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The Ras (rat sarcoma virus) is a GTP-binding protein that is considered one of the

important members of the Ras-GTPase superfamily. The Ras involves several

pathways in the cell that include proliferation, migration, survival, differentiation,

and fibrosis. Abnormalities in the expression level and activation of the Ras family

signaling pathway and its downstream kinases such as Raf/MEK/ERK1-2

contribute to the pathogenic mechanisms of rheumatic diseases including

immune system dysregulation, inflammation, and fibrosis in systemic sclerosis

(SSc); destruction and inflammation of synovial tissue in rheumatoid arthritis (RA);

and autoantibody production and immune complexes formation in systemic

lupus erythematosus (SLE); and enhance osteoblast differentiation and

ossification during skeletal formation in ankylosing spondylitis (AS). In this

review, the basic biology, signaling of Ras, and abnormalities in this pathway in

rheumatic diseases including SSc, RA, AS, and SLE will be discussed.

KEYWORDS

autoimmune inflammatory diseases, Ras signaling, rheumatoid arthritis, systemic lupus
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Introduction

The Ras (rat sarcoma virus)-GTPase superfamily consists of GTP-binding proteins

with a low molecular weight that convert extracellular signals to various cellular functions.

This superfamily is sub-classified into families and subfamilies based on their members’

sequence and functional resemblances. Key members of the Ras family such as H-Ras, N-

Ras, and K-Ras have an important role in the genes’ expression involved in proliferation,

survival, differentiation, and fibrosis by activating transcription factors such as c-FOS, c-

JUN, and ETS domain transcription factor ELK1 (1). Dysfunction or mutation of Ras

family proto-oncogenes leads to different kinds of malignancies and autoimmune diseases

(2). In autoimmune lymphoproliferative syndrome (ALPS), which is the most prevalent

genetic disease related to defective apoptosis of lymphocytes, mutations in N-Ras lead to a
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reduction in Bim (a pro-apoptotic protein), which results in

decreased mitochondrial apoptosis and lymphocyte accumulation

(3). Recently, the role of Ras family proteins and their downstream

kinases have indicated in the pathogenesis of different auto-

inflammatory rheumatic diseases [systemic sclerosis (SSc),

rheumatoid arthritis (RA), ankylosing spondylitis (AS), and

systemic lupus erythematosus (SLE)] that targeting and inhibiting

important components of this signaling cascade may be a promising

approach to treat these diseases.

Based on recent evidence in fibrotic diseases, fibrosis may

correlate with the stabilization of Ha-Ras by growth factors and

autoantibodies, which leads to the increased expression of genes

involved in the fibrosis process such as type I collagen, fibronectin,

and production of ROS that has a significant role in this process (4).

Abnormalities in the level of p-ERK (phosphorylated extracellular

signal-regulated kinase) and its upstream kinases have been

observed in some auto-inflammatory rheumatic diseases that are

related to T-cell low stimulation threshold and result in the

production of autoantibodies in RA patients (5). Moreover,

defects in the Ras signaling pathway including GEFs (guanine

nucleotide exchange factors) and ERK1/2 related to epigenetic

abnormalit ies result in lupus-l ike autoimmunity (6) .

Osteoclastogenesis, which is abnormal in RA, is controlled by

numerous interacting signaling cascades. The Ras-Raf-MEK1/2-

ERK1/2 activation may function as a main key driver of human

osteoclast differentiation (7). In addition, some studies have

demonstrated that the ERK1/2 activity, an essential downstream

mediator of Ras, enhances osteoblast differentiation and ossification

in MSCs during skeletal formation (8, 9). This review will focus on

the basic biology of Ras signaling and defects of Ras signaling

pathway molecules in each auto-inflammatory rheumatic diseases.
Ras family signaling pathway

The Ras molecule is a membrane-bound protein with a low

molecular weight that has a GDP/GTP-bound domain. Following

external stimulus by the binding of ligands including different

growth factors to their receptors, signal transduction by Ras

proteins takes place through reversible binding of GTP, whereas

the passive form is connected to GDP. Three different kinds of

protein modulator agents are responsible for the regulation of

exchanging among these two states; guanine nucleotide exchange

factors (GEFs) including SOS (son of sevenless class) and RasGRP1/

3 (Ras guanyl releasing protein1/3) catalyze the switch from GDP to

GTP to induce Ras activation while GTPase-activating proteins

(GAPs) inactivate the Ras protein by hydrolysis of Ras-bound GTP

to GDP. The deactivation process is also performed by guanine

nucleotide dissociation inhibitors (GDIs), which are connected to

the GDP-bound state and not only inhibit the switch but also

prevent membrane association. Different upstream signals that

activate or deactivate Ras signaling affect all of these regulatory

proteins. There is a conformational change that leads to the shift of

Ras molecules between the GDP- and GTP-bound states, which

highly increases their affinity for downstream effectors (10).
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Ras molecule effectors

The most well-known downstream effector for Ras protein is

the Raf-MEK-ERK1/2 pathway. When growth factors are bound to

their receptors, phosphorylation and activation of receptors occur

such that, initially, GRB2 (growth-factor-receptor-bound protein

2), an adaptor protein, is bound to the receptor through the SH2

domain and then by the SH3 domain bound to SOS. The SOS

exchange GDP-bound Ras to GTP-bound Ras and then serine/

threonine kinases including B-Raf and C-Raf are recruited to the

plasma membrane and dimerized and activated by Ras-GTP (11).

Localization of Raf protein to the plasma membrane is necessary for

its activation (12, 13). Phosphorylated Raf stimulates and

phosphorylates mitogen-activated protein kinase kinase 1 and 2

(MAPKK, MEK1/2) and then MEK1/2 activates mitogen-activated

protein kinase (MAPK, ERK1/2). Activated ERK1/2 phosphorylates

several nuclear transcription factors including ETS, ELK, c-JUN,

AP1, and c-FOS, which switches on several genes related to

differentiation, proliferation, and fibrosis (14).
Ras signaling in immune cells

Ras superfamily GTPases act as a major checkpoint linkage in

antigen receptors, growth mediators, interleukins, and stimulation

of chemokine to immune response (15). The Ras and Rho

superfamily play important roles in the activation of stromal and

immune cells during an inflammatory response, and growing

evidence demonstrates that changes in small GTPase signaling

(Ras and Rho) promote the pathological actions of these cells

populations in human persistent inflammatory diseases (16).

MEK/ERKs cascade is essential for the differentiation of immune

system cells. It has been indicated that MEK/ERKs activity plays a

major role in granulocyte/macrophage (GM) lineage differentiation

(dendritic cells and macrophages) from hematopoietic stem cells

(HSCs) and common lymphoid progenitors (CLPs) (17).

Macrophages contribute to autoimmune inflammatory diseases

and inflammation through their ability to present auto-antigens,

disturbance of the balance between M1 and M2 macrophage

phenotype, regulation of inflammatory responses, and incomplete

clearance of dying cells. In general, monocyte or macrophage

infiltration and change in their frequency are observed in many

autoimmune diseases (18, 19).

Macrophages can change their functional phenotype to the M1

phenotype (pro-inflammatory) or the M2 phenotype (anti-

inflammatory) in response to the pathogenic microbes and

microenvironment. Macrophages are activated by cytokines such

as transforming growth factor-b (TGF-b), IFN-g, and TNF-a, and
through SMAD-independent pathways such as Ras/MAPK/ERK

and show the M1 phenotype (20). Furthermore, the Ras signaling

pathway also has a role in the development of the M2 phenotype.

The M2 macrophages under the influence of IL-10, IL-13, and IL-4

produce TGF-b and IL-10 that are involved in fibrosis (20, 21).

Thus, under the influence of cytokines in the microenvironment,

the Ras activity can promote both M1 and M2 phenotypes.
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Dendritic cells are a group of small cells in the hematopoietic

systems that have a main role in antigen presentation and innate

immunity. Ras signaling is essential for DC development. During

monocyte-derived DC (moDC) maturation, Raf kinases are

stabilized and contributed to the differentiation and activation of

moDCs. Furthermore, the ERK1/2 activation during DC

maturation promotes inflammatory cytokine secretion such as IL-

1b and TNF-a (22). Pharmacologic inhibition of MEK or ERK1/2

abolishes both differentiation and survival during moDC

development (23). In addition, it has been shown that R-Ras

knockout can contribute to the reduction of natural regulatory T

lymphocytes, inhibition of tolerogenic DCs development, and

enhancement of autoimmunity (24, 25).

The adaptive immune responses against pathogens are

controlled by B cells and T cells. T helper cells (T CD4+)

contribute to antigen exclusion by activating various cells,

including macrophages, whereas T cytotoxic cells (T CD8+)

promote cell death. Central tolerance occurs in the thymus by

positive and negative selection and proper maturation of

thymocytes. In the periphery, T-cell responses are also controlled

through the activation of anergy or regulatory T cells (26). The Ras-

ERK1/2 activity has a major role in the positive selection,

maturation of thymocytes, and differentiation toward CD8+ or

CD4+ T cells (27). Antigen recognition through the TCR receptor

gives rise to the PKC-g signaling activation and Ras-ERK pathway,

which results in the activation of transcription factors including

JUN, AP-1, and c-FOS that contribute to T-cell activation and

induction of cytokine genes including IL-2 and TNF-a (26, 28).

Moreover, the Ras-ERK1/2 signaling pathway increases IL-4

overexpression in T cells (29), which is known as the main

cytokine in fibrosis and wound healing. In addition, it has been

reported that decreased RasGRP1 expression, a critical regulator in

lymphocyte receptor signaling, results in the expansion of impaired

T lymphocytes in mice (C57BL/6) and inflammation in

autoimmune diseases (30).

The Ras signaling pathway is also activated downstream of the

B-cell receptor (BCR) and plays a major role in the survival,

differentiation, and function of B lymphocytes (31, 32).

Furthermore, the Ras-ERK1/2 pathway helps Th2 lymphocyte

differentiation and follows B lymphocyte activation (33). Ras

signaling in B lymphocytes is activated by BCR signaling and

sarcoma family kinases (Src kinase)/Syk pathway, and increased

expression of Ras results in loss of tolerance for both central and

peripheral B lymphocytes and causes autoantibody production,

tissue damage, and fibrosis (34, 35). Furthermore, the MEK-

ERK1/2 activation is essential in upregulating BAFFR and

breaking tolerance in central and peripheral B lymphocytes (36).

Ras pathway persistent stimulation in autoreactive B cells results in

the prevention of receptor editing, cell differentiation, and IgG

autoantibody production. An overstimulated form of Raf gives rise

to a lower k-to-l light chain ratio in mice, suggesting that the Ras-

Raf-ERK1/2 activity cascade prevents receptor editing.

Phosphorylated ERK1/2 levels are commonly higher in non-auto-

reactive than auto-reactive immature B lymphocytes (34). Ras

defect may decrease the survival of pre-B cell, and this issue could

support the idea that Ras defect leads to B-cell survival deficiency.
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The prevention of Ras activity results in a 10-fold diminution in the

abundance of transitional B cells (T1, T2, and T3), likely reflecting a

developmental delay at the transition from pro-B to pre-B cells.

BCR activity through the Ras-Raf-MEK signaling pathway

contributes to the ultimate differentiation of IgG memory B cells

into Ig-secreting plasma cells. The Ras-Raf-MEK cascade in BCR

signaling prevents apoptosis of memory B cells during plasmacytic

differentiation (37). In addition, RasGRP1 and RasGRP3 were

indicated to regulate the activation of Ras and the ERK1/2-MAP

kinase pathway (38), such that RasGRP3 is responsible for the initial

level of Ras-GTP expression in the non-stimulated B lymphocytes

and its diminished expression leads to deficiency in antibody (Ab)

production and hypo-gammaglobulinemia, but reduced expression

of RasGRP1 results in autoimmunity and production of antinuclear

Abs (ANA) due to defects in the function of T lymphocytes (39).

Thus, changes in the Ras activity can lead to alteration in B-cell

selection and development with the potential to affect the

improvement of autoimmunity. Therefore, Ras activation can

alter the selection pattern of autoreactive cells, blocking

immunoglobulin gene rearrangement via PI3K, promoting cell

differentiation via ERK1/2, and leading to the production of

autoantibodies and the preservation of memory B cells.
Ras signaling in the EMT process
and fibrosis

The Ras family signaling has a role in the fibrosis process by

promoting the epithelial-mesenchymal transition (EMT),

increasing fibroblast cell proliferation, and involving in growth

factors signaling which among them, TGF-b, PDGF, and IL-6 are

the main (40). During the EMT, an epithelial cell phenotype

changes to a mesenchymal cell such as a myofibroblast in the

presence of specific growth factors, especially TGF-b (41). Some

studies implicated that high expression of Ras promotes EMT in

response to TGF-b by the upregulation of leukotriene B4 receptor-2

(BLTR2) that activates downstream factors including ROS and NF-

kB, which have a major role in EMT (42). The H-Ras and ki-Ras

isoforms regulate the extracellular matrix (ECM) expression,

proliferation, and migration of fibroblast cells (40, 43). Different

growth mediators including EGF, FGF, HGF, VEGF, and PDGF

activate the Ras-Raf-MEK-ERK1/2 signaling cascade that

contributes to EMT. The Ras-Raf-MEK-ERK1/2 signaling

activation leads to enhanced expression of EMT-activating

transcription factors including snail1/2, zinc finger E-box-binding

homeobox (Zeb1/2), and Twist1/2, which contribute to increased

mesenchymal proteins and repress epithelial proteins

expression (44).

Moreover, ERK1/2 signaling, which is located in Ras

downstream, regulates the EMT process by reducing adherens

junctions such as E-cadherin, actin stress fibers induction, and

cell motility in the presence of TGF (a and b), PDGF, and IL-6

(45–47).

TGF-b1 through stimulation of both SMAD (small mothers

against decapentaplegic homolog [canonical pathway]) and non-

SMAD (non-canonical pathway) signaling pathways contributes to
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fibrosis. In the canonical pathway, activated TGF-b1 acts through

SMADmolecules. This cytokine also activates non-SMAD signaling

including PI3K, Rho GTPase, and MAPK (48, 49). Stimulation of

human skin fibroblasts by TGF-b1 results in H-Ras activation and

ERK1/2, which causes the enhanced production of collagen type I,

fibronectin (FN), smooth muscle alpha-actin (a-SMA), and ROS,

and differentiation of fibroblasts and other cells (epithelial and

endothelial cells) to myofibroblasts (50). Furthermore, increased H-

Ras protein levels motivate SMAD2/3 signaling and the expression

of collagen I independently of stimulation with TGF-b
(4) (Figure 1).

TGF-b1 can induce isoforms of NADPH oxidase (NOX4) and

produce a large amount of ROS that has an important role in

fibrosis. Thus, protein tyrosine phosphatases (PTPs) and/or

phosphatase and tensin homolog (PTEN) are inhibited under the

influence of excessive oxidative activation. Overproduction of ROS

leads to the activation and stabilization of tyrosine kinases including

ERK1/2 and Ras, MAPKs, JNK, PKC, PI3K, and transcription

factors which are involved in fibrosis (51–55). In addition, K-Ras

promotes ROS generation via the upregulation of NOX1, which is

an essential regulator for the K-Ras (56, 57). Inhibition of ROS

production by using NOX1 and NOX4 inhibitors (GKT137831) has

revealed that ROS has a crucial role in the production of collagen I,

FN, and the expression of a-SMA (54).

Another characterized stimulator for fibrosis is the platelet-

derived growth factor (PDGF) (58). PDGF through the H-Ras

signaling pathway and phosphorylating different MAP kinases

cascade (Raf-MEK1/2-ERK1/2) activates transcription factors

such as ELK, c-FOS, and c-JUN, and these transcription

mediators increase the overexpression of involved genes in the

fibrosis (in addition to promoting myofibroblast differentiation and

ECM production especially collagen type I and FN) (59). PDGF
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contributes to the enhancement of ROS production through the

induction of NOX2/NOX4 and the development of fibrosis (60).

Some investigations have defined a substitute mechanism for

PDGFR activation through the binding of autoantibodies to

PDGFRs. Following IgG binding to the PDGFRs and the

stimulation of PDGFR, downstream signaling molecules such as

Ras-Raf-MEK1/2 and ERK1/2 are activated and induce genes

involved in fibrosis and ROS by activating the NADPH oxidase

complex (59).

Furthermore, ROS through a positive feedback mechanism

induces increased expression of H-Ras and activates ERK1/2

signaling, which has a critical role in fibrosis in the presence of

PDGF. In addition, it has been found that upon stimulation of

healthy fibroblasts with PDGF, the level of H-Ras protein is

increased (56), and fibroblast treatment with nonspecific ROS

s c a v e n g e r ( NAC ) o r NADPH o x i d a s e i n h i b i t o r

(diphenyleneiodonium [DPI]) has shown that ROS contributes to

both H-Ras induction and ERK1/2 activation by PDGF (56). Thus,

TGF-b1, and PDGF contribute to EMT and fibrosis through

activation of the Ras signaling pathway and ROS production.
Ras signaling in inflammation and
induction of adhesion molecules

New studies have implicated that overexpression of Ras protein

increases inflammatory cytokine secretion such as IL-6 and IL-8

(61). It has been shown that activation of Ras signaling causes an

increase in the secretion of various cytokines and chemokines such

as C-X-C motif chemokine 6 (CXCL6), CXCL5, C-C motif

chemokine 20 (CCL20), macrophage colony-stimulating factor

(M-CSF), and insulin-like growth factor-binding protein-1
FIGURE 1

Scheme of the Ras signaling pathway that increases in the fibrosis process and SSc disease. PDGF, Anti-PDGFR antibodies can activate MAPK
signaling in fibroblasts of SSc patients and cause expression enhancement of involved genes in the fibrosis process and also TGF-b can through both
the Smad pathway and non-Smad pathway (PI3k, JNK, and P38) activate fibroblasts, increase the synthesis of collagen, fibronectin and develop
fibrosis. TGF-b, Transforming growth factor beta; TbR, Transforming growth factor beta receptor; PDGF, Platelet-derived growth factor; PDGFR,
Platelet-derived growth factor receptor; GRB2, Growth factor receptor-bound protein 2; MEK, Mitogen-activated protein kinase kinase; ERK,
extracellular signal-regulated kinase; PIP2, Phosphatidylinositol 4; 5-bisphosphate; PIP3, Phosphatidylinositol (3; 4; 5)-triphosphate; PI3K,
Phosphoinositide 3-kinases; PTEN, Phosphatase and tensin homolog; TAK1, TGF‐b‐activated kinase 1; MKK, The mitogen-activated protein kinase
kinase; PTP, Protein tyrosine phosphatases; NF-kB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; ROS, Reactive oxygen species;
ATF2, Activating transcription factor 2.
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(IGFBP-1) and IGFBP-4 in mesenchymal stem cells (MSCs), which

may affect the differentiation and migration of MSCs and other

immune cells (62). Furthermore, inhibition of Ras signaling

decreases the levels of various inflammatory interleukins, and

genes relevant to inflammation, immune system, and

autoimmunity (such as IL-17A/F, IL-22, IFN-g, CSF2, LTA, and
IL-1A) in effector CD4+ T cells (63).

Furthermore, binding of cytokines such as IL-4, IL-2, IL-3, IL-7,

IL-6, IL-10, IL-11, and IFNs to their specific receptors could

promote activation of different signaling cascades including the

JAK-STAT, MAPK (Ras-ERK1/2), Src/ZAP70, PI3K, and other

cascades (64). After cytokine binds to its receptor, the Shc

adaptor protein attaches to phosphorylated tyrosine in the

cytoplasmic domain of cytokine receptors and recruits Grb2 and

SOS, which leads to the activation of the Ras pathway (64). Integrin,

which facilitates cell–cell and cell–ECM adhesion, plays a role in

inflammation through the adjustment of migration and cell

adhesion. Interestingly, Ras proteins have an important role in

suppressing or activating integrins (the affinity and avidity of

integrins). Raf1 and ERK1/2-MAPK might mediate the

prevention of integrin activation by Ras under the determined

conditions, whereas Ras-dependent activation of PI3K can

activate integrins (65). In addition, suppression of Ha-Ras and c-

Raf expression inhibits the E-selectin overexpression and vascular

adhesion molecule-1 (VCAM-1 or CD106) induced by TNF-a (66).

Thus, the Ras signaling pathway and molecules involved in this

pathway enhance inflammation, especially through the induction of

adhesion molecules.
Ras signaling in osteoblast and
osteoclast differentiation

Different stimuli especially receptor activator of nuclear factor-

kappa B ligand (RANKL), M-CSF, interleukin-1b (IL-1b), IL-6, and
IL-34 affect monocyte precursors and increase the Ras-Raf interaction

and follow the stimulation of the MEK1/2-ERK1/2 signaling cascade,

which contributes to the migration, survival, and differentiation of

monocyte precursors to pre-osteoclasts (67, 68). Furthermore, it has

been revealed that blockage of MAPK protein expression (ERK1/2

and JNK) can inhibit osteoclast differentiation (69). Mononuclear

pre-osteoclasts in the presence of GM-CSF through the Ras-ERK1/2

pathway augment c-FOS, nuclear factor of activated T cells (NFAT-

c1) proteins, and dendritic cell-specific trans-membrane protein

(DC-STAMP) that cause proliferation, survival, perfusion of pre-

osteoclasts, and formation of activated and multinucleated

osteoclasts, which can destroy bones (68, 70). M-CSF treatment of

mature osteoclasts upregulated Ras, and inhibition of Ras enhances

osteoclast apoptosis (71). Also, M-CSF and RANKL increase the

proliferation of osteoclast precursors and the activity of osteoclasts

through the PI3K/Akt cascade. Inhibition of PI3K suppresses the

activation and differentiation of rodent osteoclasts. Controversially,

p38 inhibition results in increased osteoclastogenesis, which is related
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to increased phosphorylation of ERK1/2 (67). Thus, ERK1/2

activation may play a critical role in osteoclast differentiation.

There are many controversies regarding Ras signaling in

ossification. For example, lines of evidence from pharmacological

therapy indicate that increased Ras-MAPK signaling may

antagonize osteogenesis in a certain way, and suppression of Ras-

MAPK activity via the MEK (U0126 and PD98059) or Ras inhibitor

(salirasib) has been found to increase osteogenic activation and

differentiation in cultured osteoblasts and myoblasts treated with

bone morphogenic proteins (BMPs). BMPs are part of the TGF-b
superfamily that, through phosphorylation and nucleolar

translocation of Smads1/5/8, promote osteogenic gene expression.

Therefore, potential mechanisms related to this impact are the

phosphorylation of Smads and the inhibition of their nuclear

import by ERKs. In contrast, some reports reinforce a conflicting

idea that supports an osteogenic role of Ras-MAPK activity. The

Ras-ERK1/2 signaling can augment phosphorylation and activity of

transcription factor Runx2, or may directly affect the expression of

the osteogenic genes and contribute to bone formation. According

to the promotion of Runx2 by the Ras signaling, it seems that

activation of this pathway can commit MSCs to osteoblasts, but

phosphorylation of Smad molecules by the Ras-MAPK pathway

inhibits the final stages of osteoblast differentiation (72). Generally,

this literature review concluded that Ras-MAPK activity subtly

regulates osteolysis more than ossification, but it can be different

depending on the type of cells and secretion mediators in the

microenvironment of diseases.
Ras family signaling in
systemic sclerosis

SSc is known as a severe autoimmune and connective tissue disease

that is distinguished via inflammation, abnormalities of the immune

system, vasculopathy, and fibrosis of the dermis and several internal

organs (15, 73). In genetically predisposed individuals, many stimuli

include microbial agents (such as CMV), environmental agents [like

vinyl chloride, silica, and reactive oxygen species (ROS)], and anti-

endothelial cell antibodies (AECAs) that can cause endothelium

damage and increase vascular permeability (15, 74, 75). In the

dermis of SSc patients, accumulation of immune cells including

macrophages, B and T cells, and DCs have been reported, which

produce different kinds of pro-inflammatory (TNF-a, IL-1, IL-6, and
IL-2) and pro-fibrotic (IL-4, IL-13, IL-6, and TGF-b) cytokines (76)
and different autoantibodies (77, 78). In the early stages of SSc,

numerous Th17 cells and enhancer levels of IL-17 have been found

(79), whereas, in late stages, Th2 cells are dominant T lymphocytes of

peripheral blood and skin biopsies that secrete TGF-b, IL-4, and IL-13

(80–82). An augmented level of IL-6 has been indicated in SSc that is

related to the rate of fibrosis (15, 83). IL-6 increases ECM production

and collagen type I expression through Ras-ERK1/2 signaling in dermis

fibroblasts of SSc patients and promotes differentiation of cardiac

fibroblast to myofibroblast (84). With regard to the enhanced
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expression of these cytokines in SSc and the activation of the Ras

pathway through these cytokines, it seems that Ras activation can link

the growth mediators and cytokines to fibrosis and EMT (Figure 1).

The serum of SSc patients is rich in cytokines and profibrotic

growth factors especially PDGF and TGF-b, which have a main role

in fibrosis. TGF-b and PDGF can induce ROS production and ROS

can increase H-Ras protein levels through ERK1/2. Excess

production of ROS and activated Ras-ERK1/2 has been reported

in SSc fibroblasts. High ROS and H-Ras, and activation of ERK1/2

stimulated collagen synthesis and DNA damage, and increased

senescence. Conversely, inhibition of ROS, Ras, or ERK1/2

restores the normal phenotype in SSc fibroblasts (56).

Considering the role of TGF-b and PDGF in the human skin

fibroblasts’ activation through non-SMAD signaling and

induction of collagen type I, FN, a-SMA, and ROS production;

the differentiation of different cells including fibroblasts and

epithelial and endothelial cells to myofibroblasts (50); and the

role of Ras/ERK signaling in ROS production and induction of

fibrosis and EMT, it seems that TGF-b and PDGF act in SSc

pathogenesis partly through activation of the Ras/ERK pathway.

Given the presence of different autoantibodies in SSc and

chronic activation and overexpression of the Ras signaling in B

cells, which results in the prevention of receptor editing, loss of

tolerance in B lymphocytes, and autoantibody production (42), it

seems that Ras signaling activation is correlated to autoantibody

production. Moreover, TGF-b and PDGF can trigger multiple

kinase proteins including the Ras-ERK1/2 activity that acts as the

essential factor for developing SSc.
Ras family signaling in
ankylosing spondylitis

AS is a chronic autoinflammatory disease that primarily affects

the axial skeleton. Pathological novel bone formation (ossification)

is the main feature of AS. The affected joint will be immobilized

when the osteophytes bridge the overall articulation cavity, leading

to stiffness in axial articulation, spinal ankyloses, and permanent

disability (85). The cytokines released by T and B lymphocytes

contribute to the osteogenesis and pathogenesis of AS in such a way

that there is a remarkable enhancement in the population of Th22

and Th17 cells as well as IL-22 in AS patients. IL-22 production by

Th17 and Th22 cells is associated with IL-23, which is elevated in

AS patients (86). An in vivo study clarifies that Ras blockers

forcefully mitigate the upregulation of serum IL-22 and also the

gene expression and release of IL-22 by purified effector CD4+ Th17

and Th22 cells. Thus, it seems that the Ras signaling activity

contributes to the induction of IL-22 (63), which is overexpressed

in AS patients and can promote bone formation and mineralization

by metabolic change and increased glycolysis (87).

It has been indicated that Ras activation can augment

ossification in vitro and predominant negative Ras and MAPK

suppressors were also found to have anti-ossification effects. Some

researchers suggested that the MAPK signaling pathway directly

motivates ossification via the upregulation and phosphorylation of
Frontiers in Immunology 06
the transcription factor Runx2 through ERK2 activation (72).

Similarly, global gene expression studies stated that an

inflammatory microenvironment may increase the MAPK activity

and M-Ras (understudied member of the Ras family) signaling

pathways in MSCs isolated from AS patients and cause an

increment of inflammatory gene expression (88). M-Ras is

upregulated in the osteoblast and hypertrophic chondrocyte cells.

Furthermore, M-Ras is overexpressed in MSCs during maturation

and differentiation into osteoblasts. BMP-2 can phosphorylate M-

Ras and mediate osteoblastic differentiation and maturation by p38

MAPK, Rac1, and JNK activation (89). Changes in the gene

expression of Ras family members in AS MSCs include (1)

increased expression of Rac1 and MAPK, which is activated by

Ras; (2) increased expression of M-Ras, which is involved in bone

formation; and (3) decreased expression of RASA2, which inhibits

the Ras pathway and can induce MSC differentiation towards

osteoblasts and promote osteogenesis (90).
Ras family signaling in the
pathogenesis of rheumatoid arthritis

RA is a persistent inflammatory disease, the common features of

which include pain in joints, swelling, and irreversible damage to

cartilage, tendons, and bones (91). T lymphocytes have critical roles

in RA pathogenesis: they contribute to (1) autoantibody production

by B lymphocytes including antibodies to citrullinated protein

antigens (ACPAs) and autoantibodies against IgG Fc (92), (2)

adjustment of fibroblast-like synoviocyte (FLS) activation through

cell–cell interaction, (3) promotion of inflammatory cytokine

production including IL-15, IL-8, and TNF-a by FLSs (91), (4)

regulation of monocyte/macrophage activation, and (5) TNF-a
production and osteoclast formation (93–95). Th17 cells are the

most important subsets of T lymphocytes in RA patients. An

increased number of this subset has been reported in the RA

joints that produce IL-17 and promote the secretion of other

inflammatory cytokines by synovial cells (96, 97). Furthermore,

overexpression of K-Ras and its mediator B-Raf and increased

phosphorylation of ERK1/2 in RA T cell have been reported (5,

98). Thus, it is not surprising that inhibition of Ras protein

demonstrates the reduction of Th17 cells and pro-inflammatory

cytokines such as IL-17A/F and IL-22 (63).

FLSs are one of the main cells in the synovial intimal lining that

have a main role in the pathogenesis of RA disease by producing

inflammatory cytokines and proteolytic enzymes that promote

inflammation and cartilage destruction (99). There is more

evidence that Ras proteins induce the activation of FLSs and have

a role in the immune pathogenesis of RA (16). Increased expression

of H-Ras in RA-FLSs has been reported, which is due to

RasGRP1overexpression (100). In addition, it has been indicated

that RasGRP1 contributes to the production of MMP3 and the

transformed phenotype of FLSs (101).

Interestingly, it has been revealed that transfection of FLSs with

a dominant-negative mutant related to the ras gene in RA patients

leads to the inhibition of Ras signaling, which play a critical role in
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decreased ERK1/2 activation, proliferation, and/or activation of

FLSs, synovial hyperplasia, inflammatory cell infiltration, and

high production of IL-6, which are involved in joint damage

(102). In addition, suppressing the expression of c-Raf-1 (MAP

kinase activator) and c-Myc (one of the c-Raf-1 downstream

transcription factors) alone does not affect proliferation,

morphologic appearance, or apoptosis of FLSs, but the disabling

expression of both of them (c-Raf-1 and c-Myc) together induces

apoptosis in FLSs. Furthermore, Triptolide, a natural compound

with immunosuppressive and anti-inflammatory activities, can

cause anti-proliferative effects and apoptosis in RA-FLSs through

suppression of Ras-MAPK signaling (Figure 2) (103).

Some studies using FTI (Farnesyl transferase inhibitors), as an

inhibitor of Ras protein, have shown a decrease in the severity and

incidence of collagen-induced arthritis (CIA) in mice, a decrease in

the expression of inflammatory cytokines such as TNF-a and IL-6

in the synovial, and a decrease in the production of TNF-induced

MMP-1 by FLSs (100, 104, 105).

Osteogenesis in RA is related to enhanced osteoclast

differentiation (106). Initially, pre-osteoclasts differentiate from

monocyte/macrophage lineage cells under the influence of various

growth factors and cytokines that are upregulated in the cell’s

microenvironment, especially M-CSF and RANKL, increasing the

Ras-Raf interaction and following the activation of the MEK-ERK1/

2 signaling cascade. GM-CSF in mononuclear pre-osteoclasts that

express upregulated GM-CSF receptor-alpha by RANKL, through

the activation of Ras-ERK1/2 pathway, enhances proliferation,

survival, perfusion of pre-osteoclasts, and formation of activated

and multinucleated osteoclasts (68, 70).

Given the role of Ras signaling in inflammatory cytokine

production, induction of osteoclast differentiation, and

enhancement of FLS proliferation and activation, it seems that

the Ras family signaling plays a major role in the development and
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progression of RA, and blockage of this signaling may be a

promising strategy for RA treatment.
Ras family signaling in systemic
lupus erythematosus

SLE is an autoimmune disease that is determined by the

production of autoantibodies against nuclear components, the

formation of immune complex, and its deposition in different

tissues such as the kidneys (6, 107). SLE’s clinical features are

mainly related to B cells by losing B-lymphocyte tolerance,

presentation of autoantigens to T cells and activating them, and

secretion of pro-inflammatory cytokines (108). Loss of B-

lymphocyte tolerance causes the autoantibody production against

self-antigens and finally tissue damage. Many critical abnormalities

in central tolerance have been indicated in SLE that lead to the

production of autoantibodies, such as deficiency in adequate

negative selection of auto-reactive B lymphocytes and insufficient

receptor editing, which are critical steps in maintaining tolerance to

self. On the other hand, defects in T cells can also contribute to the

loss of B-cell tolerance and autoantibody production (109–112). It

has been revealed that the continuous presence of B lymphocytes is

related to weak curative response, and early repopulation of

memory plasma blasts and B lymphocytes is associated with

primary disease relapse. Moreover, selective depletion of memory

B lymphocytes may reduce the risk of later renal relapse (113, 114).

The numbers of plasma cells and memory B lymphocytes are

enhanced in SLE patients, while naive B lymphocytes are reduced.

The increased memory B cells in SLE are mature, antigen-

experienced class-switched memory B cells. These cells have a

lower threshold than naive cells for activation and are resistant to

regulatory and inhibitory signals (114). With regard to the
FIGURE 2

Scheme of the increased Ras signaling pathway in RA disease. Increased phosphorylation of ERK1/2 (p-ERK1/2) in T cells of RA patient’s cause’s
responsiveness enhancement of T cells to neo-antigen (citrullinated proteins) and helps the production of auto-antibodies through secretin of
cytokines. These auto-antibodies in joints form the immune complexes and then activate complement, immune cells, and secretions of
inflammatory cytokines such as IL-6 and TNF-a that are hall markers of RA disease and finally lead to bone erosion. LCK, lymphocyte-specific
protein tyrosine kinase; CD4, cluster of differentiation 4; TCR, The T-cell receptor; MHCII, Major histocompatibility complex class II molecules;
ZAP70, Zeta-chain-associated protein kinase 70; LAT, linker of activated T cells; GRB2, Growth factor receptor-bound protein 2; MEK, Mitogen-
activated protein kinase kinase; ERK, extracellular signal-regulated kinase; SH-P1, Src homology region 2 (SH-2) domain-containing phosphatase 1.
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increased number of memory B cells in SLE and given that Ras

activation leads to prolonged survival of memory B cells, it seems

that Ras activation in memory B cells leads to an augmented

population of these cells in SLE.

Some studies have demonstrated that Ras may correlate with

disease activity in SLE. Overall, levels of Ras expression in lymphocyte

cells were similar in patients with active and inactive status, but

patients with the active form of the disease have shown significantly

lower Ras activity (115, 116). The patient’s T cells with inactive SLE

express significantly lower levels of SOS compared with healthy ones,

which indicates that SOS-mediated Ras activation was restricted

(115). Furthermore, the SOS in SLE T lymphocytes is not able to

translocate to membrane compartments and the coupling to Grb2

protein (117). RasGRP1 is extremely expressed in T lymphocytes and

is more substantial than the Grb2/SOS cascade to activate Ras; in a

certain way, knocking down the RasGRP1 gene leads to the lack of

both GTP-bound Ras and p-ERK1/2, although the SOS is sufficient

(75). Interestingly, a spontaneous RasGRP1-disrupted mouse

developed a lymph proliferative autoimmune inflammatory

syndrome with a lupus-like aspect, such as anti-nuclear antibodies

(ANA), anti-Smith antibodies (ASA), and anti-double-stranded DNA

antibodies, splenomegaly, lymphadenopathy, and diffuse proliferative

glomerulonephritis (75). In addition, single-gene mutations in

RasGRP1 have been reported in SLE animal models (120).

RasGRP1 impairment in T lymphocytes leads to an intense

reduction in Ras-ERK1/2 signaling, disrupted in the positive

selection, and the development of double-positive (CD4+CD8+) T

cells (but not the negative selection) in the thymus (121). RasGRP3

and RasGRP1 play a main role in Ras-ERK1/2 signaling. The

RasGRP3 expression increases in SLE B lymphocytes and PBMCs,

which results in enhanced activation of B lymphocytes through

ERK1/2 and AKT signaling pathways and the overproduction of

inflammatory interleukins such as TNF-a and IL-6 (122). As a result,

the downregulation of RasGRP1 and overexpression of RasGRP3 in

the lymphocytes are related to the susceptibility of SLE. The defective

Ras-ERK1/2 signaling in SLE T lymphocytes leads to reduced

transcriptional mediator expression including c-FOS, c-JUN, and

AP-1 (123). SLE T cells express diminished nuclear translocation of

the AP-1. This impaired AP-1 signaling results in the repressed

secretion of IL-2 in SLE T cells and may lead to the development of

auto-reactive T lymphocytes (117). In general, decreased Ras-ERK1/2

pathway in T cells probably promotes SLE disease through decreasing

DNAmethylation, gene dysregulation, and auto-reactivity. Moreover,

stimulation of Ras signaling in B cells results in breaking B-cell

tolerance, increased number of memory B cells and plasma cells, and

autoantibody production.
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Conclusion

Recently studies have revealed that Ras-ERKs are affected in the

pathogenesis of auto-inflammatory rheumatic diseases. These

studies indicate the harmful function of Ras-ERKs in rheumatic

diseases. The activation and phosphorylation of Ras-ERKs in

different cell types, including fibroblasts, osteocytes, synoviocytes,

and immunocytes, can elevate disorder progression both in vitro

and in vivo. Multiple studies have shown the contradictory roles of

Ras-ERKs in rheumatic diseases, thus demonstrating that their

outcomes can be different and context-dependent on diseases.

Therefore, targeting and inhibition of factors involved in the Ras-

ERK1/2 signaling pathway can be considered a key therapeutic

approach for these diseases.
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