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T cell exhaustion is an alternative differentiation path of T cells, sometimes

described as a dysfunction. During the last decade, insights of T cell exhaustion

acting as a bottle neck in the field of cancer immunotherapy have undoubtedly

provoked attention. One of the main drivers of T cell exhaustion is prolonged

antigen presentation, a prerequisite in the cancer-immunity cycle. The umbrella

term “T cell exhaustion” comprises various stages of T cell functionalities,

describing the dynamic, one-way exhaustion process. Together these qualities

of T cells at the exhaustion continuum can enable tumor clearance, but if the

exhaustion acquired timeframe is exceeded, tumor cells have increased

possibilities of escaping immune system surveillance. This could be considered

a tipping point where exhausted T cells switch from an asset to a liability. In this

review, the contrary role of exhausted T cells is discussed.
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GRAPHICAL ABSTRACT
1 Introduction

1.1 T cell exhaustion

T cell exhaustion can be defined as a physiological state of T

cells displaying phenotypical and functional changes, such as

eventual loss of proliferation capacity and effector functions,

changes in cell metabolism and transcription, decreased

production of cytokines and elevated expression of inhibitory

receptors (IRs) (1–3). Exhausted T cells are epigenetically altered

(4), having approximately 6000 different accessible chromatin

regions compared to effector and memory T cells, indicating that

exhausted T cells may be considered a distinct cell type (5, 6). The

main drivers of T cell exhaustion such as prolonged T cell receptor

(TCR) stimulation by antigens, exposure to suppressive cytokines

and tumor mediated immunosuppressive metabolic byproducts,

were previously thought to be located mainly in the tumor

microenvironment (TME) (7). More recent studies provide

evidence that the exhaustion journey of T cells is initiated already

in the lymph nodes (LNs) through interaction between antigen

presenting cell (APC)-presented tumor antigens and T cells (8).

T cell exhaustion is an umbrella term describing various functional

states of T cells. Exhausted T cells can be divided into subpopulations

based on functionality and phenotype, ranging from stem-like exhausted

T cells to terminally exhausted T cells (7, 9, 10). However, there are no

universal, clearly defined lines between the exhaustion subpopulations,

and hence T cell exhaustion resembles a continuum; T cells shifting from
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precursor to terminal exhaustion. Some of the main markers used for

categorizing populations of exhausted T cells include programmed death

receptor 1 (PD-1) and transcription factor 1 (TCF-1) (10, 11). TCF-1 is a

transcription factor essential for T cell development (12), and the

maintenance of TCF-1 expression in exhausted cells is limited to

approximately three rounds of divisions (13), where after its

expression is epigenetically silenced (10). PD-1+TCF-1+ precursor

exhausted T cells have stem cell-like properties as they have the

capacity to proliferate, self-renew and further produce progeny

populations of exhausted T cells, including terminally exhausted less

proliferative PD-1+TCF-1–T cells (Figure 1) (11, 14). Studies have shown

that the epigenetic state of exhausted T cells is irreversible (6, 9),

indicating that exhaustion of T cells is a one-way process. However,

recent studies suggests that the epigenetic state of exhaustion may be

modifiable with the right treatments (15, 16).

Most studies investigating T cell exhaustion focus on CD8+

cytotoxic T cells, while exhaustion in CD4+ helper T cells has

received less attention. The main role of CD4+ T cells is to support

immune responses by activating and recruiting immune cells through

cytokine production (17). However, similarly to CD8+ T cells, CD4+ T

cells in cancerous conditions show elevated expression of IRs related to

exhaustion, such as PD-1 and TIM-3 (18). CD4+ T cells do not

typically exert cytotoxic functions, but rather promote inflammation

and tumor reactivity by cytokine mediated activation of CD8+ T cells

(18). In advanced melanoma murine models, development of a tumor

reactive CD4+ T cell population with cytotoxic activity have been

identified (19), indicating that CD4+ cells can obtain cytotoxic
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functions. The potential cytotoxicity of CD4+ T cells has been

highlighted by Cachot et al. (20), demonstrating a CD4+ tumor-

specific cytotoxic T cell population in cancer patients by mining

single-cell RNA-sequencing datasets. The mechanisms behind CD4+

T cell adaptation to cancerous conditions and a possible correlation

between cytotoxic CD4+ T cells and T cell exhaustion remains unclear.

Likewise, exhaustion in unconventional gd T cell lineages have been

reported but is less investigated than in CD8+ T cells. The predominant

T cell type in the body is ab T cells (here referred to simply as T cells),

and these expressabTCRs consisting of an a- and a b subunit, while gd
T cells express TCRs consisting of a g- and a d subunit (21). Studies

provides insights in the acquirement of an exhaustion signature by gd T
cell, which has been extensively reviewed by Chen et al. (22).

Furthermore, it has been reported that gd T cells can have

immunosuppressive functions, imposing immune exhaustion of

antitumor ab T cells through PD-1/PD-L1 signaling (23).
1.2 The cancer-immunity cycle

To portray the interactions between oncology and immunology,

the cancer-immunity cycle has been introduced (24). Cancer cells

are defined by genetic and cellular alterations, enabling the immune

system to generate T cell responses for recognition and elimination

of cancer cells. The cancer-immunity cycle term is used to describe

the various necessary steps of T cell-cancer cell interactions, starting

from the release of cancer cell antigens. The first step of generating

an immune response is tumor antigen release from tumor cells (24).

Tumor antigens are originally self-antigens, which makes their

recognition by the immune system more challenging compared to

foreign antigens such as those originating from pathogens (25).

However, tumor antigens can be recognized by the immune system

by distinguishing mutations. The higher the mutational burden, the

higher the chance of successful recognition by the immune
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surveillance system (26). Antigens released from the tumor site

are then trafficked to the blood stream and captured by APCs,

which process and present antigens to T cells (24). Next step

involves priming and activation of naïve T cells in LNs. APCs

present processed tumor antigens to naïve T cells via major

histocompatibility complex (MHC) molecules. Each T cell

expresses TCRs, typically consisting of a a and b chain.

Stochastic V(D)J gene recombination during T cell maturation

results in a broad variety of TCRs, estimated to contain 107-108

unique signatures (27). Different TCRs recognize different epitopes

presented byMHCs on the cell surface of surrounding cells. Binding

of specific TCRs toMHC-antigen complexes, leads to activation and

proliferation of T cells (24, 28). Activated T cells are trafficked to the

tumor site via the blood stream guided by chemokine signaling.

Chemokines are a subcategory of cytokines providing chemical

signals trafficking immune cells to specific destinations (29).

Infiltration of T cells to tumors is desired, since high levels of

cytotoxic T cells in the TME correlates with a positive antitumor

response in cancer patients (30). Via TCR specificity, T cells

recognize antigens earlier activated against by APCs in LNs. Once

TCRs of T cells bind antigens on cancer cells, T cells can kill cancer

cells by releasing perforin and granzyme B (31). Killing of cancer

cells triggers release of more antigens, leading to further immune

responses, and so the cancer-immunity cycle continues.
2 Exhausted T cells in the cancer-
immunity cycle

2.1 Priming of tumor-specific T cell
activation and exhaustion in lymph nodes

The draining lymph node is the first site of APC-T cell

interaction (32). Antitumor T cell response-efficacy is dependent
FIGURE 1

Stem-like, proliferative exhausted T cells produce progeny populations of exhausted T cells, including terminally exhausted T cells. Stem-like
exhausted T cells have the capacity to proliferate but have been considered less cytotoxic than terminally exhausted T cells. On the other hand,
terminally exhausted T cells have been considered more cytotoxic than stem-like exhausted T cells but have a very limited proliferation capacity.
Figure created with BioRender.com.
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on the qual i ty of ant igen presentat ion and poss ible

immunosuppressive conditions of the microenvironment (32–34).

Tissue-derived soluble antigens in lymphatic fluid flow into LNs via

afferent lymphatic vessels (35). Antigens are captured by LN

resident and migratory dendritic cells (DCs) and transported to

the LN cortex and paracortex for antigen presentation to T cells

(35–37). Cross-presentation of DC internalized tumor antigens to

CD8+ T cells is a key step for priming antitumor immunity (38).

Presence of antigens is necessary for adaptive immune

responses (39), and the continuous stimulation by tumor-derived

antigens can be considered critical giving the ongoing evolution and

accumulation of mutations in tumor cells (40–42). However, it has

been shown that one of the main factors behind T cell exhaustion is

prolonged, consistent antigen stimulation (43), indicating that the

factors making robust immune responses against tumor cells

possible are also the ones assumed to be dampening immune

responses in form of T cell exhaustion. Antigenic peptides with a

low mutational burden deliver weaker TCR signals (26), and are

thus less potent to induce an immune response but might also be

less potent drivers of T cell exhaustion. Weak TCR signaling

combined with lack of co-stimulation rather leads to T cell anergy

than exhaustion (44, 45), an extended hyporesponsive state

considered a tolerance mechanism (46). Dysfunction in form of

anergy is induced rapidly after antigen stimulation, while

exhaustion is developed progressively over a period of weeks to

months (47).

Studies provide evidence of the maintenance of a stem-like

TCF-1+ CD8+ exhausted T cell reservoir in tumor-draining lymph

nodes (TDLNs), and these stem-like exhausted T cells are necessary

for long-term T cell responses and efficacy of immunotherapy (48).

Data suggests that T cells differentiate towards a stem-like

exhausted state in LNs, becoming prepared for migration towards

tumor sites (48). Studies propose that activated CD8+ T cells in

human TDLNs are precursors to tumor-resident stem-like CD8+ T

cells (48). Prokhnevska et al. (49) used murine tumor models to

reveal that tumor-specific CD8+ T cells in TDLNs were activated,

but lacked an effector phenotype. When the tumor-specific stem-

like CD8+ T cells migrated into the tumor, effector differentiation

was driven by additional co-stimulation by APCs in the TME. This

tumor-specific CD8+ T cell activation model proposes a two-step

activation: initial activation in TDLNs and additional co-

stimulation in the tumor, resulting in subsequent effector

program acquisition (49).

Stem-like CD8+ T cells are also referred to as progenitor

exhausted T cells (TPEX), and characterized to be TCF-1+,

CXCR5+, PD-1int and TIM-3- (9). Lugli et al. (50) describes TPEX

cells as partially memory, effector, and exhausted T cells. TPEX cells

retain memory-like gene expression and preferentially localize in

lymphoid tissues, but also display traits ascribed to effector-like T

cells. Upon antigen stimulation, TCF-1+ T cells have shown

contradictory IFN-g production capacity. Some studies display

increased IFN-g production by TCF-1+ TPEX cells compared to

TCF-1- terminally exhausted T cells (51), while other studies have

shown greater production of IFN-g by terminally exhausted T cells

than TPEX cells after in vitro stimulation (9).
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T cell exhaustion has been well characterized in chronic

infections in lymphocytic choriomeningitis virus (LCMV) models

(52). In a LCMV-model study by Im et al. (53), a distinct CXCR5+

LCMV glycoprotein 33–41 epitope (GP33)-specific CD8+ T cell

population was found in the spleens of mice chronically infected

with the LCMV clone 13 strain. In contrast, in mice infected with

the LCMV Armstrong strain having cleared the infection, GP33-

specific memory CD8+ T cells did not express CXCR5. The study

showed that during early phase chronic infection, both CXCR5+

and CXCR5- CD8+ T were found in the blood, but at later stages on

infection (day 30 onwards), only the CXCR5−CD8+ T cells were

found in the blood (53). In the same study, the CXCR5+Tim-3−

subset displayed to be TCF-1+ whereas the CXCR5−TIM-3+ cells

were TCF1−. Lymphoid tissue resident T cells were characterized by

TCF-1 expression, while mainly TCF-1-negative cells were found in

the periphery (53).

Dammeijer et al. (54) used LNs of ovalbumin (OVA)-

expressing AE17 mesothelioma tumor mouse models to analyze

the frequencies and phenotype of tumor antigen-specific CD8+ T

cells. The study revealed that TDLN-localized tumor-specific PD-

1+CD8+ T cells are capable of effectively initiate antitumor immune

responses following TDLN-targeted PD-L1-blockade. Following

PD-L1-blockade, TDLN-resident T cells induced TPEX cell

accumulation at the tumor site, resulting in improved tumor

control. These findings support the pivotal role of progenitor

exhausted T cells in LNs as an extra-tumoral source of antitumor

T cell activity.

These data indicate that the exhaustion journey of T cells is

initiated already in the lymph nodes, preparing for later terminal

stages of exhaustion (Figure 2). The antigen density in lymph nodes

might be enough to initiate exhaustion of T cells, but not enough to

promote terminal differentiation of exhausted T cells. Hence, TCF-

1+CD8+ TPEX cells migrating from lymph nodes to tumor sites

provide a therapeutic window for maintaining a proliferative T cell

population and possibly preventing differentiation of a terminal

exhausted state of T cells (48, 55).
2.2 Migration of exhaustion committed T
cells from lymph nodes to tumor sites

Activated T cells are trafficked to tumor sites via the blood

stream guided by chemokine signaling (Figure 2) (29). Chemokines

are secreted by various cell types in the TME, including tumor cells

and immune cells. Loss of CCR7, a lymph node homing chemokine

receptor, allows effector T cells to migrate to non-lymphoid tissues

(33), and chemokines associated with tumor homing of T cells

attract T cells to the TME. CXCL9, CXCL10 and CCL5 are

positively associated with immune cell infiltration to tumors, and

likewise CX3CL1, CCL3, CCL4, CCL11, and CXCL11 have been

associated with T cell infiltration (55). Most chemokine profiles

described above are inducible by IFN-g, which is one of the key

proinflammatory molecules secreted by effector T cells. Presence of

activated T cells secreting IFN-g in the TME cause a positive

feedback loop, since IFN-g leads to production of various
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chemokines attracting T cells to tumors (55). T cells reaching

terminal exhaustion and thus produce less IFN-g (2, 51), could

possibly interfere with the positive feedback loop and reduce T cell

attraction to the TME.

T cell trafficking is facilitated by dynamic associations between

T cells, endothelial cells, and adhesion molecules (33). Lymphocyte

function-associated antigen-1 (LFA-1) is an adhesion molecule

expressed by activated T cells (56). Binding of LFA-1 to its ligand

ICAM-1 expressed by endothelial cells, APCs and tumor cells,

facilitates endothelium adhesion, prolonged contact with APCs,

and tumor cell binding (57). Hence, LFA-1-ICAM-1 interactions

can impact the cancer-immunity cycle from beginning to end. In

lymph nodes, ICAM-1 expression on APCs is essential to guide T

cell migration throughout the lymph node (58), and LFA-1-ICAM-

1 engagement is necessary for complete T cell activation and

differentiation (59). Studies have investigated the effect of PD-1/

PD-L1 immune checkpoint blockade (ICB) on adhesion molecule

expression and T cell motility. In chronic infection LCMV models,

exhausted T cells had reduced motility capacity, and PD-1 blockade

was observed to restore T cell motility leading to increased clearance

of viruses (60). Whether the same applies for PD-1/PD-L1 blockade

in tumor models remains to be investigated.

Several studies provide evidence that anti-PD-1 ICB treatment

drives peripheral T cell expansion and recruitment of de novo

responses. A study by Nagasaki et al. (61) underlines that

clonotypes in exhausted tumor infiltrating lymphocyte (TIL)

populations rarely overlap with non-exhausted peripheral blood
Frontiers in Immunology 05
leukocytes (PBLs), indicating that TDLNs might be the primary

source of newly infiltrating exhausted T cells in clusters promoted

by PD-1 blockade. Similar conclusions were made by Yost et al.

(62), providing evidence that both pre-existing and new CD8+ T cell

clones infiltrate tumors following PD-1 blockade. Beltra et al. (10)

have identified two distinct circulating states of exhausted T cells:

TCF1+CD69- Texprog2 and TCF1-CD69-T-bethi Texint. The Texint

population expanded upon PD-1 pathway blockade, but ultimately

differentiated into a TCF1-CD69+Eomeshi terminally exhausted

subset. Upon PD-L1 blockade, TCF1+CD69+ Texprog1 and TCF1-

CD69+ Texterm cells increased 2.1- and 2.2-fold, while Texprog2 and

Texint accumulated heavily and increased 17- and 10-fold. Results of

these studies call attention to circulating exhausted T cells as the

main source of expanding T cells upon ICB treatment.

Studies have described a shift from precursor to terminally

exhausted T cell as T cells migrate from the lymphoid tissues to the

tumor site (10). During this shift a change in transcriptional

programs inducing expression alterations of transcription factors

BATF, IRF4, NR4A, EOMES, NFATC1 and TOX have been

identified (63–65). Especially TOX have been reported as a

critical TF for exhaustion development and differentiation. TOX

expression correlates with an exhausted transcriptional program of

T cells, including co-expression of PD-1, TIM-3, and CD244 (66,

67). Interestingly, deletion of TOX lead to chromatin inaccessible

gene regions coding for the IRs Pdcd1, Entpd1, Havcr2, Cd244 and

Tigit and thus reduced IR expression. Even though TOX-deleted T

cells showed reduced IR expression, they have been observed to be
FIGURE 2

The development of T cell exhaustion throughout the cancer-immunity cycle. The exhaustion journey of T cells starts from tumor antigen-T cell
interaction in lymph nodes. The exhaustion continues as the cancer-immunity cycles goes on, impacting the tumor cell elimination capacity of T
cells. Figure created with BioRender.com.
frontiersin.org
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dysfunctional in terms of effector functions such as cytokine

release (66).
2.3 Infiltration of exhausted T cells to the
TME and functions of T cells in the TME

2.3.1 T cell tumor infiltration and cytotoxicity
Studies provide evidence of pre-existing TILs having limited

reinvigoration potential following ICB treatment, and the majority

of ICB responsive cells originating from outside tumors (62).

Profiling of T cells in human basal and squamous cell carcinomas

prior and post anti-PD-1 treatment displayed a more robust clonal

expansion of CD8+ T cell with an exhausted phenotype compared

to other TIL populations (62). Additionally, clonal expansion of T

cells in response to immunotherapy was derived from extra-

tumoral clones of T cells, and the effect was specific to T cells

characterized as exhausted (62). This study demonstrates a tumor

infiltration capacity of particularly exhausted T cells. However,

where on the exhaustion continuum such capacity is at its most

optimal remains to be investigated.

TPEX CD8+ TILs are able to control tumor growth and can

respond to anti-PD-1 therapy, while terminally exhausted TILs

cannot (9). As pre-existing TILs characterized as terminally

exhausted have been considered resistant to ICB immunotherapy

(9, 62, 68), recent studies have investigated whether these terminally

exhausted T ce l l s are involved in generat ion of an

immunosuppressive TME (68). Vignali et al. (68) have identified

intratumoral CD8+ terminally exhausted T cells with

transcriptional features of CD4+Foxp3+ regulatory T (Treg) cells

and show that these cells are capable of directly suppressing T cell

proliferation ex vivo.

Eradication of tumor cells can be considered the final goal of the

cancer-immunity cycle. Cytotoxic mechanisms of T cells rely on

two distinct pathways: the perforin-granzyme-induced apoptosis

pathway (granule exocytosis) and Fas/Fas ligand (FasL) pathway

(death ligands) (69, 70). Out of these two pathways, granule

exocytosis is considered the main pathway to eliminate cancer

cells (69, 70). Perforin is a pore-forming protein facilitating the

delivery of granzymes into target cells (71), and granzymes belong

to a family of serine proteases known for mediating cytotoxic T cell

elimination of infected cells and tumor cells (72). A study by Wu

et al. (73) demonstrated defects in CD8+ TIL perforin expression in

colorectal cancer (CRC), even though these cells stored the highest

levels of granzyme B. Furthermore, PD-1 expression correlated with

impaired perforin production, and the intact perforin expression

was restricted to tumor resident T cells (73). Yan et al. (74) have

identified an effector memory phenotype PD-1+CXCR1+ CD8+ T

cells population able to withstand chemotherapy and expand after

chemo immunotherapy with cytolytic activity, defined by granzyme

B and perforin release. Hurkmans et al. (75) studied granzyme B

serum levels in metastatic non-small cell lung cancer (NSCLC)

patients post PD-1 blockade by Nivolumab. Lower serum levels of

granzyme B correlated with worse clinical outcome, and

interestingly, serum levels of granzyme B positively correlated
Frontiers in Immunology 06
with peripheral abundance of T cell populations expressing PD-1

and TIM-3. Together these findings show sustained and elevated

granzyme B release capacity of exhausted T cells, while perforin

production remains questionable. It is widely assumed that both

perforin and granzyme B are necessary for efficient cytotoxicity of T

cells. Interestingly, perforin knockout OT-I T cells have been shown

to efficiently kill MC38Ova and B16Ova cells in prolonged presence

(>18 hours) of antigens (76), indicating cytolytic activity of T cells

in absence of perforin.

The Fas/FasL pathway plays an essential role in regulating

apoptosis and T cell activation (77). The Fas/FasL signaling in

exhausted antigen-specific CD8+ T cells during tumor immune

response have been studied in C57BL/6 mice inoculated with EG.7.

The study showed that the number of activated antigen-specific

CD8+ T cells decreased via apoptosis during prolonged tumor

immune responses, but the number of T cells in FasL-

dysfunctional gld mice were higher than in control mice (78).

Thus, the Fas/FasL signaling pathway is critical for survival of

exhausted CD8+ T cells during tumor immune response. In chronic

infection LCMV mice models, the FasL mRNA expression is

reported to be substantially elevated in exhausted CD8+ T cells

compared to naive, effector, and memory CD8+ T cells, and the Fas/

FasL pathway is discussed to provide alternate cytolytic

mechanisms during chronic infection (1). In CD8+ T cells specific

for chronic persistent virus (HIV), PD-1 expression has been

observed to be associated with spontaneous and Fas-induced

apoptosis (79). Studies provide insights of an altered Fas/FasL

pathway in exhausted T cells, but the precise outcomes of these

alterations in cancerous conditions remain to be investigated.

Studies describe various ICAM-expression levels by exhausted

T cells, and its impact on tumor eradication remains unclear. LFA-

1-ICAM-1 binding enables T cell-tumor cell binding prior to

contact killing by cytotoxic elimination. The importance of

proper immune synapse formation prior to target cell elimination

has been highlighted in cancer models of hematological

malignancies. Ramsay et al. (80) show that F-actin polymerization

was suppressed upon T cell chronic lymphocytic leukemia (CLL)-B

cell encounter, leading to impaired immune synapse formation, and

hindered antitumor activity. Studies show that loss of ICAM-1

expression as a possible consequence of reduced proinflammatory

cytokine production (81, 82), could lead to elevated granzyme B

release (83). Loss of ICAM-1 expression has been observed to result

in elevated levels of IFN-g and granzyme B, as well as enhanced

cytotoxicity (83). T cell activation without classical immune synapse

formation but via TCR microclusters has been reported (84, 85),

providing evidence of maintained T cell activation and effector

functions regardless expression levels of LFA-1 and ICAM-1.

2.3.2 T cell metabolic activity
To adapt to hypoxic conditions in the TME, T cells undergo a

metabolic switch upon activation. Metabolic reprogramming is

essential to meet the increasing energy demand necessary for

effector T cell functions (86). Naïve T cells exhibit lower energy

demands than effector T cells and rely on oxidative phosphorylation

(OXPHOS) derived ATP as the main source of energy (87). Effector
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T cells utilize aerobic glycolysis as their primary metabolic program,

increasing the glucose uptake and oxidative consumption (88). T

cells can also use fatty acids as an energy source, and the use of fatty

acid b-oxidation (FAO) pathway is linked to memory T cell

differentiation (89). Furthermore, FAO is an important pathway

of survival in metabolically stressed cells (89), and Tregs generally

rely upon FAO for their metabolic needs (90). The metabolic

plasticity and regulation of T cell exhaustion has been extensively

reviewed by Li et al. (91), focusing on T cell exhaustion in chronic

infections. FAO and OXPHOS are discussed to be the primary

energy sources for TPEX, while terminally exhausted T cells rely on

glycolytic metabolism, but having reduced glucose uptake and an

inability to effectively utilize OXPHOS to provide energy (91).

The high consumption of glucose by cancer cells creates glucose

derivatized, acidic extracellular conditions in the TME (92), caused

by lactate accumulation (93) known to suppress the proliferation

and effector functions of cytotoxic T cells (94). Effector T cells

exhibit decreased mitochondrial respiratory activity, and studies

show exhausted T cells exhibiting suppressed glycolysis and

mitochondrial respiration, causing poor metabolic fitness and

exhaustion (95, 96). A study by Chang et al. (88) displays the role

of aerobic glycolysis as a metabolically regulated signaling

mechanism, and activated T cells blocked from aerobic glycolysis

have a compromised ability to produce IFN-g (88), possible

explaining decreased IFN-g production of terminally exhausted T

cells in the TME. A study by Scharping et al. (97) point out that

progressive loss of mitochondrial function and mass correlates with

decreased cytokine production in solid tumor infiltrating T cells.

Expression of the glucose transporter-1 (Glut1) has been observed

to increase in PD-1hi exhausted T cells in hepatitis B virus (HBV)

chronic infection, and these cells were dependent on glucose

supplies. In contrast, non-chronic infection cytomegalovirus

(CMV)-specific T cells that could utilize OXPHOS in the absence

of glucose to optimize their energy supply (98). Similar metabolic

deficiencies in exhausted T cells have not yet been investigated in

tumor models.

The metabolism of T cells has been studied in murine

melanoma models, and a positive correlation between immune

checkpoints expression levels on CD8+ T cells and total cholesterol

content in the cells has been observed. Lung B16 tumor-infiltrating

PD-1high2B4high CD8+ T cells had significantly higher cholesterol

content than PD-1med/low2B4 med/lowCD8+ T cells. The same pattern

was observed in LN and spleen resident T cells, although these cells

had significantly lower cholesterol content than the tumor-

infiltrating T cells (99). Cholesterol is a tumor metabolic

byproduct inducing metabolic stress in T cells, and the study

demonstrated that cholesterol in the TME induces CD8+ T cell

exhaustion via activation of the endoplasmic reticulum (ER)-stress

sensor XBP1. XBP1 can directly increase PD-1, TIM-3, and LAG-3

expression, thus immunosuppression of T cells (99). Patsoukis et al.

(100) discovered the incapability of activated T cells to engage in

glycolysis upon PD-1 ligation, and their studies show that PD-1

ligation increase the FAO rate. FAO supports T cell persistence, but

not necessarily T cell function. Altogether these findings support

the theory of an altered metabolic program in exhausted T cells,

causing altered effector functions, but precise locations and
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timelines of metabolic switches in exhausted T cells during the

cancer-immunity cycle remain to be explored.
3 T cell exhaustion as a functional
adaptation to persistent antigen
stimulation

T cell exhaustion has been discussed to be an evolutionarily

conserved adaptation to chronic antigen stimulation, important for

restricting autoreactivity and immunopathology. RNA-sequencing

and ATAC-sequencing data generated from circulating T cell

subsets from healthy donors show that circulating PD1+ CD39+ T

cells had the highest enrichment of tumor exhausted T cell genes,

providing transcriptional evidence of recent proliferation and

characteristics of intermediate exhausted T cells (101). This study

provides evidence of circulating exhausted T cell populations

present also in healthy donors, suggesting that PD-1+CD39+CD8+

exhausted T cells are not restricted to cancer or chronic infections

(101). Their existence might point towards an alternative fate to

deletion for autoreactive T cells, hence enabling a broader diversity

of T cell populations, but their precise role in healthy donors

remains to be explored. Galletti et al. (102) have identified two

different subsets of human stem-like CD8+ memory T cell

progenitors in healthy donors: CCR7+PD-1−TIGIT− stem-like T

(TSTEM) cells and CCR7+ PD-1+TIGIT+ T progenitor exhausted T

(TPEX) cells. The TPEX population gave rise to a cell linage with

reduced functionality compared to TSTEM cells. Interestingly, the

TPEX cells had memory-like features, suggesting that exhaustion-

like and memory-like characteristics could coexist in healthy

individuals. This further indicates that T cell exhaustion could be

a functional adaption to persistent antigen stimulation aimed at

minimizing the risk of immunopathology, and simultaneously

maintain a memory-like population. The role of exhaustion in

limiting immunopathology is underlined in a study by McKinney

et al. (103), displaying reduced clinical autoimmunity as T cell

exhaustion gets more severe.

Expression of members of the transcription factor (TF) family

NR4A is regulated downstream of TCR signaling (104). Beltra et al.

(10) have defined a four-cell-stage developmental framework for

exhausted T cells. In studies combining motif enrichment analysis

with RNA expression, NR4A2 was predicted to be the most

enriched TF in terminally exhausted T cells. TCR stimulation

induces expression of the NR4A family (105), indicating that

terminally differentiated exhausted T cells are subjects of heavy

TCR signaling. Nr4a triple knockout (TKO) in CAR T cells have

been shown to prolong the survival of tumor-bearing mice, and

NR4A inhibition has been pointed out as a promising cancer

immunotherapy strategy (14). Expression of mRNAs encoding

effector proteins such as granzymes, TNF and IL-2Ra were

increased in Nr4a TKO TILs (14), indicating that dense antigen

environments and heavy TCR signaling eventually leads to

decreased cytotoxicity of T cells. Together these findings point

out that prolonged antigen-TCR stimulation indeed leads to a

terminally exhausted state of T cells and eventual loss of
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cytotoxicity, limiting the risk of immunopathology but also limiting

tumor cell clearance. These studies draw attention to the

importance of eliminating tumor cells within an exhaustion

restricted time frame.

Studies suggest that varying tumor types might generate distinct

exhaustion patterns in T cells. Woroniecka et al. (106) performed a
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study with mouse-implanted SMA-560 malignant glioma, CT2A

malignant glioma, E0771 breast medullary adenocarcinoma,

B16F10 melanoma, and Lewis Lung Carcinoma (LLC), comparing

exhaustion patterns according to cell line. They found distinct

functional programs of exhausted T cells depending on tumor

type, displaying variations in proinflammatory cytokine
TABLE 1 Current and potential future immunotherapeutic T cell exhaustion targets.

Symbol Target Biological context Status References

PD-1 Programmed cell death protein 1 Negative regulator of immune cell activity. FDA
approved

(109, 110)

PD-L1 Programmed cell death protein ligand 1 Negative regulator of immune cell activity. FDA
approved

(109, 110)

CTLA-4 Cytotoxic T-lymphocyte associated protein 4 Negative regulator of immune cell activity. FDA
approved

(110, 111)

LAG-3 Lymphocyte activation gene 3 Negative regulator of immune cell activity. FDA
approved

(110, 112)

TIGIT T cell immunoreceptor with immunoglobulin and
ITIM domain

Negative regulator of immune cell activity. Clinical
trials

(113, 114)

TIM-3 T cell immunoglobulin mucin 3 Negative regulator of immune cell activity. Clinical
trials

(115)

BTLA B and T lymphocyte attenuator Negative regulator of immune cell activity. Clinical
trials

(116, 117)

VISTA V-type immunoglobulin domain-containing
suppressor of T cell activation

Negative regulator of immune cell activity. Clinical
trials

(117, 118)

ICOS/CD278 Inducible T-cell co-stimulator Co-stimulatory regulator of immune cell activity. Clinical
trials

(117, 119)

GITR Glucocorticoid-induced tumor necrosis factor
receptor–related protein

Co-stimulatory regulator of immune cell activity. Clinical
trials

(120)

4-1BB/CD137/
TNFRSF/ILA

Tumor necrosis factor receptor superfamily member
9

Co-stimulatory regulator of immune cell activity. Clinical
trials

(121)

OX40/CD134 Tumor necrosis factor receptor superfamily member
4

Co-stimulatory regulator of immune cell activity. Clinical
trials

(122)

NFAT Nuclear factor of activated T cells Transcription factor. Regulates effector functions and
exhaustion of T cells.

Early
discovery

(123)

BATF Basic leucine zipper ATF- like transcription factor Transcription factor. Regulates effector functions and
exhaustion of T cells.

Early
discovery

(123)

IRF4 Interferon regulatory factor 4 Transcription factor. Regulates effector functions and
exhaustion of T cells.

Early
discovery

(123, 124)

TOX Thymocyte selection-associated high-mobility group
box

Transcription factor.
Regulates effector functions and exhaustion of T cells.

Early
discovery

(67, 125)

NR4A Nuclear receptor subfamily 4 group A Transcription factor. Regulates effector functions of T
cells.

Early
discovery

(14)

c-JUN Transcription factor Jun Transcription factor. Regulates effector functions of T
cells.

Early
discovery

(126)

PTPN2 Protein tyrosine phosphatase non-receptor type 2 Phosphatase. Regulates cell development. Early
discovery

(127)

CD39 Ectonucleoside triphosphate diphosphohydrolase-1 Adenosine receptor. Upregulated in response to various
stress stimuli.

Early
discovery

(128)

Vps4b Vacuolar protein sorting- associated protein 4B ATPase. Participates in vesicular trafficking and
autophagosome maturation.

Early
discovery

(129)

1a,25(OH)2D3 1a,25(OH)2D3 Active form of vitamin D. regulates expression of
Pdcd1, Tim3, and Tigit genes.

Early
discovery

(130)
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production and expression of IRs. Tumors causing greater

functional impairment of T cells showed higher levels of

alternative IRs such as TIGIT, CD39 and 2B4, indicating that

greater functional impairment indeed provides opportunities for

alternative immunotherapy strategies. Distinct exhaustion

programs according to tumor type explains varying response to

PD-1 pathway inhibitors, which have shown greatest results in

melanoma, NSCLC, RCC, and metastatic bladder cancer (107).

These concluding remarks point out the need to understand not

only how T cell exhaustion impacts the cancer-immunity cycle, but

the varying T cell exhaustion cycles according to specific tumor

types. Distinct exhaustion programs according to tumor type calls

attention to the dynamic features of T cell exhaustion, adapting to

specific tumor conditions.

As the cancer-immunity cycle points out, the balance between

stimulating factors and inhibitors is critical (24). Tumor cells can

exploit immune escape mechanisms such as loss of antigenicity, loss

of immunogenicity or generation of immunosuppressive

microenvironments, to avoid elimination by the immune system

(108). In a similar manner, T cell exhaustion could be regarded as

an alternative mechanism of the immune system, a tool to control

cancer. Exhausted T cells aren’t suitable tools for all types of cancer

types and conditions, hence having a contrary role, in some

circumstances acting as an asset and in some as a liability.
4 Potential immunotherapeutic
interventions for reinvigoration of
exhausted T cells

Immune checkpoint blockade (ICB) therapies such as

antibodies targeting PD-1, PD-L1, CTLA-4 and LAG-3 aim to

activate T cells by interrupting inhibitory signals (Table 1).

Today, the focus area of controlling T cell exhaustion lies within

preventing exhaustion and reactivating already exhausted T cells

(131). Combination with traditional ICBs PD-1, PD-L1 and CTLA-

4 and second-generation checkpoint targets such as LAG-3, TIM-3

and TIGIT are being investigated (131). Since the first ICB therapy

was approved in 2011, the US Food and Drug Administration

(FDA) have issued over 65 approvals for 20 types of neoplasms

(132). Studies from the past decade provide evidence of checkpoint

therapies being most efficient when administering in an early state

of exhaustion (107). Despite increased knowledge in targeting T cell

exhaustion and the large number of FDA approvals, only 20.2% of

patients receiving ICBs achieve objective response, and out of these

only 13% of patients achieve durable responses for multiple years

(132). To improve patient responses, combination therapies with

ICBs can be utilized. FDA approved therapies to be combined with

ICBs include chemotherapy, radiation, anti-angiogenic agents,

cancer vaccines and adoptive cell therapies (ACT) (133).

Some tumors have been shown particularly challenging to target

due to T cell exhaustion. Chimeric antigen receptor (CAR) T cells

have been proven to be a potent tool for targeting blood cancer, but

the dense antigen environment in solid tumor often generates

severe exhaustion of these cells, causing restricted efficacy. Studies
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have shown that combination therapies with ICBs and CAR T cells

can improve T cell expansion and tumor reactivity (134).

To further improve CAR T cell efficacy, studies have targeted the

exhaustion inducing transcription factor protein TOX (135). TOX is

upregulated and co-expressed with PD-1, TIM-3, and CD244 in non-

Hodgkin lymphoma (136), multiple myeloma (137), and in acute

myeloid leukemia patients (138). Depletion of the Tox gene in CAR T

cells proved to improve persistence and tumor reactivity in tumor

inoculated mice (139). Recent studies point out the transcription

factor MYB as an orchestrator of T cell exhaustion. MYB mediates

differentiation of a CD62L+ TPEX cell stem-like population. Upon

PD-1 ICB treatment this population is responsible for the

proliferative burst, and thus, MYB could play a central role in

therapeutic checkpoint blockade success (140). Other transcriptions

factors found to promote exhaustion are NFAT and NR4A, while

BATF attenuates exhaustion (141). The transcription factor IKZF3 is

a repressor of IL-2 (142), and Hay et al. (2022) used an in vitromodel

to show that exhausted T cells partially can be rescued by treatment

with Lenalidomide, an IKZF3 small molecule inhibitor, either as a

single treatment or in combination with ICB treatment.

As exhausted T cells display dysregulation in mitochondrial

function, strategies for improving mitochondrial biogenesis have

raised an interest. In B16OVA tumor microenvironments, PGC1a
overexpressing OT-I T cells, leading to increased mitochondrial

mass and OXPHOS, are enriched (97). These cells displayed

enhanced tumor efficacy, demonstrating a preservation of T cell

function in the TME by reprogramming these cells to favor

mitochondrial biogenesis. Metabolic stress, such as hypoxia and

glucose deprivation in the TME of solid tumors, have shown to

lower tumor immunogenicity (143). To improve responses to ICB,

signaling pathways such as the PI3K/AKT pathway, could be

targeted to restore tumor cell recognition by T cells (143). Thus,

addressing metabolic and signaling pathways hold promising

potential to improve immunotherapy responses.

The posttranscriptional mechanisms regulating exhaustion of T

cells remains poorly understood. Using Affymetrix miR arrays, the

microRNA (miR) expression in isolated LCMV DbGP33–41–specific

CD8+ T cells have been examined (144). MiR-29a was identified as an

exhaustion attenuating molecule in chronic infection and could also

play a role in decreasing exhaustion in cancer. Data suggests that

miR-29a attenuates TCR signaling pathways involved in driving

exhaustion and thus, enhanced expression of miR-29a favor a

durable T memory cell-like rather than exhausted T cell-like

differentiation in conditions of persistent antigen stimulation (144).

Hence, targeting microRNAs in combination therapies could

represent novel solutions for improved immunotherapy efficacy.

The development and maintenance of exhausted T cells can be

controlled by manipulation of molecular pathways, by utilizing

methods such as CRISPR gene editing. Using CRISPR, synthetic

DNA sequences can be inserted to generate next-generation

autologous T cell therapies (145), and there is an interest in

modifying T cell exhaustion promotors such as Tox for

augmented tumor control (131). Other proposed CRISPR targets

attracting attention by biotech and pharmaceutical companies are

PTPN2, NR4A and c-JUN (126, 127, 131). Unlike most molecules

and genes of interested currently being targeted to prevent T cell
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1151632
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Brunell et al. 10.3389/fimmu.2023.1151632
exhaustion, deletion of Ptpn2 has shown to scale up the population

of terminally exhausted T cells whilst preserving the population of

self-renewable progenitor exhausted T cells (127).

To increase and prolong patient response and survival,

bispecific antibodies (BsAbs) have been introduced to the field of

immunotherapy. BsAbs can bind two distinct targets on the same

cell at the same time, enabling additive effects and novel therapeutic

approaches (146). Dual BsAbs targets include immune checkpoints,

signaling pathways, tumor associated antigens and cytokines (147).

OSE Immunotherapeutics have developed a bispecific antibody

checkpoint inhibitor BiCKI® platform, with the BiCKI®-IL-7

program targeting PD-1 and simultaneously releasing IL-7,

promoting TCF-1+ stem-like T cell expansion (148). In

September 2022, Roche announced taking over Good

Therapeutics’ PD1-regulated IL-2 receptor agonist program (149).

Similarly to IL-7, IL-2 have potential immunostimulating and

antineoplastic functions, but unregulated IL-2 release can cause

toxicity. Linkage of anti-PD-1 to an alternative form of IL-2 (IL-2v)

enables precise IL-2 stimulation, thus minimizing side effects and

toxicity (150).
5 Discussion and conclusions

Throughout the cancer-immunity cycle, T cells are subjects of a

variety of factors such as prolonged antigen stimulation and altered

conditions of the TME, unavoidably shifting the T cells towards an

exhausted state (7). Studies discuss the possibility of separate

differentiation programs of T cells, one initiating the “classical”

effector/memory T cells pathway and the other one initiating an

exhaustion program of T cells (102). Insights display the close

integration of the cancer-immunity cycle and T cell exhaustion,

pointing out the need of a deeper understanding of the T cell

exhaustion cycle to enable discovery of novel immunotherapies.

T cell exhaustion has potential benefits, but also consequences. A

stem-like TCF-1+ exhausted T cell state maintain a memory-like

population with proliferation capacity (10, 11). Stem-like TCF-1+ T

cells giving rise to terminally exhausted cytotoxic T cells could serve

as a type of safety mechanism. Excessive antigen density in the TME

leading to short-term cytotoxic states restrain cytotoxicity to tumors

sites and thus limits immunopathology in healthy tissues. Since

terminally exhausted T cells have reduced proliferation capacity

(10, 11), the damage caused by this population is limited. On the

other hand, high cytotoxicity is desired for tumor elimination, and

thus short-term cytotoxicity and lacking proliferation capacity
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simultaneously serves as a liability. Restricted rounds of

proliferation by stem-like exhausted T cells and restricted periods

of cytotoxicity creates a time frame of tumor cell clearance. If events

in the exhaustion cycle exceed these time frames, the consequences of

T cell exhaustion could result in tumor immune escape, rather than

tumor elimination. To fully utilize the potential assets of exhausted T

cells in terms of immunotherapies, the master mechanisms and

regulators behind T cell exhaustion needs to be further elucidated.

Nevertheless, it might be useful considering T cell exhaustion as a

functional adaptation rather than simply a dysfunction.
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