients of the

TARGET cohorts into two risk groups.
2.5 Validation of prognostic signature
based on immune-related TILs
marker genes

To evaluate the prognostic performance of TIL score, we used “

survivalROC” R package to obtain time-dependent ROC curves

(24), and area under curve (AUC) values reflect the predictive

ability of the model for patients’ overall survival at 1, 3, and 5 years.

We invoked “survminer” R package in the Kaplan-Meier survival

analysis to investigate survival differences between the high-risk and

low-risk groups. In addition, we examined the possibility of

TILScore as an independent prognostic factor by independent

prognostic analysis. We combined TILScore with other clinical

phenotypes to form a clinical nomogram. The clinical nomogram

initially predicted the prognosis of different patients at 1,3,5 years.

In order to further verify the reliability of the model, we

collected the expression matrix and clinical information from two

GEO databases (GSE21257 and GSE16091). After removing the

batch effect, the two databases were merged by Combat function of

“sva” package. Subsequently, the merged database will be used as

external verification database.
2.6 Tumor immune landscape assessment
and immunotherapy response prediction

First, we extracted the expression profiles of 2044 TILs genes

with cell type identification by estimating relative subsets of RNA

transcripts (CIBERSORT) algorithm and gained the infiltration

abundance of 22 immune cell types. Subsequently, we analyzed
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the proportion of immune cell infiltrates in the two risk groups. In

addition, we performed differential analysis of the expression matrix

data of the immune checkpoint genes and observed the expression

levels between the two risk groups.
2.7 Function and pathway enrichment
analysis

In this study, we performed Genes Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses with

“clusterProfiler” R package (25). We used “clusterProfiler” R

package to visualize the functions and pathways of TILs marker

genes. The GO annotations are based on the genome-wide

annotation package released by the Bioconductor project

(org.Hs.eg.db). The KEGG annotations were queried through the

web API in the “clusterProfiler” R package for the latest online

KEGG database. P value <0.05 was considered as a significant

enrichment criteria.
2.8 Cell cultures

In this study, human osteoblasts cell (OB) were used as a control

group, while human OS cells including 143B and HOS cells as

experimental cell. All cells were purchased from Procell Life

Science&Technology Co.,Ltd. (Wuhan, China). 143B cells and

HOS cells were cultured in 1640 medium (Gibco, USA) and

MEM medium, respectively. The two medium was supplemented

with 1% penicillin/streptomycin (Solarbio, Beijing, China) and 10%

fetal bovine serum (FBS; Gibco). OB cells cultured in DMEM/F-12

medium. OS cells were cultured in a humidified 5% CO2 incubator

at 37 °C while OB cells was in a humidified 5% CO2 incubator

at 35 °C.
2.9 RT-qPCR assays

In accordance with manufacturer’s instructions, total RNA was

extracted using RNA fast 200 Kit (Fastagen Biotech, Shanghai,

China). RNA was reverse-transcribed into complementary DNA

(cDNA) by using a cDNA synthesis kit (Takara, Japan). RT-qPCR

was performed using SYBR Green (FastStart Universal SYBR Green

Master ROX, Germany) on a StepOnePlus™ Real-Time PCR

System (ABI7500). The PCR procedure was as follow: 95 °C for

10 minutes, followed by 40 cycles at 95 °C for 10 seconds and 60 °C

for 1 minute. The gene expression level in cell lines was expressed as

relative expression and calculated using the 2-DDCt method. The

primer sequences can be found in Table S4.
2.10 Statistical analysis

In this study, data was analyzed and generated using R software

version 4.1.0 (http://www.R-project.org). P < 0.05 was the
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significance threshold and the “p.ucdilg” R function was used to

adjust the P values for multiple analyses.
3 Results

3.1 Identification and annotation of
TILs clusters

First, quality control criterias (nFeature_RNA > 300,

nFeature_RNA < 4500, %. mt < 15) were used to filter single-cell

RNA sequencing data of 6 patients with osteosarcoma. We obtained

24,611 genes from high quality cells and selected the top 2,000 high

variance genes (Figures 1A, B). Next, we incorporated these 2000 high-

variance genes into PCA analysis to reduce the dimensionality of the

sequencing data. The cells were then subjected to co-expression

clustering analysis to obtain 11 cell clusters (Figure 1C). Subsequently,

each cluster were annotated by automatically coordinating the “SingleR”
Frontiers in Immunology 04
R package and manually based onmarker genes. We defined the cells of

cluster 1 and cluster 9 as TILs with the marker genes NKG7, CD3D,

GZMK and GZMB (Figures 1D–F). After integrating the data of cluster

1 and cluster 9, a total of 2078 marker genes were obtained. In addition,

we found that the single cell metabolic features of TILs are related to

glycolysis or gluconeogenesis (Figure 1G).
3.2 Functions and pathways of TILs
marker genes

Enrichment analysis was used to understand the role of TILs in

the anti-tumor immune response. First, we used the previous 2078

TILs marker genes in combination with genes expression matrix

data from 85 TARGET cohorts to obtain expression profile data for

2044 marker genes (Figure 2A). The results of GO analysis showed

that these marker genes are mainly involved in the biological

processes of immune cell adhesion, cell migration and protein
B

C D E

F G

A

FIGURE 1

Quality control of cells and the single-cell RNA sequencing to identify TILs markers. (A) Violin plot of 3 cell quality control standards. (B) The top
2,000 high variance genes. (C) t-SNE plots sorted by cell clusters. (D) t-SNE plots colored by the same cell type. (E) Different cell clusters identified
by marker genes. (F) TILs identified by 6 marker genes. (G) single cell metabolic features of TILs are related to glycolysis or gluconeogenesis.
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translation, including regulation of leukocyte cell-cell adhesion,

focal adhesion, cell-substrate junction and cadherin binding. The

KEGG analysis also confirmed the close association of these genes

with immune cell adhesion and ribosomes (Figures 2B, C)
3.3 Establishment of a prognostic signature
on the basis of five TILs marker genes

The optimal soft threshold was set to 7 and the results of

WGCNA analysis showed that a total of 7 gene modules were

identified. The 545 genes in the blue-green module were most

significantly positively correlated with stromal scores, immune

scores, and ESTIMATE scores, but most significantly negatively

correlated with tumor purity (Figures 3A, B). Thus, the genes in the

blue-green module are marker genes associated with immunity.

Next, we performed a univariate Cox regression analysis on 545

marker genes and found that 140 genes were significantly associated

with overall survival (Figure S1). Subsequently, we screened 11

genes and 34 genes from the 140 prognostic genes using LASSO

Cox regression analysis and machine learning SVM regression

analysis, respectively (Figures 3C-E and Table S2). The genes

obtained from the two analysis methods were taken to intersect

to obtain 6 common genes (Figure 3F and Table S2). After

multivariate Cox regression analysis, 5 genes were remained and

used to construct a prognostic signature model. We also performed

risk assessment based on the model. In addition, the risk score of the

prognostic model = (0.705 × EPHX2 expression value) + (0.478 ×

FDPS expression value) + (-0.35 × GBP1 expression value) +

(-0.726 × MMD expression value) + (-0.815 × ZYX expression

value) (Table S3).
3.4 Survival analysis of TILScore

Their median value of the risk score was 0.874 and categorized

the patients in TARGET cohorts into a low risk group (n = 43) and

a high risk group (n = 42). Figure 4A showed the relationship

among risk scores, clinical phenotype, and modeled genes. Risk

model are all had prognostic value in different sub-groups except
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the group of age (Figure 4B and Figure S2). Kaplan-Meier analysis

also showed a more advantageous overall survival rate in the low-

risk group (Figure 4C). The AUC values of the ROC analysis were

0.852, 0.859, 0.872 at 1, 3, 5 years, which indicated the high

predictive accuracy of the prognostic signature model

(Figure 4D). Figures S3A, B showed the survival status of patients

with different risk scores. Independent prognostic analysis using

“age, sex, tumor metastasis, TILScore” revealed that TILScore (HR:

1.244,95% CI: 1.149-1.347, P<0.001) and tumor metastasis (HR:

4.691,95% CI: 2.160-10.187, P<0.001) were independent prognostic

factors (Figures S4A, B). Finally, nomograms was constructed to

predict the survival state at the 1st, 3rd, and 5th years (Figures S4C,

D). To verify the reliability of the model, we combined two GEO

datasets and ultimately obtained 82 examples. According to the

quartile method, patients were divided into two groups by the risk

score calculated by our formula. The result showed that patients in

high risk group had low overall survival rate (p = 0.085) (Figure 4E).

What’s more, the result of RT-qPCR released that, compared to OB

cells, EPHX2 and FDPS were significantly overexpressed in 143B

and HOS cells, while the expression of ZYX and GBP1 was

significantly lower in 143B and HOS cells. The expression trend

of MMDwas not definite (Figure 4F). In conclusion, we successfully

established a 5-gene TILScore based on TILs marker genes.
3.5 Immune landscapes associated with
TILscore

Because TILs are critical in the antitumor immune response, we

explored the relationship between TILScore and immune cell

infiltration. Differential analysis of four tumor-associated

microenvironment score revealed that high-risk patients had lower

immune scores, stromal scores and ESTIMATE scores (Figures S5A,

B). Thus, the high-risk score was negatively correlated with the level

of immune cell infiltration. The CIBERSORT algorithm calculated

associations between five modeled genes and 22 immune cells

(Figure 5A). The differences in the infiltration abundance of

memory B cells, naive B cells, Treg cells, and gd T cells were

statistically significant in two risk groups (Figures 5B, C). Details of

the infiltration of the four immune cells mentioned above were
B CA

FIGURE 2

Biological functions and pathways of TILs marker genes. (A) Venn diagram of 2044 TILs marker genes from TARGET OS cohort and scRNA-seq data.
(B) Bubble plot of the functions and pathways of TILs marker genes. (C) Network plot of the functions and pathways of TILs marker genes.
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shown in Figures 5D-G. Genes of the prognostic signature may

further affect the development of osteosarcoma by influencing the

antitumor response through B and T cells.
3.6 The TILScore predicts immunotherapy
benefits in OS patients

TILs are involved in antitumor immune responses, so we

analyzed the relationship between TILScore and immune
Frontiers in Immunology 06
checkpoints. The results revealed that some critical immune

checkpoints, such as CTLA4, LAIR1, HAVCR2, CD48, CD44,

CD27, LGALS9 and LAG3, possess higher expression in low-risk

group (Figures 6A-H).
4 Discussion

Previous studies have demonstrated that tumor-infiltrating

lymphocytes are strongly associated with the prognosis of
B

C D

E F

A

FIGURE 3

Construction of the TILscore. (A) Module thresholds for WGCNA analysis. (B) Coefficients of different modules showing the correlation of TILs
marker genes with 4 microenvironment scores. (C, D) Coefficient and parameter plots of LASSO analysis showing the 11 filtered candidate genes and
pathways of TILs marker genes. (E) Machine learning SVM analysis curve showing 34 filtered candidate genes. (F) Venn diagram of common
candidate genes from LASSO analysis and machine learning SVM analysis.
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different tumor types (26–28), whereas few prognosis models have

been conducted in osteosarcoma. In recent years, by using scRNA-

seq analysis, Peng Song et al. developed a prognostic signature

based on NK cell marker genes in patients with lung

adenocarcinoma (29), suggesting that scRNA-seq analysis is an

excellent tools to the construction of prognosis model. Therefore,

we searched for marker genes of TILs by scRNA-seq analysis in

present study. Our results showed that TILScore proved to be a

powerful predictive model for OS patients’ prognosis. GO and

KEGG analysis turned out that most of these TILs genes were

enriched in biological processes such as immune cell adhesion, cell

migration and protein synthesis pathways. Therefore, these genes

may influence the proliferation and developmental processes of

osteosarcoma through immune cell migration and cellular protein

synthesis (30, 31).
Frontiers in Immunology 07
Our risk model consisted of five TILs marker genes (EPHX2,

FDPS, GBP1, MMD and ZYX). FDPS, an osteoclast farnesyl

pyrophosphate synthase, is closely associated with osteosarcoma

formation. Its main role is to promote osteoclast bone resorption

activity and to inhibit osteoclast apoptosis (32). Upregulation of

FDPS expression is also significantly associated with patients’ poor

prognosis (33). MMD, one of the proteins associated with

monocyte-to-macrophage differentiation, can enhance ERK1/2

and Akt phosphorylation in macrophages after LPS stimulation.

It is involved in the antitumor immune response (34). Consistent

with our findings, this gene is closely associated with phagosomes of

tumor-infiltrating lymphocytes. Higher expression levels of MMD

were found in the low risk group of this study and MMD was

associated with good prognosis. ZYX is a LIM structural domain

protein, which is involved in cytoskeletal organization and
B C

D E F

A

FIGURE 4

Survival analysis and predictive performance evaluation of TILscore. (A) Heat map of the relationship between different clinical phenotypes and two
risk groups. (B) 17 years of age as the threshold for survival differences between the two risk groups. (C) Kaplan-Meier curves for survival analysis
compared overall survival of OS patients in the high-risk and low-risk groups. (D) TILscore ROC curves predict the risk of death at 1, 3, and 5 years.
(E) Kaplan-Meier curves for survival analysis based on external verification database. (F) The result of RT-qPCR. *p < 0.05; **p < 0.01; ***p < 0.001;
ns is for no statistical significance.
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tumorigenesis (35, 36). ZYX is involved in apoptosis and osteoblast

differentiation processes (37, 38). Therefore, ZYX may be involved

in the development of osteosarcoma. High expression levels of ZYX

were associated with good prognosis. EPHX2, the coding gene of

soluble epoxide hydrolase (sEH) protein, is related to activity of

epoxide hydrolase and phosphatase (39). EPHX2 was demonstrated

to be strongly associated with cancer prognosis and macrophage

phagocytosis (40). GBP1, encoding Guanylate Binding Protein 1, is

related to tumor progression and chemotherapy drug resistance

(41). What’s more, GBP1 was also regarded as microbe-specific

gatekeeper of macrophage apoptosis and pyroptosis (42).

Combining literature reports and our results of bioinformatics

and RT-qPCR, we hold that EPHX2 and FDPS are the oncogenes,
Frontiers in Immunology 08
while GBP1, MMD and ZYX are the anti-oncogene in

osteosarcoma. Risk model based on these five genes is very

reliable to predict the prognosis of patients.

The differences in the immune landscape between risk groups

allowed us to see the potential value of TILScore in predicting

immunotherapy response. In the present study, naive B cells, Treg

cells and gd T cells were more distributed in the high-risk group, but

memory B cells were more distributed in the low-risk group. Naïve

B cells are undifferentiated B cells without antigen stimulation and

infiltrate a high percentage in tumor tissue (43). Memory B cells are

generated in the germinal center response during T cell-dependent

immune response. Unlike naïve B cells, memory B cells are involved

in a faster and stronger immune response (44). Therefore, the
B

C D

E F G

A

FIGURE 5

TILscore-associated immune landscape. (A) Heat map of the correlation between the 5 genes of TILscore and the abundance of 22 immune cell
infiltrates. (B) Heat map showing the infiltration abundance of 22 immune cell species in different risk groups. (C) Box plots showing differences in
immune cell infiltration by risk group. Differences among naive B cells (D), memory B cells (E), Treg cells (F) and gamma delta T cells (G) in the high-
risk and low-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001.
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antitumor immune responses of memory B cells are faster, thus the

prognosis of the low-risk group is better. Previous studies

confirmed that Treg cells are involved in the tumor development

process by suppressing antitumor immunity and its high expression

level represents a poor prognosis (45). gd T cells, a congenital

cytotoxic T cells, were highly infiltrated in the low-risk group, which

may be related to the fact that osteosarcoma is an

immunocompromised tumor (46). Moreover, LAIR1, HAVCR2,

CD27, CTLA4, CD48, CD44, LAG3 and LGALS9 were highly

expressed in the low-risk group, indicating that the low-risk

group was more likely to benefit from more types of

immunotherapy. In summary, TILScore, a reliable biomarker for

predicting response to immunotherapy, predicting that low-risk

patients were more likely to benefit from immunotherapy.

There are some limitations of our study. First, a full functional

experiment to elucidate the specific mechanisms of TILs marker

genes in osteosarcoma is still very important. Second, the data

involved in our study were derived from single-cell RNA

sequencing data and the TARGET database, but the sample size
Frontiers in Immunology 09
remains insufficient. Therefore, the predictive power of this

prognostic feature has some limitations.
5 Conclusion

Overall, this study developed a 5-gene prognostic signature

based on TILs marker genes, which performed well in predicting

prognosis and immunotherapy response in patients with

osteosarcoma. TILScore can be considered to be an independent

prognostic factor to predict patient prognosis and to guide patients

to benefit from different immunotherapy methods.
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(A, B) TILscore and tumor metastasis are independent prognostic factors. (C,
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5th year.
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(A) Heat map showing the difference between the 4 microenvironment
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