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Changes in subcutaneous white
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intolerance in persons with HIV
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Introduction: Subcutaneous adipose tissue (SAT) is a critical regulator of

systemic metabolic homeostasis. Persons with HIV (PWH) have an increased

risk of metabolic diseases and significant alterations in the SAT immune

environment compared with the general population.

Methods: We generated a comprehensive single-cell multi-omic SAT atlas to

characterize cellular compositional and transcriptional changes in 59 PWH

across a spectrum of metabolic health.

Results: Glucose intolerance was associated with increased lipid-associated

macrophages, CD4+ and CD8+ T effector memory cells, and decreased

perivascular macrophages. We observed a coordinated intercellular regulatory

program which enriched for genes related to inflammation and lipid-processing

across multiple cell types as glucose intolerance increased. Increased CD4+

effector memory tissue-resident cells most strongly associated with altered

expression of adipocyte genes critical for lipid metabolism and cellular

regulation. Intercellular communication analysis demonstrated enhanced pro-

inflammatory and pro-fibrotic signaling between immune cells and stromal cells

in PWHwith glucose intolerance compared with non-diabetic PWH. Lastly, while

cell type-specific gene expression among PWHwith diabetes was globally similar
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to HIV-negative individuals with diabetes, we observed substantially divergent

intercellular communication pathways.

Discussion: These findings suggest a central role of tissue-resident immune cells in

regulating SAT inflammation among PWH with metabolic disease, and underscore

unique mechanisms that may converge to promote metabolic disease.
KEYWORDS

human immunodeficiency virus, type 2 diabetes mellitus, white adipose tissue,
subcutaneous adipose tissue, single-cell RNA sequencing, immune cells,
glucose intolerance
1 Introduction

The rising global rates of obesity and type 2 diabetes mellitus

(T2DM) represent a significant public health challenge (1, 2).

Persons with HIV (PWH) suffer disproportionately from

cardiovascular disease, chronic kidney disease, and T2DM

compared with the general population (3–6). The higher risk of

metabolic disease in PWH compared with the general population is

likely multifactorial and stems from increasing age and survival

with improved antiretroviral medications, a greater prevalence of

known risk factors for metabolic disease including elevated body

mass index (BMI), and HIV-specific risk factors including

persistent inflammation (3, 7–9). Adipose tissue is an important

regulator of glucose and lipid metabolism (10), and alterations in its

cellular composition and function have been implicated in the

development of metabolic disease (11–15). While alterations in

adipose tissue are common in PWH (7), the underlying changes in

subcutaneous adipose tissue (SAT) that contribute to metabolic

disease in this population are poorly understood.

Despite the success of modern antiretroviral therapy (ART),

PWH with sustained suppression of plasma viremia still have

persistent innate and adaptive immune activation (16), as well as

lasting alterations in the adipose tissue immune cell compartment

(17). In non-obese PWH, CD8+ T cells accumulate in SAT in a

process strikingly similar to that observed in obesity in the general

population (18, 19). Additionally, SAT CD4+ T cells in PWH shift

towards an increased proportion of inflammatory and cytotoxic

cells compared to HIV-negative individuals (20). Many immune

cell populations implicated in the perpetuation of chronic SAT

inflammation in studies of HIV-negative individuals or animals are

also altered in circulating immune cells in PWH (21, 22). Recent

studies in lean and obese persons in the general population have

begun to unravel the complex cellular composition of adipose tissue

(14, 15, 23, 24). However, a comprehensive assessment of the

identity, polarization, and molecular programs of adipose tissue

immune cells in PWH, a group at particularly high risk of metabolic

disease, has not been reported.

We recruited a large cohort of PWH with a spectrum of

metabolic health to elucidate the SAT cellular compositional and
02
transcriptional regulatory framework that defines metabolic disease

in this population. We used single-cell proteogenomics and

generated a detailed molecular atlas of SAT from 59 PWH to

characterize disease-specific changes in cellular populations and

expression programs. In PWH with glucose intolerance, we found

higher proportion of lipid-associated macrophage (LAM) and

LAM-like macrophage populations, reduction of perivascular

macrophages (PVMs), and an increase in CD4+ and CD8+ T

effector memory (TEM) populations that was independent of

obesity, age, and sex. We further uncovered a multicellular

transcriptional regulatory program with glucose intolerance

characterized by a shift towards macrophage lipid processing

phenotype, increasing cytotoxicity and IFN-g phenotype in

T cells, and genes associated with fibrosis. Intercellular

communication analysis predicted increased signaling of several

inflammatory and pro-fibrotic pathways among PWH with glucose

intolerance compared with non-diabetic PWH. Finally, we show

that while the SAT cellular composition is broadly similar between

diabetic PWH and diabetic HIV-negative individuals, there are

important differences in cell-signaling that influence macrophage

polarization, extracellular matrix deposition, and adipogenesis, and

may affect disease severity. These transcriptomic and other data are

publicly available on a user-friendly interactive website (http://

vimrg.app.vumc.org/) for the research community.
2 Materials and methods

2.1 Study participants

Participants were members of the HIV, Adipose Tissue

Immunology, and Metabolism (HATIM) study developed to evaluate

adipose tissue characteristics in the context of HIV infection and

metabolic disease (ClinicalTrials.gov registration NCT04451980).

PWH were recruited from the Vanderbilt University Medical Center

Comprehensive Care Clinic between August 2017 and June 2018, were

on antiretroviral therapy (ART) for ≥ 18 months, had virologic

suppression (serum HIV-1 RNA quantification < 50 copies/mL) for

≥ 12 months, had a CD4+ T cell count ≥ 350 cells/mm3 and had no
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known inflammatory or rheumatologic conditions. Participants were

classified as non-diabetic (hemoglobin A1c [HbA1c] < 5.7% and/or

fasting blood glucose [FBG] < 100 mg/dL), prediabetic (HbA1c 5.7-

6.4% and/or FBG 100-125 mg/dL), or diabetic (HbA1c > 6.4% and/or

FBG ≥ 126 mg/dL and/or on anti-diabetic medication) in accordance

with the American Diabetes Association criteria (25). HIV-negative

participants with diabetes were simultaneously recruited from the

Vanderbilt ResearchMatch cohort, and these individuals were group

matched by age and BMI with diabetic PWH. All participants

underwent a single clinical research visit after a minimum 8-hour

fast, including HbA1c and FBG measurement, peripheral blood

mononuclear cell (PBMC) collection, fasting plasma collection, and

anthropomorphic measurements. All individuals also underwent

subcutaneous adipose tissue liposuction as described below. The

Vanderbilt Institutional Review Board approved the research (IRB #

161254), and all participants provided written consent.
2.2 Adipose tissue collection
and processing

Subcutaneous adipose tissue biopsies were collected

approximately 3 centimeters to the right of the umbilicus after

anesthetizing the skin with lidocaine/epinephrine and infiltrating 40

mL of sterile saline and lidocaine into the SAT. We collected

approximately 5 grams of adipose tissue using a 2.1 mm blunt,

side-ported liposuction catheter (Tulip CellFriendly™ GEMS

system Miller Harvester, Tulip Medical Products) designed for

extraction of viable adipocytes and stromal vascular fraction

(SVF) during cosmetic adipose tissue transfer procedures (26).

Using this method, adipose tissue is recovered in tissue fragments

generally < 3 mm in diameter, limiting the need for mechanical

dissociation. The tissue was placed in 40-50 mm3 of cold saline and

mixed. Visible blood clots were removed, and the sample was

transferred to a 70 µm filter for repeat saline washes with

constant stirring. The adipose tissue was then placed in a

gentleMACS™ Dissociator (Miltenyi Biotec) followed by

incubation with collagenase D (2 mg/mL). The SVF was

separated using a Ficoll-Paque Plus density gradient. Samples

were cryopreserved in fetal bovine serum with 10% DMSO in

liquid nitrogen.
2.3 Library preparation and sequencing

A reagents list can be found in the Supplementary Data. An

antibody Total Seq C master mix containing 45 common markers

for lineage, memory, and activation was created by adding 0.5 µL of

each antibody. Twelve samples, with representative samples from

the four metabolic groups (non-diabetic PWH, prediabetic and

diabetic PWH, and HIV-negative diabetics), were processed at a

single time. The samples were quickly thawed and transferred to

labeled 15 mL tubes and diluted to 10 ml with phosphate-buffered

saline (PBS) before spinning down at 300 G for 10 minutes. The

supernatant was aspirated, and the pellet was resuspended in cell

staining buffer and transferred to labeled flow tubes. The sample
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was again spun at 300 G for 10 minutes, and the supernatant was

aspirated. Cells were resuspended in 100 µL of staining buffer.

Human TruStain FcX Receptor Blocking Solution (5 µL) was added

to the tube and incubated at 4 Celsius for 10 minutes. The antibody

master mix was spun at 15000 rpm for 5 minutes to remove any

aggregates that had formed, and 22.5 µL of the antibody mix was

added to each tube of cells and mixed by flicking the tube. A total of

one µL of Total Seq C hashtag antibody was added to the samples,

and the samples were incubated at 4 Celsius for 30 minutes. After

incubation, the cells were washed three times with Cell Staining

Buffer and spun at 300 G for 10 minutes. The cells were

resuspended in around 100 µL of PBS with 0.04% bovine serum

albumin (BSA). The cells were counted using the Countess II

Automated Cell Counter (Thermo Fisher) to determine the

suspension volume to transfer to obtain 5,000 cells. Four samples

(each with a unique hashtag antibody) were pooled by metabolic

status (except non-diabetic and prediabetic samples from PWH

which were pooled) together into one tube. The multiplexed single

cells were loaded onto a Chromium Single Cell 5’ assay (10x

Genomics). Libraries were sequenced on the NovaSeq 6000 S2

platform (Illumina). Illumina bcl files were demultiplexed using

bcl2fastq. Raw reads were then aligned to the human genome

(hg38) using STAR v. 2.7.2a, and cells were called using

Cellranger count (v6.0.0) with default settings. Souporcell, which

leverages single nucleotide variants to assign individual cells to

genotypes and generate a VCF file, was used to genetically

demultiplex the samples (27). SoupX was used with default

parameters to remove ambient RNA contamination from the

count matrices (28).
2.4 Quality control

The R Statistical Programming package Seurat V4 was used to

further process the scRNA-seq data (29). First, cells with > 25%

mitochondrial gene expression, < 800 transcript reads, and < 200

genes were filtered out. The threshold of 800 transcript reads per

cell was selected because the performance of Souporcell begins to

decrease with fewer transcripts (27). Hashtag oligonucleotides

(HTOs) were normalized using centered log-ratio (CLR)

transformation, and cells were assigned HTO implemented in the

function HTODemux with default parameters (30, 31). We then

added the Souporcell assignment to the metadata and linked the

Souporcell cluster designation with the HTO classification, forming

a link with the metadata. All cells that were unassigned by

Souporcell were removed. To identify heterotypic doublets, we

used standard processing of each lane, including normalization

and variance stabilization using regularized negative binomial

regression (SCTransform), dimensional reduction, and clustering

(32). DoubletFinder (33), was used to identify potential heterotypic

doublets in the data using Souporcell designation as the ground

truth. Cells that were identified as doublets by Souporcell or

DoubletFinder, clusters where > 60% of cells were identified as

doublets, and clusters that expressed transcripts from multiple

major lineages (myeloid, lymphoid, stromal, vascular), were

removed after integrating the datasets.
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2.5 Cell clustering and annotation

Processed individual lanes were merged using the merge function.

The gene counts were normalized for each cell by dividing by the total

gene counts and multiplying by a factor of 10,000 before applying log

transformation as implemented by the NormalizeData function.

Protein expression counts were normalized using the CLR method.

Variable genes were identified using the FindVariableFeatures function

(nFeatures = 3000), and the data were scaled and centered using the

ScaleData function. Principal component analysis (PCA) was

performed on the scaled data. The number of principal components

(PCs) used for downstream analysis was selected based on elbow plots

and heat maps of PC dimensions as implemented in the DimHeatmap

function. To reduce the batch effect associated with running multiple

10X lanes, we used the Harmony algorithm on the uncorrected PCs

implemented as a Seurat wrapper to integrate across lanes (34). To

evaluate the effectiveness of integration, we used the SCIB pipeline (35).

The overall metric ranking was calculated by the summation of the

scaled overall bio-conservation score * 0.6 + batch score * 0.4. We

performed clustering on the Harmony-corrected PCs using

FindNeighbors and FindClusters functions. Marker genes for each

cluster were determined using the Wilcoxon Rank Sum test

implemented in FindAllMarkers. The integrated dataset was then

subclustered as described below. After processing each subcluster,

they were merged again, and the process described above (except

normalization) was repeated to obtain a cell atlas. We performed

manual annotation of cell populations based on canonical markers and

markers previously identified in scRNA-seq (Supplementary Table 4)

(10, 23, 24, 36–49). To compare the annotations of the current dataset

with cell annotations from others, we obtained a list of cluster-specific

gene markers from prior scRNA-seq datasets for macrophages and

stromal cells. We then used these as input into the AddModuleScore

function implemented in Seurat to calculate the average expression

level for the previously identified cluster-specific markers, which was

then scaled. Each cell was labeled with the annotation with the highest

module score and overlaid on the UMAP. We also performed SAT

cytometric analysis on a subset of individuals in the cohort gating on

CD4+ CD69+ T cells. The methodology was previously described in

detail (19).
2.6 Subclustering analysis

We subclustered on major cell types, including stromal (COL1A2,

CCDC80), vascular (CLDN5, ACTA2), myeloid (LYZ, CD68, CD14,

CD1C, LILRA4, CLEC9A), and lymphoid (CD3, NKG7). We followed

the procedure described previously for each subcluster but did not

repeat RNA and protein normalization. Clusters defined by

mitochondrial gene expression and/or transcriptional doublets were

removed from the analysis. We performed differential gene expression

using the FindAllMarkers function implemented in Seurat to identify

gene markers for each cell population and included genes that were

expressed in 10% or more cells and had a log2 fold change of 0.25

or greater.
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2.7 Composition analysis

Individuals contributing < 30 cells in the subset investigated

were excluded. We compared cell composition between disease

states for each subcluster by evaluating each cell type as a

proportion of total cells in the subcluster. We assessed whether

cell type changes were significant between non-diabetic PWH and

prediabetic PWH, and between non-diabetic PWH and diabetic

PWH using the Wilcoxon Rank Sums test. P values were adjusted

for multiple comparisons using Benjamini-Hochberg procedure.

We additionally performed differential abundance testing using k-

nearest neighbors graphs using MiloR (50). Briefly, the Seurat object

was converted to a SingleCellExperiment object and a kNN graph

was built using the buildGraph function on the harmony-corrected

PCA with k set to 35 and d set to 25. Neighborhoods were defined

using the makeNhoods function with random sampling of 10% of

cells. Finally, differential abundance testing was performed

comparing non-diabetic PWH vs glucose intolerant PWH

(prediabetic and diabetic).

To evaluate the independent relationship of cell proportions

with BMI, age, and measures of glucose intolerance (HbA1c, FBG),

we used partial Spearman’s correlation implemented in PResiduals

(51). We used the same method to evaluate the relationship of

immune cell proportions with changes in stromal composition. To

evaluate the independent relationship of female sex with cell

proportions, we used an ordinal linear regression with cell

proportion as the outcome and sex (male reference) as the

independent variable adjusted for age, BMI, and diabetes status.

The b coefficient was converted to an odds ratio (female: male)

going from the 25th to 75th percentile (proportion).
2.8 Transcriptional analysis

To evaluate differentially expressed genes between non-diabetic

and prediabetic PWH, we aggregated gene counts (psuedobulk) for

each individual using Scuttle (52). We then used a negative

binomial generalized linear model implemented in DESeq2 to

evaluate differentially expressed genes adjusting for age, sex, and

BMI. We used clusterProfiler to perform gene set enrichment

analysis using the Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Gene Ontology (GO) biological processes to identify

pathways that were enriched in prediabetic compared with non-

diabetic PWH (53).
2.9 Pseudotime analysis

The R package Slingshot (54), was used to assess the pseudo-

time trajectory of PVMs and LAMs. Monocyte-macrophage 2 was

specified as the root cluster and end cluster as either PVM or LAM

with the dimensionality reduction produced by UMAP. To identify

temporally dynamic genes, we fit a generalized additive model

(GAM) using a negative binomial additive model implemented in
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the R package tradeSeq (55). We used the associationTest function

with l2fc set to two to identify genes significantly changing along the

pseudo-time, defined as FDR-adjusted p-value < 0.05. The genes

were then ordered according to pseudo-time and plotted by scaled

expression using ComplexHeatmap (56).
2.10 Multicellular gene
expression programs

To evaluate for a coordinated cellular program that

characterizes glucose intolerance, we used DIALOGUE (57),

evaluating the cell types we previously identified as associated

with glucose intolerance including CD4+ and CD8+ T cells,

macrophage subsets, preadipocytes, and fibroblast cells.

DIALOGUE was run with default settings. The multi-level models

were fit by glucose intolerance status and adjusted for technical

variability, sex, age, and BMI. Average scaled expression of top

genes from multicellular program 1 were sorted by expression and

samples were plotted with hierarchical clustering (rows) and labeled

with clinical variables including BMI, age, sex, and measures of

glucose intolerance using ComplexHeatmap.
2.11 Intercellular communication analysis

For intercellular ligand-ligand receptor analysis, we used

CellChat as implemented in R (58). We compared non-diabetic

PWH and glucose intolerant PWH by running CellChat separately

on each dataset. Communication probabilities were calculated with

population.size set to true and only included genes with expression

in 10% or greater of cells in the dataset. Predicted communications

were retained in only those with a minimum of ten cells. We then

compared the signaling patterns of non-diabetic and glucose

intolerant PWH according to the CellChat tutorial. We repeated

this analysis to compare the signaling patterns between diabetic

HIV-negative persons and diabetic PWH.
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2.12 Whole adipose tissue messenger
RNA expression

The detailed methods for these samples have been published

elsewhere (59). Briefly, messenger RNA (mRNA) was extracted

from cryopreserved SAT with Qiagen Rneasy Lipid Tissue Kit after

mechanical lysis. The NanoString nCounter Plex platform

(NanoString, Seattle, WA) was used to quantify mRNA

transcripts for 77 genes related to adipocyte function. The mRNA

count was normalized using eight synthetic spike-ins for negative

control and six synthetic spike-ins for positive controls. The

coefficient of variation (CV) was calculated for control genes.

First, the mean of the negative controls was used as the

background level and subtracted from each gene count. The

normalization factor for the mRNA content was calculated using

the geometric mean of a set of pre-specified housekeeping genes.

The count data were then divided by the normalization factor to

generate counts normalized to the geometric mean of housekeeping

genes. The normalized gene count data was then log2-transformed,

and a linear regression model was used to assess the relationship

between the cell-type proportion with mRNA expression. The cell

proportion was the independent variable, and the log2-transformed

mRNA count was the dependent variable, adjusted for age, sex,

BMI, metabolic status, and batch. Benjamini-Hochberg was used to

correct for multiple comparisons.
3 Results

3.1 Cellular composition reflects the
complex function of subcutaneous
adipose tissue

We enrolled individuals across a spectrum of metabolic health to

investigate the role of adipose tissue immune cells in the development

of metabolic disease among PWH registered at ClinicalTrials.gov

(NCT04451980) (Table 1). To comprehensively determine the
TABLE 1 Cohort characteristics.

HIV+ non-diabetic
(n = 20)

HIV+ prediabetic
(n = 19)

HIV+ diabetic
(n = 20)

P value

Age, years 46 (40, 52) 42 (38, 54) 55 (48, 62) 0.05

Race, Black (%) 7 (35) 8 (42) 23 (39) 0.99

Sex, female 7 (35) 4 (21) 5 (25) 0.60

Body mass index (kg/m2) 31.0 (28.6, 34.7) 29.4 (28.4, 34.2) 33.2 (30.2, 37.8) 0.08

Fasting blood glucose (mg/dl) 88 (82, 92) 111 (102, 122) 184 (120, 242) < 0.001

Hemoglobin A1c (%) 5.3 (5.1, 5.4) 5.5 (5.1, 5.9) 7.8 (6.4, 9.5) < 0.001

Metformin use (%) 0 (0) 0 (0) 12 (60) < 0.001

CD4 count at enrollment 784 (660, 941) 684 (544, 1000) 893 (724, 1102) 0.53

Thymidine analogue exposure (%) 5 (26) 2 (11) 4 (22) 0.45

Integrase-based regimen (%) 13 (65) 11 (58) 11 (55) 0.80
fron
Continuous variables are shown as median value with interquartile range. Categorical variables are shown as number and percent.
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cellular composition of SAT in the context of glucose intolerance and

HIV infection, we collected abdominal SAT from non-diabetic (n =

20), prediabetic (n = 19), and diabetic PWH (n = 20). We used the

droplet-based 10X Genomics platform with cellular indexing of

transcriptomes and epitopes by sequencing (CITE-seq) (30), to

analyze surface phenotypes and transcriptomes (Figure 1A;

Supplementary Figure 1A, methods). After quality control filtering

and harmony batch correction (34), (Supplementary Figures 1B–E;

Supplementary Tables 1–3), we obtained a final dataset with 162,552

cells from 59 participants (Figures 1B, C). Broadly, cells clustered into

stromal, lymphoid, vascular, and myeloid clusters (Figure 1D). Cells

were annotated using genes previously identified in single-cell datasets

(Supplementary Figure 1F; Supplementary Tables 4, 5) (15, 40, 42, 44,
Frontiers in Immunology 06
47). Importantly, we identified several immune cell types that have

been associated with diabetes and obesity in prior studies, including

lipid-associated macrophages (LAMs) (40, 60), natural killer (NK) cells

(61), gamma delta (gd) T cells (62), and innate lymphoid cells (ILCs)

(15, 63). Prediabetic participants had a greater proportion of vascular

cells (padj = 0.03) and reduced proportion of lymphoid cells (padj =

0.03), as well as a trend towards a reduced proportion of myeloid cells

(padj = 0.07) compared with non-diabetic participants (Figure 1E).

We next subset on major cell populations for finer cell

annotations. Adipose tissue macrophages and conventional

dendritic cells (cDC) interact with adipocytes and can modulate

adipogenesis, insulin sensitivity, and tissue remodeling in the

setting of obesity (40, 64–67), though there are few similar data in
B C

D E

A

FIGURE 1

Single-cell RNA sequencing reveals complex cellular composition of subcutaneous white adipose tissue. (A) Schematic overview of study design.
Twenty HIV+ non-diabetic, 19 HIV+ prediabetic, and 20 HIV+ diabetic participants underwent abdominal subcutaneous adipose tissue harvesting
with liposuction. Tissue was processed with collagenase and dissociated. Single-cell suspensions from each participant were hashed and labeled
with CITE-seq antibodies before multiplexing in groups of four. 10x libraries were generated using the Chromium platform and sequenced on the
Illumina NovaSeq 6000. The bioinformatic pipeline included demultiplexing, quality control, dimensional reduction and clustering, and
transcriptional analysis. (B) Uniform Manifold Approximation and Projection (UMAP) of 162,552 cells from 59 individuals after removal of doublets
and quality control, with manual annotation of cell clusters based on canonical gene markers. (C) UMAP after harmony integration grouped by
disease status showing successful integration; HIV+ non-diabetic (green), HIV+ prediabetic (blue), and HIV+ diabetic (yellow). (D) Gene expression
projected onto the UMAP identifying major cell types including stromal (COL1A2, CCDC80), vascular (CLDN5, ACTA2), myeloid (CD68, CD1C), and T
cell and natural killer cells (CD3E, NKG7). (E) Boxplot showing the proportion of major cell categories (stromal, vascular, lymphoid, and myeloid) as a
percentage of total cells split by disease status (n = 59) (HIV+ non-diabetic, green; HIV+ prediabetic, blue; HIV+ diabetic, yellow). The horizontal
black line represents the median, the box shows the lower and upper quartile limits and the whiskers are 1.5x the interquartile range. * p < 0.05,
** p < 0.01; ns, not significant.
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PWH (68, 69). We identified 14 distinct cell populations from

39,990 cells in the myeloid compartment (Figure 2A) using

canonical gene markers (Figure 2B; Supplementary Table 6).

Surface-marker phenotyping by CITE-seq supported our

classification of LAMs (CD11C+), perivascular macrophages

(PVMs) or M2-like macrophages (CD11C-), non-classical

monocytes (nMo) (CD16+), classical monocytes (cMo) (CD14+),

and DCs (CD1C+) (Supplementary Figure 2A). To better

characterize the macrophage compartment (Supplementary

Figure 2B), we performed additional CITE-seq, including several

macrophage surface markers, and integrated this with our

macrophage dataset. We demonstrate that PVMs expressed

LYVE1 and are CD206+CD163+CD9-, markers associated with

the M2 phenotype, while LAMs express SPP1 and TREM2 and

are CD9+ but express significantly lower levels of CD206 and

CD163 (Supplementary Figure 2C). A subset of macrophages was

labeled as intermediate macrophage (IM) and expressed APOE,

APOC1, and GPNMB but had lower expression of SPP1 and were

analogous to a population previously described in mice

(Supplementary Figure 2B; Supplementary Table 7) (40). IM

macrophages expressed intermediate levels of CD9 and CD163,

and were CD206 negative though gene expression of MRC1 was

detectable at lower levels than in PVM (Supplementary Figure 2C).

Over-representation analysis demonstrates distinct pathways

highlighting functional differences between macrophage subsets

(Supplementary Figure 2D). We additionally compared our

macrophage clusters with previously reported populations from

scRNA-seq data (Supplementary Figures 2E–H) which show

considerable overlap in PVMs and LAMs across all datasets (14,

15, 23, 70). Several precursor populations that we call Mo-Mac 1

and Mo-Mac 2 are grouped within the main cluster identities in

other smaller datasets.

Lymphoid cells also have a prominent role in shaping the immune

environment of SAT and modulating local inflammation and insulin

resistance (13, 71–74). HIV infection induces broad changes to

circulating lymphoid cells associated with the development of insulin

resistance including memory, senescent, and exhausted phenotypes

(19, 21, 22, 75). From 28,061 lymphoid cells, we identified 16 distinct

cell states in adipose tissue including CD4+ & CD8+ naïve (SELL, LEF1,

CCR7), central memory (TCM) (LTB, LDHB, GPR183), effector

memory (TEM) (ALOX5AP, COTL1, CCL5), cytotoxic (NKG7,

GNLY, PRF1), and CD4+ regulatory (FOXP3, CTLA4) cells.

Additionally, we identified gd T cells (TRDV1, KLRC2), mucosal

associated invariant T (MAIT) cells (CCR6, IL7R, KLRG1), and ILCs

(XCL1, KIT, IL7R). Several NK cell subsets were identifiable by cell-

surface expression of CD16 and CD56 and included mature CD16+

(FCER1G, NKG7), terminally differentiated mature CD16+CD57+

(FCGR3A, KLRD1), and CD56+CD16- (XCL1, XCL2, SELL)

(Figures 2C, D; Supplementary Table 6). The RNA transcriptome

profiles were analyzed in parallel with CITE-seq surface marker

expression of CD4, CD8, CD45RA, CD27, CD57, and CD16

(Supplementary Figure 3A). We also separately assessed only CD4+

and CD8+ T cells to differentiate more finely between naïve, central

memory, effector memory, and cytotoxic phenotypes (Supplementary

Figures 3B–E; Supplementary Table 7). Cells classified as CD4+ TEM
expressed higher levels of CD69, a marker of tissue residency
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(Supplementary Figure 3C) (76). We validated this finding by

performing flow cytometry using SAT single cell suspensions from

21 participants in the same cohort. We observed that the frequency of

CD4+ CD69+ T cells identified by flow cytometry was closely correlated

with the proportion of CD4+ TEM defined by scRNA-seq (r = 0.71, p <

0.001) (Supplementary Figure 3F). These data suggest that expression

of CD69 is a major indicator of gene expression pattern in SAT T cells.

We next evaluated stromal cell populations, as recent studies have

revealed considerable heterogeneity (14, 23, 24, 77–80) and interactions

between stromal and immune cells can modulate adipocyte function

and have an important role in the development of metabolic disease

(67, 81). We identified 11 distinct cells states from 50,492 stromal cells

(Figures 2E, F; Supplementary Table 6). An interstitial fibroblast

population (PCOLCE+ fibroblast) that has been shown to give rise to

preadipocytes expressing SFRP2, DPP4, and PCOLCE2 is analogous to

PCOLCE+ fibroblasts in the dermis (43), and homologous to a DPP4+

population in mice (42). A second fibroblast population has high

expression of MYOC and IGFBP7, which is consistent with anti-

adipogenic CD142+ cells that have been previously described (77). A

separate population of cells expressing TIMP1 and POSTN is

transcriptionally consistent with myofibroblasts. Adipose progenitor

cells (PCs) were characterized by expression ofDCN, CLU, LUM, GSN,

and PI16. The preadipocyte compartment was largely differentiated by

expression immediate early genes (MYC, FOS, JUN) and markers

associated with adipogenesis and regulation of inflammation (ZFP36,

EGR1, KLF4, CEBPD) (Early preadipocyte), and markers associated

with extracellular matrix (ECM) (ECM-Producing early

preadipocytes). Preadipocytes progressively acquired higher

expression of FABP4, LPL, and CIDEC, which are markers of lipid

acquisition. We compared our stromal cell dataset with annotations

from other scRNA-seq datasets, which largely shows consistency in the

annotation of progenitor/fibro-inflammatory cells, CD142 (anti-

adipogenic), and preadipocytes (Supplementary Figure 3G) (14, 24,

42, 77, 82). Finally, we found different vascular stromal and endothelial

cells present in adipose tissue (Figures 2G, H). In summary, we show a

diversity of cell types present in SAT in persons with HIV that reflect

the complex physiologic functions of adipose tissue.
3.2 Categorical and continuous measures
of glucose intolerance are associated with
macrophage and T cell polarization

Cellular compositional changes of SAT with progressive glucose

intolerance likely reflect functional changes that either promote or

are derived from the disease process. Several studies evaluating

obesity have shown significant changes to the myeloid

compartment with an increasing proportion of LAMs and

changes to T cell polarization. Less is known about compositional

changes to the stromal compartment, though it is known that

adipose tissue fibrosis occurs in the setting of obesity (83).

Within the macrophage compartment, IM and LAM proportions

were higher in prediabetic (padj = 0.02 and padj = 0.01) and diabetic

(padj = 0.01 and padj = 0.01) PWH compared with non-diabetic PWH.

In contrast, PVM proportion was lower in prediabetic (padj = 0.01)

and diabetic PWH (padj = 0.01) compared with non-diabetic PWH
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FIGURE 2

Analysis of subsets shows delineation of cell types that are important for adipose tissue function. (A) Uniform Manifold Approximation and Projection
(UMAP) of myeloid cells (n = 39,990 cells) from 59 individuals after subsetting and reclustering showing 14 distinct cell types/states. (B) Dot plot
showing selected myeloid gene markers on the x-axis and cell type on the y-axis. The dot size reflects the percentage of cells expressing the gene
while the color reflects the scaled average expression. (C) UMAP of T cells, natural killer cells, and innate lymphoid cells (n = 28,061 cells) from 59
individuals after subsetting and reclustering showing 16 distinct cell types/states. (D) Dot plot showing selected lymphoid gene markers on the x-axis
and cell type on the y-axis. The dot size reflects the percentage of cells expressing the gene while the color reflects the scaled average expression.
(E) UMAP of stromal cells (n = 50,492 cells) from 59 individuals after subsetting and reclustering. (F) Dot plot showing selected stromal gene markers
on the x-axis and cell type on the y-axis. The dot size reflects the percentage of cells expressing the gene while the color reflects the scaled average
expression. (G) UMAP of vascular cells (n = 41,958 cells) from 59 individuals after subsetting and reclustering. (H) Dot plot showing selected vascular
gene markers on the x-axis and cell type on the y-axis. The dot size reflects the percentage of cells expressing the gene while the color reflects the
scaled average expression. cMo, classical monocyte; cDC1, conventional dendritic cell type 1; cDC2B, conventional dendritic cell type 2B; DC,
dendritic cell; EC, endothelial cell; ECM, extracellular matrix; FIB, fibroblast; ILC, innate lymphoid cell; IM, intermediate macrophage; ISG+,
interferon-stimulated gene +; LAM, lipid-associated macrophage; Mac, macrophage; mNK, mature natural killer; Mo, monocyte; MT, metallothionein
+; myoFIB, myofibroblast; NK, natural killer; nMo, non-classical monocyte; pDC, plasmacytoid dendritic cell; PreAd, preadipocyte; PVM, perivascular
macrophage; TCM, T central memory; TEM, T effector memory; VSMC, vascular smooth muscle.
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(Figure 3A). Prediabetic and diabetic PWH had lower proportion of

classical monocyte (cMo) (padj = 0.02 & padj = 0.10, respectively) and

other Mo (padj = 0.02 & padj = 0.02, respectively). Compared with

non-diabetic PWH, cDC1 proportion was increased in diabetic PWH

(padj = 0.03). We also performed differential abundance testing using

k-nearest neighbors graphs using MiloR (50), which yielded similar

results (Supplementary Figures 4A).
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A unique strength of this large single-cell dataset is that

concurrently obtained extensive metabolic assessment on study

participants provides the opportunity to assess the independent

contributions of important biological factors to cellular composition.

We examined whether the cell types associated with glucose intolerance

in group comparisons were associated with glucose intolerance

(hemoglobin A1c [hba1c], fasting blood glucose [FBG]) as a
B C
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FIGURE 3

Lipid-associated, intermediate macrophages, and CD4+ and CD8+ T effector memory proportions are associated with glucose intolerance. (A)
Boxplot showing the proportion of macrophage types split by disease state (HIV+ non-diabetic, green; HIV+ prediabetic, blue; HIV+ diabetic, yellow)
(n = 54). The horizontal black line represents the median, the box shows the lower and upper quartile limits and the whiskers are 1.5x the
interquartile range. * p < 0.05, ** p < 0.01; ns, not significant. (B) Partial spearman’s correlations between macrophage cell proportions (x-axis) and
fasting blood glucose (FBG) or hemoglobin A1c (HbA1c) (y-axis). The area of the circle represents the adjusted p value (larger area = more significant
adjusted p-value). Spearman’s r is colored red (positive) or blue (negative). (C) Partial spearman’s correlations between myeloid cell proportions (x-
axis) and FBG or HbA1c (y-axis). (D) Boxplot showing the proportion of CD8+ T cell subsets as a proportion of total CD8+ T cells split by disease
state (n = 47). (E) Partial spearman’s correlations between CD8+ T cell proportions (x-axis) and FBG or HbA1c (y-axis). (F) Boxplot showing the
proportion of CD4+ T cell subsets as a proportion of total CD4+ T cells split by disease state (n = 44). (G) Partial spearman’s correlations between
CD4+ T cell proportions (x-axis) and FBG or HbA1c (y-axis). cDC1, conventional dendritic cell type 1; cDC2B, conventional dendritic cell type 2B,
cMo, classical monocyte; IM, intermediate macrophage; ISG+ Mo, ISG+ monocyte; LAM, lipid-associated macrophage; Migratory DC, migratory
dendritic cell; Mo-Mac, monocyte-macrophage; nMo, non-classical monocyte; Other Mo, other monocyte; pDC, plasmacytoid dendritic cell; PVM,
perivascular macrophage; TCM, T central memory; TEM, T effector memory.
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continuous measure. We used partial Spearman’s correlation adjusted

for BMI, sex, and age, and we excluded diabetic PWH from the analysis

given the effects of medication treatment on the endpoints. FBG was

associated with IM proportion (r = 0.45, padj = 0.05) and inversely

associated with PVM proportion (r = -0.61, padj = 0.008) (Figure 3B;

Supplementary Figure 4B). HbA1c was associated with LAM

proportion (r = 0.54, padj = 0.008) (Supplementary Figure 4C).

Evaluating all myeloid cells, measures of glucose intolerance were

inversely associated with other monocyte cell proportions

(Figure 3C). Thus, there is a general shift from primarily monocytes

and PVMs towards a LAM-like phenotype with glucose intolerance,

similar to findings in HIV-negative persons (15).

The lymphoid compartment had fewer differences by diabetes

status. The proportion of CD8+ TEM was lower in non-diabetic

PWH compared with prediabetic (padj = 0.05) but not diabetic

PWH (padj = 0.44) (Figure 3D). FBG but not HbA1c was

significantly associated with the proportion of CD8+ TEM (r =

0.49, padj = 0.008) and inversely associated with CD8+ naïve T cells

(r = -0.44, padj = 0.04) (Figure 3E; Supplementary Figure 4D).

Similarly, the proportion of CD4+ TEM was lower in non-diabetic

PWH compared with prediabetic (padj = 0.05) but not diabetic

PWH (Figure 3F). This was mainly due to a significant decrease in

CD4+ naive T cells (padj = 0.05). As discussed in the previous

section, CD4+ TEM cells expressed CD69. We confirmed with flow

cytometry that participants with glucose intolerance had higher

proportion of CD4+ CD69+ T cells (median percent: non-diabetic

(6.4%), prediabetic (37.5%), diabetic (37.7%); p < 0.05 for both),

which is consistent with prior studies (Supplementary Figure 4E)

(19). FBG was significantly associated with CD4+ TEM (r = 0.51, padj
< 0.001) and inversely associated with CD4+ naïve T cells (r = -0.63,

padj < 0.001) (Figure 3G; Supplementary Figure 4F). The proportion

of gd T cell was increased in prediabetic (p = 0.04) but not diabetic

PWH (p = 0.54), though was not significant after correction for

multiple comparisons (Supplementary Figure 4G). In summary,

prediabetic, but not treated diabetic PWH, have increased TEM cells

compared with non-diabetic PWH.

Finally, we hypothesized that the proportion of fibroblast

populations would be increased with glucose intolerance.

However, there was no significant associations between the

proportion of stromal cells by diabetes status (Supplementary

Figure 5A) or by continuous measures of glucose intolerance

(Supplementary Figure 5B). Similarly, there were no significant

differences in the proportions of vascular cells by group or with

measures of glucose intolerance (Supplementary Figures 5C, D).

Taken together, we show that in the context of glucose intolerance,

PWH have dramatic changes in the myeloid cell compartment with

a shift towards a LAM-like phenotype, as well as a shift towards TEM

T cells, but no significant difference in the stromal cell composition.
3.3 BMI is associated with macrophage
polarization while sex is associated with
stromal compositional changes

Demographic variables can influence the adipose tissue

environment (10). Therefore, we next examined the relationship
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of cell composition with BMI, age, and sex. Evaluating macrophages

as a percentage of all myeloid cells, BMI was associated with the

proportion of IMs (r = 0.38, padj = 0.04) and Mo-Mac 1 (r = 0.36,

padj = 0.04) (Figure 4A). Older age tended to correlate with a greater

proportion of LAMs (r = 0.34, padj = 0.06). In contrast, age and BMI

were not significantly associated with changes in proportion of CD4

or CD8 T cell subsets (Figures 4B, C). There was a trend towards

reduced proportion of CD4 regulatory cells with increasing age (r =

-0.41, padj = 0.21). Evaluation of other myeloid, stromal and

vascular cell proportions also demonstrated overall weak

correlation between BMI or age and cell proportion, except a

significant inverse association between BMI and the proportion of

capillary endothelial cells (r = -0.44, padj = 0.01) (Supplementary

Figures 6A–C). In summary, higher BMI and to a lesser extent older

age, was associated with a shift towards LAM and LAM-like

macrophages and BMI was associated with reduced proportion of

capillary endothelial cells.

To assess the independent contributions of sex to SAT

composition, we used an ordinal linear regression model adjusted

for age, BMI, and diabetes status. Compared with men, women had

a higher proportion of PVMs (padj = 0.02) and lower proportion of

IMs (padj = 0.02), but no significant differences in other myeloid

cells (Figure 4D). Compared with men, women had a lower

proportion of CD4+ cytotoxic (padj = 0.009) but not CD8+

cytotoxic T cells (padj = 0.19) (Figures 4E, F). In contrast to BMI

and age, female sex was significantly associated with stromal cell

composition. Compared with men, women had higher proportion

of PCOLCE+ fibroblasts (padj = 0.06), progenitor cell 2 (padj =

0.009), and early preadipocytes (padj = 0.009), and lower proportion

of mature preadipocytes 1 (padj < 0.001) and 2 (padj < 0.001)

(Figure 4G). Vascular cell proportions were not associated with

female sex. Taken together, sex appears to be a larger driver of

compositional changes in the stromal compartment than either

BMI or age. Female sex is associated with higher proportions of cell

populations that are abundant in healthy adipose tissue.
3.4 A greater proportion of lipid-associated
and intermediate macrophages and CD4+

and CD8+ T effector memory cells are
associated with greater pro-fibrotic cell
proportions in stromal tissue

We next assessed whether a higher proportion of macrophage

and T cell phenotypes observed in individuals with glucose

intolerance are associated with each other and with changes in

the stromal composition. We used partial Spearman’s correlation,

adjusted for BMI, age, sex, and diabetes status, and hypothesized

that immune cell populations increased with glucose intolerance

would be associated with greater pro-fibrotic cell types in adipose

tissue. The proportion of CD4+ TEM was significantly associated

with the proportions of IMs (r = 0.57, padj = 0.001), LAMs (r = 0.45,

padj = 0.02), PVMs (r = 0.53, padj = 0.006), and Mo-Mac 1 (r = 0.62,

padj < 0.001) and Mo-Mac 2 (r = 0.54, padj = 0.006), and inversely

associated with cMo (r = -0.70 padj < 0.001), Other Mo (r = -0.70,

padj < 0.001), and ISG+ Mo (r = -0.42, padj = 0.008) (Figure 5A).
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Similarly, the proportion of CD8+ TEM was also associated with the

proportions of IMs (r = 0.48, padj = 0.006), LAMs (r = 0.43, padj =

0.02), PVMs (r = 0.44, p = 0.006), and Mo-Mac 1 (r = 0.53, padj =

0.001) and Mo-Mac 2 (r = 0.49, padj = 0.009), and inversely

associated with cMos (r = -0.57, padj = 0.001), Other Mo (r =

-0.72, padj < 0.001), and ISG+ Mo (r = -0.38, padj = 0.007)

(Figure 5A). Additionally, we expanded this analysis to include all

T cell subsets that showed naïve CD4+ and CD8+ T cells were

associated with greater monocyte proportions (Figure 5B).

The proportion of CD4+ TEM was associated with the

proportion of ECM-producing early preadipocytes (r = 0.46, padj
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= 0.03) and inversely associated with early preadipocytes (r = -0.51,

padj = 0.03) (Figure 5C). The proportion of CD8+ TEM was similarly

associated with the proportion of ECM-producing early

preadipocytes (r = 0.49, padj = 0.03) and inversely associated with

early preadipocytes (r = -0.49, padj = 0.03) (Figure 5C). The

proportion of IMs (% of macrophages) was associated with the

proportion of myofibroblasts (r = 0.76, padj < 0.001) and inversely

associated with PCOLCE+ fibroblasts (r = -0.70, padj < 0.001)

(Figures 5D, E). The proportion of PVMs was associated with

PCOLCE+ fibroblasts (r = 0.46, padj = 0.02) and inversely associated

with myofibroblasts (r = -0.57, padj < 0.001) (Figure 5D). The
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FIGURE 4

Body mass index and sex are associated with compositional changes in immune and stromal cells. (A–C) Partial spearman’s correlations. Spearman’s
r for the biological factor (body mass index [BMI] or age) and each cluster proportion was calculated. The area of the circle represents the adjusted
p value (larger area = more significant adjusted p-value). Spearman’s r is colored red (positive) or blue (negative) for (A) macrophage, (B) CD4+ T
cells, and (C) CD8+ T cells. (D–G) Ordinal linear regression with cluster proportion as the outcome and sex as the independent variable adjusted for
age, BMI, and diabetes status. The regression coefficient for sex was converted into an odds ratio (female:male) and plotted with odds ratio (square)
and 95% confidence interval (lines) on the x-axis and cell type on they y-axis for (D) macrophage (E) CD4+ T cells (F) CD8+ T cells, and (G) stromal
cells. BMI, body mass index; ECM, extracellular matrix; IM, intermediate macrophage; LAM, lipid-associated macrophage; Mac, macrophage; Mo,
monocyte; PVM, perivascular macrophage; TCM, T central memory; TEM, T effector memory.
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relationship between stromal cells and other T cells or myeloid cells

are shown in Supplementary Figures 6D, E. Taken together, we find

high correlation between the proportion of TEM cells, macrophages,

and fibroblast cell populations in SAT, suggesting a coordinated

shift in the immune cell and stromal cell lineages accompanies

changes in metabolic health.
3.5 Glucose intolerant individuals have
transcriptional polarization of
macrophages towards LAMs and T cells
towards effector memory phenotype

Having demonstrated that glucose intolerance is independently

associated with accumulation of IM, LAM, CD4+ TEM, and CD8+

TEM, and inversely associated with PVM (or M2-like macrophages),
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we next examined the transcriptome that defines these cell

compartments. We aggregated gene counts for each participant

(pseudobulk method) to evaluate the differential gene expression

between prediabetic and non-diabetic PWH using a negative

binomial generalized linear model implemented in DESeq2 (84),

adjusting for age, sex and BMI. 597 genes were differentially

expressed (padj < 0.05) between macrophages from prediabetic

and non-diabetic PWH. Macrophages from prediabetics had

higher expression of genes related to oxidative phosphorylation

(NDUFS5, NDUFAB1, ATP5MC3, UQCR10, COX5B), and lower

expression of genes related to chemotaxis (CCL8, CXCL1, CCL2,

CCL4L2, CCL4, CCL3L1, CXCL8, CCL3), TNF inflammatory

pathway (TNF, TNFSF18, TNFRSF1A, TNFRSF21), and M2

macrophage polarization (TRIB1, EGR1, EGR2, MRC1, LYVE1,

KLF4) (Figure 6A; Supplementary Table 8) (85, 86). KEGG gene

set enrichment analysis (GSEA) confirmed enrichment of metabolic
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FIGURE 5

Intercellular correlation of proportions with cells associated with glucose intolerance. (A–D) Partial spearman’s correlations. Spearman’s r was
calculated between the cells of interest (proportion) and each cluster proportion. The area of the circle represents the adjusted p value (larger area =
more significant adjusted p-value). Spearman’s r is colored red (positive) or blue (negative) for (A) CD4+ and CD8+ T effector memory (TEM)
proportion and myeloid cell proportions, (B) all T cell proportions and myeloid cell proportions, (C) CD4+ and CD8+ T effector memory (TEM)
proportions and stromal cell proportions, (D) and macrophage proportions and stromal cell proportions. (E) Scatter plot with intermediate
macrophages as a percent of macrophages on the x-axis and myofibroblasts as a percent of stromal cells on the y-axis. cDC1, conventional
dendritic cell type 1; cDC2B, conventional dendritic cell type 2B; cMo, classical monocyte; DC, dendritic cell; ECM, extracellular matrix; IM,
intermediate macrophage; LAM, lipid-associated macrophage; Mo, monocyte; Mo-Mac, monocyte-macrophage; PVM, perivascular macrophage;
pDC, plasmacytoid dendritic cell; TCM, T central memory; TEM, T effector memory.
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FIGURE 6

Transcriptional shift from immunoregulatory to metabolic phenotype in macrophages and effector memory phenotype in T cells with glucose
intolerance. (A) Macrophage volcano plot with average Log2 fold change (x-axis) and –log10 adjusted p-value (y-axis) for prediabetic vs non-diabetic
(reference) PWH. Genes that had ≥ 0.25 log2 fold change and adjusted p-value < 0.05 were colored red (higher expression) and blue (lower expression).
(B) Gene set enrichment analysis (GSEA) using the KEGG database. The top over and under enriched pathways were included with normalized
enrichment score (NES) on x-axis and descriptive term on y-axis. Dot size represents the number of gene hits in the pathway and dot color represents
the –log10 adjusted p-value. (C) Ordered and smoothed transcription factor gene expression (scaled) along the pseudotime trajectory for monocyte-
macrophage 2 to perivascular macrophage. Selected genes were significantly differentially expressed along the pseudotime with ≥ log2(2) fold change
according to TradeSeq. (D) Ordered and smoothed transcription factor gene expression (scaled) along the pseudotime trajectory for monocyte-
macrophage 2 to lipid associated macrophages. Selected genes were significantly differentially expressed along the pseudotime with ≥ log2(2) fold
change according to TradeSeq. (E) CD4+ T cell volcano plot with average Log2 fold change (x-axis) and –log10 adjusted p-value (y-axis) for prediabetic
vs non-diabetic (reference) PWH. Genes that had ≥ 0.25 log2 fold change and adjusted p-value < 0.05 were colored red (higher expression) and blue
(lower expression). (F) CD8+ T cell volcano plot with average Log2 fold change (x-axis) and –log10 adjusted p-value (y-axis) for prediabetic vs non-
diabetic (reference) PWH. Genes that had ≥ 0.25 log2 fold change and adjusted p-value < 0.05 were colored red (higher expression) and blue (lower
expression). LAM, lipid-associated macrophage; Mo-Mac, monocyte-macrophage; PVM, perivascular macrophage; NES, normalized enrichment score.
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disease pathways and reduction in pathways related to cytokine-

cytokine receptor interaction, chemokine signaling, and toll-like

receptor signaling (Figure 6B). Individual macrophage subsets had

fewer transcriptional differences between non-diabetic and

prediabetic PWH. In PVMs, several genes related to chemokines

and M2-like macrophages (CCL2, CCL3, CCL4) trended towards

lower expression in prediabetic PWH (padj < 0.06) while ID3 had

higher expression (Supplementary Table 8). Pseuodotime using

Slingshot (54), demonstrated a single trajectory from monocyte-

macrophage 2 transitioning into PVMs (Supplementary Figure 7A).

Using Tradeseq (55), which fits a negative binomial generalized

additive model to each gene, expression of transcription factors

associated with M2 macrophage phenotype increased along the

pseudotime trajectory including ZNF331, NR4A3, KLF4, KLF2,

MAF, MAFB, ATF4, EGR2, CEBPD, JUND, and SON (Figure 6C;

Supplementary 7B). Several of these genes had reduced expression

in prediabetic compared with non-diabetic PWH with pseudobulk

differential gene expression analysis. Despite their large proportion,

IMs had few differentially expressed genes, between prediabetic and

non-diabetic PWH (Supplementary Table 8). It is not clear based on

pseudotime whether these cells are transitional or represent a

terminal state of differentiation. Finally, LAMs in prediabetic

PWH had higher expression of lipid-processing/metabolic genes

(MTLN, COX6A1, NDUFB3), and lower expression of several M2

macrophage transcription factors (TRIB1, EGR1, KLF2)

(Supplementary Table 8). Pseudotime suggested a transition from

monocyte-macrophage precursors to LAMs (Supplementary

Figure 7C) with upregulation of several transcription factors

including PPARG (Figure 6D; Supplementary Figure 7D), which

has been shown to influence CD36 expression and have a role in

lipid metabolism (87).

CD4+ T cells in prediabetic PWH had higher expression of

markers of activation and effector memory phenotype (IL32, BATF,

CD63, IFITM3) and lower expression of markers related to naïve T

cells (SELL, LEF1) (Figure 6E). CD8+ T cells in prediabetic PWH

had higher expression of cytotoxic and activation genes (GZMA,

CD63, CLEC2B) (Figure 6F).

There were no differentially expressed genes in preadipocytes

from prediabetic versus non-diabetic PWH (Supplementary

Table 8). Comparison of diabetic with non-diabetic PWH showed

similar, but fewer differentially expressed genes between immune

cells, which could reflect treatment effect (Supplementary Table 9).

Taken together, macrophages show a transcriptional profile that

shifts from an immune regulatory M2-like macrophage to a

metabolic phenotype in prediabetic PWH. The expression of

transcription factors associated with M2 macrophage polarization

is reduced in prediabetic PWH, suggesting decreased differentiation

of monocyte-macrophages into PVMs/M2 macrophages. The T cell

transcriptional profile shifts towards an activated effector memory/

antigen presentation phenotype in prediabetic PWH. While most of

the differentially expressed genes were unique by cell type, there

were overlapping genes between cell types in both higher and lower

expressed genes, particularly between CD4+ and CD8+ T cells and

between macrophage subsets (Supplementary Figures 7E, F).
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3.6 Intercellular gene programs related to
interferon-g, tumor necrosis factor-a, and
lipid metabolic processes characterize
glucose intolerance

Based on some overlapping features of gene changes, and an

overall shift in transcriptional profile, we next assessed whether there

were coordinated, inter-cellular gene expression programs that define

the transcriptional patterns associated with glucose intolerance. We

employed DIALOGUE, which is a dimensionality reduction technique

that identifies gene expression programs between cell types to identify

tissue-specific cellular programs (57). Multicellular program 1 (MP1)

was highly associated with normoglycemia while glucose intolerance

was inversely related to MP1 (Figure 7A). Over-representation analysis

of the MP1 showed some overlap, but enrichment of genes related to

leukocyte differentiation, T cell differentiation, and protein folding in its

upregulated compartment. In contrast, MP1 downregulated

compartment was enriched in genes related to IFN-g responses,

neutrophil degranulation, and antigen processing and presentation

(Figure 7B). Glucose intolerance was highly related to CD4+ T cell gene

expression pattern (Figure 7C). In CD4+ T cells, non-diabetic

individuals had increased expression of several genes including

CCR7, LDHB, LEF1, SELL, IL21R and several ribosomal proteins

consistent with a less differentiated state, while prediabetic and

diabetic individuals had greater expression of genes related to

cytotoxicity (CCL5, CCL4, PRF1), activation (IL32, CD40LG, HLA-

DRA), and inflammation (GBP5, IFNG, TNF, IFITM2). Several

individuals classified as non-diabetic or prediabetic were borderline

based on dichotomous classification, which could explain why some

individuals did not cluster as expected. Additionally, several non-

diabetic individuals who clustered with glucose-intolerant individuals

were cytomegalovirus (CMV) seropositive and had a high proportion

of cytotoxic T cells based on flow cytometry, likely in response to CMV

infection. This suggests that while glucose intolerance is highly

associated with MP1, other factors can contribute to an

inflammatory SAT environment. CD8+ T cells showed a similar

expression pattern; however it did not associate as strongly with

glucose intolerance (Figure 7D). The macrophage compartment MP1

expression program was also not as strongly associated with diabetes

status as the T cell compartment but did show enrichment of genes

associated with M2 macrophage polarization (KLF4, MAFF, MAFB,

ATF4, EGR1, EGR2) and chemotaxis (CCL2,CXCL8) in MP1

upregulated compartment, and enrichment of genes associated with

lipid metabolism (TREM2), IFN-g (IFI27, ISG15), and macrophage

activation (AREG) in MP1 downregulated compartment

(Supplementary Figures 8A–C). Diabetes status was also significantly

associated with MP1 in myofibroblast (Supplementary Figure 8D).

Genes associated with glucose intolerance phenotype included genes

related to ECM/cell-cell interaction (BGN, COL4A1, PRSS23, TNC,

TAGLN). Overall, MP1 differentiates between normoglycemic

individuals and glucose intolerant individuals with the tissue

program shifting towards genes related to cytotoxicity, inflammation,

lipid metabolism, macrophage activation, and ECM deposition

(Supplementary Figure 8E).
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3.7 Intercellular communication analysis
reveals enrichment of pro-inflammatory
and pro-fibrotic pathways with
glucose intolerance

Glucose intolerant and non-diabetic PWH have striking

differences in tissue level gene expression programs. We next

wanted to assess whether intercellular signaling that coordinates

cell function and expression programs was different between
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glucose intolerant and non-diabetic PWH. We employed

CellChat to infer intercellular communications and identify

differential ligand-ligand receptor interactions between glucose

intolerant and non-diabetic PWH (58). Overall, the number of

predicted interactions was increased in glucose intolerant

individuals from lymphoid, endothelial, myofibroblast, and to a

lesser extent myeloid populations (source) to several lymphoid,

myeloid, and endothelial cell populations (target) compared with

non-diabetic PWH (Figure 8A). Individuals with glucose
B
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FIGURE 7

An intercellular gene expression program enriched for interferon-g, tumor necrosis factor, and lipid metabolism defines glucose intolerance. (A)
Distribution of expression scores for each cell type component for multicellular program (MP) 1 with kernel density estimates. (B) Over-
representation analysis using Gene Ontology biological process for genes in the up and down compartments in MP1. Dot size represents the
number of gene hits in the pathway and dot color represents the –log10 adjusted p-value. (C) Average scaled expression of top CD4+ T cell genes
from MP1 sorted by expression (columns), across samples plotted with hierarchical clustering (rows) and labeled with clinical variables including
body mass index (BMI), age, sex, and measures of glucose intolerance. (D) Average scaled expression of top CD8+ T cell genes from MP1 sorted by
expression (columns), across samples plotted with hierarchical clustering (rows) and labeled with clinical variables including BMI, age, sex, and
measures of glucose intolerance. BMI, body mass index; FBG, fasting blood glucose; HbA1c, hemoglobin A1c; IM, intermediate macrophage; LAM,
lipid-associated macrophage; Mo-Mac, monocyte-macrophage; MP, multicellular program; MyoFIB, myofibroblast; PVM, perivascular macrophage.
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FIGURE 8

Intercellular communication analysis predicts enhanced signaling of pro-fibrotic, pro-inflammatory pathways in PWH with glucose intolerance (GI).
(A) Relative number of interactions (left) and strength of interactions (right) comparing PWH with glucose intolerance and non-diabetic (nonDM)
PWH. Increased and decreased relative signaling are shown in red and blue, respectively. The target cells are shown on the x-axis and the source
cells are shown on the y-axis. Rows and columns were plotted with hierarchical clustering. (B–G) Bar plot with relative information flow (left) or
overall information flow (right) on the x-axis and predicted ligand-ligand receptor pathways from source cells to target cells. Signaling with glucose
intolerance is shown in orange while signaling in non-diabetics is shown in blue. Pathways with significantly greater interaction with glucose
intolerance based on Wilcoxon rank sum are labeled in orange while pathways with significantly greater interaction in non-diabetic are labeled in
blue (p < 0.05). (B) Intermediate macrophage (source) to myofibroblast and cycling myofibroblast (target). (C) Intermediate macrophage (source) to
preadipocyte and progenitor cells (target) (D) Cycling myofibroblast and myofibroblast (source) to intermediate macrophage (target). (E)
Preadipocyte and progenitor cells (source) to intermediate macrophages (target). (F) CD4+ TEM (source) to myofibroblast and cycling myofibroblast
(target). (G) CD4+ TEM (source) to preadipocyte and progenitor cells (target). cMo, classical monocyte; cDC1, conventional dendritic cell type 1;
cDC2B, conventional dendritic cell type 2B; DC, dendritic cell; EC, endothelial cell; FIB, fibroblast; ILC, innate lymphoid cell; IM, intermediate
macrophage; ISG+, interferon-stimulated gene +; LAM, lipid-associated macrophage; Mac, macrophage; mNK, mature natural killer; Mo, monocyte;
MT, metallothionein+; myoFIB, myofibroblast; NK, natural killer; nMo, non-classical monocyte; pDC, plasmacytoid dendritic cell; PreAd,
preadipocyte; Prog, progenitor; PVM, perivascular macrophage.
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intolerance also had greater interaction strength between cycling

myofibroblast, myofibroblast, capillary endothelium, preadipocytes,

progenitor cells, and, to a lesser extent, IMs and LAMs with

endothelium, preadipocytes, LAMs, IMs, myofibroblasts, and

CD4+ TEM cells (Figure 8A). Given the multitude of potential

intercellular communications, we prioritized cell populations we

have previously linked with glucose intolerance. IM were predicted

to have increased interaction with myofibroblast through TGF-b,
growth differentiation factor, osteopontin, visfatin, fibronectin,

tweak, and integrin subunit beta 2 pathways in glucose intolerant

individuals compared with non-diabetic PWH (Figure 8B), which

have been implicated in fibrosis and inflammation (88–91).

Predicted cell-cell communication between IM and preadipocytes

in glucose intolerant individuals also included growth

differentiation factor, osteopontin, CD99, CXCL, galectin, and

fibronectin pathways (Figure 8C). LAMs had similar predicted

interactions as IMs (Supplementary Figures 9A–D). We also

evaluated predicted signaling from myofibroblast (Figure 8D) and

preadipocytes (Figure 8E) to IMs, which showed increased MHC-II,

CD99, MIF, periostin, amyloid beta precursor protein (APP), and

CSF signaling pathways with glucose intolerance and have been

implicated in macrophage polarization (92–94). CD4+ TEM were

predicted to have a greater interaction through TNF and IFN

pathways with myofibroblast and preadipocytes in glucose

intolerant individuals compared with non-diabetic individuals

(Figures 8F, G). Greater interactions through IFN, TNF, CCL,

and MIF pathways from TEM cells to IMs and LAMs were

predicted for glucose intolerant individuals compared with non-

diabetic persons (Supplementary Figures 9E, F). Overall,

intercellular communication analysis shows an increased number

or strength of interactions with myofibroblasts, preadipocytes,

lymphoid cells, and IMs and LAMs, with pathways predicted to

promote ECM deposition and immune cell polarization in persons

with glucose intolerance.
3.8 CD4+ TEM cells expressing CD69 are
associated with changes in mature
adipocyte gene expression

CD4+ TEM proportion and transcriptional expression were

strongly associated with glucose intolerance compared with other

immune cell types. These cells express CD69, which is often a

marker of tissue residency (76). Given their close association with

glucose intolerance and multicellular program 1, we next assessed

whether these cells are associated with changes in adipocyte gene

expression patterns. We performed probe-based RNA transcript

quantification of whole adipose tissue biopsies for 77 adipocyte

genes using the NanoString platform. We found that cytometric

sorted CD4+CD69+ T cells and single-cell CD4+ TEM cell

proportions had similar relationships with adipocyte gene

expression with higher expression of ADIPOQ, LPL, and LEP,

and lower expression of genes related to long-chain fatty acid

metabolism (CPT1B, CYP27A1, SLC27A5, ACAA1) and GLP1R in

whole SAT (Supplementary Table 10). No other immune cell

subsets, including macrophage types or CD8+ TEM had a
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significant relationship with adipocyte gene expression. Taken

together, changes in SAT CD4+ tissue-resident cell composition

are associated with changes in adipocyte gene expression, which

suggests a potential mechanistic link between SAT immune cells,

mature adipocytes, and development of metabolic phenotypes.
3.9 HIV-negative diabetic and HIV-positive
diabetic individuals have similar SAT
composition and multicellular gene
expression programs, but divergent
intercellular communication pathways

Finally, we performed an exploratory analysis to assess whether

the regulatory patterns that define glucose intolerance in PWH are

similar in diabetic HIV-negative persons. To this end, we recruited a

smaller group of 32 HIV-negative persons, all of whom had

diabetes, with clinical and demographic features similar to the

diabetic PWH (Supplementary Table 11). Single cell assays were

performed at the same time (Supplementary Tables 1, 2), and in the

same manner, as in PWH, and we integrated datasets of these two

groups to assess for differences by HIV status. We recovered the

same cell types in HIV-negative persons observed in the PWH

(Supplementary Figure 10A). Compared with the cell distribution

of non-diabetic and diabetic PWH, HIV-negative persons had fewer

lymphoid (padj < 0.001 and padj = 0.006) and greater stromal cells as

a proportion of all cells (padj < 0.001 and padj = 0.05) (Figure 9A). In

the macrophage compartment, there were no significant difference

in composition between diabetic PWH and diabetic HIV-negative

persons (Figure 9B). Non-diabetic PWH had more PVMs (padj =

0.02) and less LAMs (padj = 0.03), but no difference in IMs (19.3% vs

25.8%) after correction for multiple comparisons. Non-diabetic

PWH tended to have fewer CD4+ TEM cells (padj = 0.09) though

this was not significant after correction for multiple comparisons

(Figure 9C). Non-diabetic PWH had fewer CD8+ TEM than HIV-

negative diabetic persons (padj = 0.03) but there were no other

significant compositional differences (Figure 9D). Within the

vascular cells, non-diabetic PWH had greater capillary endothelial

cells (padj = 0.05), fewer VSMC 1 (padj = 0.004), and a trend towards

fewer VSMC 2 (padj = 0.06) (Figure 9E). Diabetic PWH had fewer

pericytes than diabetic HIV-negative persons (padj = 0.05). No

significant differences were observed in stromal cell composition.

We also examined whether BMI and age influence SAT

composition in HIV-negative diabetics. We found, in contrast to

PWH, that BMI was significantly correlated with the proportion of

metallothionein+ preadipocytes (r = 0.51, padj = 0.02) and inversely

associated with the proportion of mature preadipocytes (r = -0.49,

padj = 0.02), likely because mature adipocytes express greater

metallothionein genes (Figure 9F). Age was inversely associated

with the proportion of myofibroblasts and cycling myofibroblasts

(padj = 0.02 for both). BMI was also significantly associated with the

proportion of VSMC 1 (r = 0.69, padj < 0.001), which has been

associated with obesity in previous studies (Figure 9G) (95). The

relationship of BMI or age with other cell types, including CD4+ T

cells, CD8+ T cells, myeloid, and lymphoid cells, were not significant

after correction for multiple comparisons except for BMI and CD4+
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naive (Supplementary Figures 10B–E). In summary, HIV-negative

diabetic persons have greater proportion of LAMs and CD8+ TEM

cells but no difference in IMs compared with non-diabetic PWH.

Although lymphoid cells are more prevalent in diabetic PWH, the

overall distribution is relatively similar with HIV-negative

diabetic individuals.
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Transcriptionally, preadipocyte cells were strikingly different

with higher expression of genes related to ECM-, genes that impair

adipogenesis, and lipid-processing genes in PWH, suggesting

impaired adipogenesis and ECM deposition in PWH compared

with HIV-negative (Figures 10A, B; Supplementary Table 12).

DIALOGUE uncovered a transcriptionally similar multicellular
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FIGURE 9

HIV-negative diabetic and HIV-positive diabetic have similar macrophage and T effector memory cell polarization. (A) Box plot showing the proportion
of major cell categories (stromal, vascular, lymphoid, and myeloid) as a percentage of total cells split by disease state (HIV+ non-diabetic, green; HIV+
diabetic, yellow; HIV- diabetic, orange) (n = 72). The horizontal black line represents the median, the box shows the lower and upper quartile limits
and the whiskers are 1.5x the interquartile range. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; ns, not significant. (B) Boxplot showing the
proportion of macrophage subsets as a percentage of total macrophage cells split by disease status (n = 70). (C) Boxplot showing the proportion of
CD4+ T cell subsets as a percentage of total CD4+ T cells split by disease status (n = 52). (D) Boxplot showing the proportion of CD8+ T cell subsets as
a percentage of total CD8+ T cells split by disease status (n = 51). (E) Boxplot showing the proportion of vascular subsets as a percentage of total
vascular cells split by disease status (n = 71). (F, G) Partial spearman’s correlations in HIV-negative diabetic individuals only. Spearman’s r for the
biological factor (body mass index [BMI] or age) and each cluster proportion was calculated. The area of the circle represents the adjusted p value
(larger area = more significant adjusted p-value). Spearman’s r is colored red (positive) or blue (negative) for (F) stromal and (G) vascular cells. BMI,
body mass index; EC, endothelial cell; ECM, extracellular matrix; IM, intermediate macrophage; Mo-Mac, monocyte-macrophage; LAM, lipid-
associated macrophage; PVM, perivascular macrophage, TCM, T central memory; TEM, T effector memory; VSMC, vascular smooth muscle cell.
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program and gene expression pattern in diabetic HIV-negative

individuals though it included preadipocytes with expression of

BGN, MIF, and TIMP1 (Figure 10C). The SAT composition and

tissue-level transcriptional programs are largely similar between

HIV-negative diabetic and diabetic PWH. However, predicted

intercellular communication pathways diverged significantly

(Supplementary Figure 11A). Macrophages from diabetic PWH

have increased signaling through APP, resistin, visfatin, and several

other pathways that have been associated with macrophage

polarization and inflammation (Figure 10D). Additionally,
Frontiers in Immunology 19
analysis of signaling from all cells to macrophages shows

increased signaling for several pathways, including IFN, TNF, and

IL6 (Supplementary Figure 11B). Similarly, the stromal

compartment from diabetic PWH had increased signaling to

other cells through TGF-b, periostin, chemerin, IL6, and visfatin

pathways compared with diabetic HIV-negative persons

(Figure 10E). Analysis of signaling from all cells to stromal cells

showed increased signaling for TNF, IFN, and MIF pathways

among diabetic PWH (Supplementary Figure 11C). Endothelial

cells have an important role in the trafficking of monocytes into
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FIGURE 10

HIV-negative diabetic and HIV-positive diabetic have a similar multicellular gene expression program but divergent intercellular communication
pathways. (A) Preadipocyte volcano plot with average Log2 fold change (x-axis) and –log10 adjusted p-value (y-axis) for HIV-positive diabetic vs HIV-
diabetic (reference) persons. Genes that had ≥ 0.25 log2 fold change and adjusted p-value < 0.05 were colored red (higher expression) and blue
(lower expression). (B) Gene set enrichment analysis (GSEA) using the Gene Ontology database. The top over and under enriched pathways were
included with normalized enrichment score (NES) on x-axis and descriptive term on y-axis. Dot size represents the number of gene hits in the
pathway and dot color represents the –log10 adjusted p-value. (C) Average scaled expression of top genes from all cells in Multicellular Program
(MP) 1 sorted by expression (columns), across samples plotted with hierarchical clustering (rows) and labeled with clinical variables including body
mass index (BMI), age, sex, and measures of glucose intolerance. (D, E) Bar plot with relative information flow (left) or overall information flow (right)
on the x-axis and predicted ligand-ligand receptor pathways from source cells to target cells. Signaling in HIV+ diabetic is shown in orange while
signaling in HIV- diabetic is shown in blue. Pathways with significantly greater interaction in HIV+ diabetics based on Wilcoxon rank sum are labeled
in orange while pathways with significantly greater interaction in HIV- diabetics are labeled in blue (p < 0.05). (D) Macrophages (source) to all cells
(target). (E) Stromal (source) to all cells (target). BMI, body mass index; FBG, fasting blood glucose; HbA1c, hemoglobin A1c; IM, intermediate
macrophage; LAM, lipid-associated macrophage; NES, normalized enrichment score; PVM, perivascular macrophage.
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tissue (96). Diabetic PWH have greater signaling from endothelial

cells to monocytes compared with diabetic HIV-negative persons

(Supplementary Figure 11D). This includes the fractalkine signaling

pathway (CX3C) that has been linked with monocyte infiltration

and inflammation (97). Finally, the T cell compartment had

increased signaling of TNF, IFN, and several other pathways in

diabet ic PWH compared with HIV-negat ive persons

(Supplementary Figure 11E). Overall, these findings indicate

substantial differences in predicted intercellular communication

between diabetic PWH and diabetic HIV-negative persons.
4 Discussion

In this study, we generated a comprehensive single cell

molecular atlas of SAT in PWH to uncover compositional and

transcriptional patterns that are associated with glucose intolerance.

We showed a shift towards LAM and LAM-like macrophages and

TEM cells. Transcriptionally, macrophages shifted from an

immunoregulatory M2-like cytokine profile towards a lipid

processing phenotype while CD4+ and CD8+ T cells shifted

towards differentiated and effector phenotypes. An expression

program in glucose intolerant individuals was defined by

upregulation of IFN-g and TNF-related pathways in CD4+ and

CD8+ T cells, upregulation of lipid-processing genes in

macrophages, and increased expression of fibrotic genes in

preadipocytes. Intercellular communication analysis predicted

increased inflammatory and pro-fibrotic pathways in PWH with

glucose intolerance. We further found CD4+ memory cells

expressing CD69 were most strongly associated with glucose

intolerance and alterations in adipocyte gene expression,

providing a plausible mechanistic link to altered mature adipocyte

function and development of metabolic syndrome (Supplementary

Figure 12). Finally, as an exploratory analysis, we show that diabetic

PWH have a similar compositional profile as HIV-negative

individuals, but substantially different predicted intercellular

communication pathways skewed towards inflammatory and pro-

fibrotic signaling.

Our characterization of SAT resident immune cells and stromal

precursor cells expand on previous scRNA-seq descriptions of

human adipose tissue in HIV-negative persons (14, 15, 23).

Uniquely, we evaluated the role of glucose intolerance in

compositional and transcriptional polarization of adipose tissue

and leveraged our large cohort size to evaluate the independent

contributions of important biological factors including sex, age, and

BMI. The macrophage compartment had the greatest compositional

differences between non-diabetic and glucose intolerant PWH,

which is consistent with prior studies (11, 60, 64, 98–100). LAMs

have been previously shown to accumulate with obesity in humans

(15), but here we show that they also accumulate with glucose

intolerance after adjusting for BMI. LAMs accumulate in crown-like

structures surrounding injured adipocytes, and depletion results in

greater weight gain, glucose intolerance, and dyslipidemia,

suggesting these cells are important for maintaining homeostasis

and are likely compensatory in response to adipocyte injury (40).

While LAMs identified in this dataset expressed CD11c, we found
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CD206 surface expression and MRC1 gene expression was lower

relative to PVMs, which was not observed in other studies (15, 40,

60). These differences could be due to differences in cell-sorting

strategies and different technologies, and tissue-based analyses

should enable better harmonization and clarification of this in the

future. Differences in macrophage polarization have been linked to

inflammation and obesity in animal studies, although the M1/M2

macrophage phenotypes described in mice are less distinct in

human samples (67). Additionally, the transcriptional profile

obtained from unstimulated macrophages may not reflect

cytokine production under stimulation conditions. Therefore, it is

not clear that LAMs are equivalent to M1 macrophages.

There was good agreement among prior datasets for PVMs,

which are analogous to M2-like macrophages expressing CD206

(14, 15, 23). We found, similar to other groups, that PVMs express

several chemokines and inflammatory genes including TNF (15).

While these are more abundant in non-diabetic PWH, M2-like

macrophages, of which PVM are a subset, have been associated with

insulin resistance, mediated in part through TGFb (101). Of the

macrophage subsets, the IM macrophages were most closely linked

to myofibroblast proportion and increased with glucose intolerance.

These cells had high expression of MHC and CD163 transcripts and

shared features with both PVM and LAMs. It is uncertain whether

IMs, which have low expression of osteopontin, are a precursor for

LAMs or represent a distinct terminal phenotype. Intercellular

communication analysis predicts higher signaling through TGFb
and several pro-fibrotic pathways with myofibroblast and

preadipocytes in glucose intolerant individuals. Future studies are

needed to better define this macrophage cell type.

CD4+ tissue-resident cells may also have a key role in the

development and maintenance of SAT inflammation. Both

multicellular program analysis and intercellular communication

show increased IFN and TNF pathways in glucose intolerant

PWH, which can promote macrophage polarization and influence

adipogenesis (67, 102). Little has been reported on tissue-resident T

cells in SAT, though they have a prominent role in regulating

responses to infection and contribute to human diseases (103, 104).

Our group and others have previously shown CD4+ and CD8+

tissue-resident T cells accumulate with metabolic disease in PWH

(18, 19). This finding is intriguing as SAT CD4+ T cells and CD4+

tissue-resident T cells in cervical mucosa have been shown to be a

reservoir of HIV (17, 105). Future studies will be necessary to

determine the mechanism through which tissue-resident T cells

affect adipocyte function. Additionally, since CD4 T cells serve as a

reservoir for latent HIV infection, these findings may not be true in

PWH off ART.

One important question is whether the pathogenesis of

metabolic disease is different in PWH compared with HIV-

negative persons, which would have implications for preventative

and treatment strategies. Our cross-sectional study design and

inclusion of only HIV-negative persons with diabetes does not

directly address this question. However, we find that although

composition and overall global transcriptional pattern is similar

regardless of HIV serostatus, diabetic PWH have greater

contribution of inflammatory signaling pathways such as IL6,

IFN-g, and TNF compared with HIV-negative persons with
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diabetes. Signaling to and from endothelial cells was also enhanced

in diabetic PWH including CX3CR and CCL pathways. Secreted

cytokines from adipose tissue have a profound influence over

endothelial inflammation and contribute to endothelial

dysfunction (106). Endothelium in turn modulates adipose tissue

inflammation, in part through regulation of immune cell migration.

These findings suggest targeting adipose tissue infiltration by

immune cells may yield beneficial effects in PWH. Dual CCR2/5

antagonists are currently being evaluated in PWH to reduce

cardiovascular events, and additional studies to assess the effects

on insulin resistance may be warranted (107).

Our study had some limitations. The cross-sectional design

precluded an assessment of the temporal course of compositional

and transcriptional changes, and future longitudinal scRNA-seq

studies are needed. Our separation of participants into three groups

by FBG and HbA1c values meant some individuals were on the

margin between states, though this was addressed, in part, by our

analysis of FBG as a continuous endpoint. Additionally, our cohort

lacked a non-diabetic or prediabetic HIV-negative group. Thus,

while HIV-negative persons with diabetes appear to have

substantially different predicted intercellular communication,

further studies incorporating non-diabetic HIV-negative persons

will be necessary to understand how baseline differences may

impart increased risk of metabolic diseases among PWH.

Additionally, despite the size of our unbiased molecular atlas of

SAT, we may have missed low-frequency cells that contribute to

inflammation. Finally, it is difficult in clinical studies to account for

potential confounders. However, we overcame this with reasonably

matched groups and a large overall cohort to model the

contributions of important biological factors to composition and

transcriptional patterns.

In summary, we found unique SAT compositional and

transcriptional changes with glucose intolerance and identified a

conserved cellular regulatory program that differentiated non-

diabetic and glucose intolerant individuals. Our dataset is publicly

available to the research community on an interactive platform

(http://vimrg.app.vumc.org/). These data provide insight into the

complexity and breadth of SAT cells that may contribute to glucose

intolerance and accelerate future investigation into the role of

stromal and immune cell interactions that may open new avenues

of research and lead to the development of therapeutic interventions.
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