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Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), the prime

causes of morbidity and mortality in critically ill patients, are usually treated by

general supportive treatments. Endoplasmic reticulum autophagy (ER-phagy)

maintains cellular homeostasis by degrading damaged endoplasmic reticulum

(ER) fragments and misfolded proteins. ER-phagy is crucial for maintaining ER

homeostasis and improving the internal environment. ER-phagy has a particular

role in some aspects, such as immunity, inflammation, cell death, pathogen

infection, and collagen quality. In this review, we summarized the definition,

epidemiology, and pathophysiology of ALI/ARDS and described the regulatory

mechanisms and functions of ER-phagy as well as discussed the potential role of

ER-phagy in ALI/ARDS from the perspectives of immunity, inflammation,

apoptosis, pathogen infection, and fibrosis to provide a novel and effective

target for improving the prognosis of ALI/ARDS.
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1 Introduction

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated

with various lung injuries that often lead to life-threatening consequences. Developed from

ALI, ARDS was first formally described in 1967 (1). Recently, ALI has been defined as mild

or moderate ARDS (2). ARDS is an acute respiratory failure characterized by severe

hypoxemia caused by noncardiogenic pulmonary edema. There are multiple etiologies of

ARDS, classified as pulmonary endogenous and exogenous, and the most common causes

are pneumonia and sepsis (3). The pathophysiology of ARDS is divided into exudative,

proliferative, and fibrotic stages. During the exudative phase, reduced lung compliance

leads to gas exchange impairment. The proliferation phase is the recovery period of the

lung microvascular barrier, while the fibrosis phase leads to poor recovery of lung injury

and increased ARDS mortality (4). Due to the poor effects of prevention and treatment,

ALI/ARDS has exceptionally high morbidity and mortality. In 2016, a study on the

incidence of ARDS in intensive care units (ICUs) in 50 countries showed that 10% of ICU
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patients and 23% of mechanically ventilated patients met the

diagnostic criteria for ARDS (5). The mortality in hospitals for

ARDS is 35%-45%, and a significant proportion of ARDS mortality

is attributed to sepsis-associated ARDS (6). ALI progression is

associated with various clinical disorders, leading to diverse

outcomes. Sepsis is the main cause of ALI death, and the

mortality rate is up to 43% (2). Moreover, the prognosis of ALI/

ARDS is unsatisfactory, and most patients will face sequelae, such as

muscle weakness, physical deterioration, and even cognitive

impairment (7).

The ER, the largest organelle in the cell, is responsible for lipid

and protein biosynthesis, and provides important sites for

modifying and folding nascent integral membranes and secreted

proteins. However, under some pathological stimuli, ER function is

disrupted, leading to the accumulation of misfolded proteins, which

triggers ER stress. During ER stress, cells activate a series of

complementary mechanisms in response to changes in protein

folding, a process known as the unfolded protein response (UPR)

(8). UPR is a highly conserved mechanism mediated by three

proteins sensors located in ER: protein kinase RNA (PKR)-like

ER kinase (PERK), inositol-requiring enzyme-1 (IRE-1), and

activating transcription factor-6 (ATF6). ER stress induces ER-

phagy by activating the UPR pathway (9). This phenomenon was

first discovered in a yeast experiment in 2007, in which researchers

found that ER stress induces ER selective autophagy, degrading

dysfunctional ER membranes and restoring ER homeostasis (10).

ER-phagy contains two primary autophagy mechanisms, namely,

macroautophagy and microautophagy. The mechanism of

macroautophagy is that the autophagy bilayer membrane extends

and wraps the endoplasmic reticulum fragments, finally binding to

the lysosomes and being degraded. Microautophagy is the process

by which the lysosomal membrane undergoes invaginations and

extrudes part of the endoplasmic reticulum into the lysosome (11).

Restricted treatments lead to poor prognosis of ALI/ARDS, and

clarification of the pathogenesis is critical for treatment. Therefore,

an in-depth understanding of the pathogenesis of ALI/ARDS is

essential. In this review, we discussed the possible role of ER-phagy
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in ALI/ARDS, which may provide new insights for treating ALI/

ARDS, thus reducing ALI/ARDS incidence and improving ALI/

ARDS prognosis.
2 Regulatory mechanism of ER-phagy

Several studies have suggested that ER-phagy receptors are the

primary regulatory mechanism of ER-phagy. To induce ER-phagy,

late-stage ER stress activates ER-phagy receptors, which interact

with the light chain (LC3)/GABARAP (GABA type A receptor-

associated protein)/autophagy protein (ATG)8 autopahgy protein

complex. In addition, recent studies have also found that complexes

of mitochondrial oxidative phosphorylation (OXPHOS) and

DDRGK1-mediated ER surface UFMylation are closely associated

with ER-phagy. Therefore, mitochondrial factors and DDRGK1

proteins are also involved in regulating ER-phagy.
2.1 ER-phagy receptors

ER-phagy receptors are an essential part of ER-phagy, including

the family with sequence similarity 134 member B (FAM134B),

reticulon-3L (RTN3L), atlastin GTPase 3 (ATL3), testis expressed

264 (TEX264), cell cycle progression 1 (CCPG1), and preprotein

translocation factor SEC62, coiled-coil domain-containing protein

1 (CALCOCO1),which bind to autophagy-related proteins and

mediate ER-phagy (Figure 1).

2.1.1 FAM134B
FAM134B is currently the most widely studied autophagy

receptor, and it has two significant structures, LIR and RHD. LIR

binds to the LC3/GABARAP family of autophagy proteins and is a

typical structure of selective autophagy receptors (12, 13). RHD has

two hairpin structures, namely, TM1-TM2 and TM3-TM4, which

are responsible for anchoring the protein to the ER membrane,

subsequently recognizing and inducing the bending of the ER
FIGURE 1

Structure of ER-phagy Receptors in Mammals. ER-phagy receptors, distributed in a specific ER domain, bind to autophagic proteins and then assemble into
autophagosomes, thus recruiting the autophagy machinery. Mammalian ER-phagy receptors are mainly FAM134B, RTN3L, ATL3, TEX264, CCPG1, and SEC62,
and the novel receptor CALCOCO1 has been found to mediate ER-phagy currently.
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membrane (11). Cinque et al. found that promoting TFEB/

transcription factor 3 (TFE3) nuclear translocation by activating

fibroblast growth factor (FGF) signaling facilitates the transcription

of FAM134B (14). Because ATG5 and Beclin1 are valuable in

FAM134B-mediated ER-phagy, it has been demonstrated that

FAM134B depends on macro-ER-phagy (11).

2.1.2 RTN3L
RTN3L is generally localized to the endoplasmic reticulum

through the RHD structure. RTN3 interacts with LC3/GABARAP

via the LIR. As an ER-phagy receptor, RTN3L in the oligomeric

state promotes ER tubule fragment formation, and the functional

LIR motif of RTN3L then promotes the transport of ER debris into

lysosomes (15). Misfolded proteins escape the ER by damaging the

ER membrane, while RTN3L protects ER membrane integrity based

on ER-phagy (16). Furthermore, RTN3L maintains homeostasis in

immunity and inflammation by disrupting polyubiquitination of

K63 junctions and inhibiting the interferon regulatory factor 3

(IRF3) and nuclear factor kappa-B (NF-kB) pathways (17).

2.1.3 ATL3
ATL3 is a power-like GTPase that mainly regulates ER

fusion; it is the primary tubular ER-phagy receptor in cells

lacking RTN3L, and ATL3 deficiency suppresses tubular ER

degradation. ATL3 interacts explicitly with the GABARAP of

the ATG8 family through the interaction of two GABARAP

motifs, resulting in the sequestration of tubular endoplasmic

reticulum in autophagosomes, which are ultimately degraded by

lysosomes (18). The process of the unc-51-like kinase 1 (ULK1)

complex targeting the ER plays a key role during autophagosome

formation, and ATL3 contributes to ULK1 fixation at the specific

autophagosome formation site in the ER (19).

2.1.4 TEX264
The N and C termini of TEX264 are hydrophobic and relatively

loose fragments, respectively, with a cytosolic gyrase inhibitor

(Gyrl)-like structure between the N and C termini. TEX264 is

mainly responsible for ER-phagy during starvation. Compared to

other ER-phagy receptors, TEX264 is most strongly connected to

the LC3, ATG8, and GABARAP autophagy proteins (20). The

mechanism by which TEX264 initiates ER-phagy is by using its

C-terminal LIR motif to interact with ATG8 in lipid form, and

TEX264 then binds to LC3-positive phagosomes. Finally, the

autophagosome fuses with lysosomes (21). Excessive ER ribosome

volume causes some obstacles to ER-phagy. However, the unique

structure of TEX264 solves this problem because its extended C-

terminus assists the ER in binding to phagosomes by extending to

the cytoplasm and binding to LC3 (22).

2.1.5 CCPG1
CCPG1 is an atypical endoplasmic autophagy receptor that

interacts with ATG8 through the typical LIR motif in the

cytoplasmic region and binds to FIP200 through the discrete

motif (FIR) (23). Zhou et al. also found that the regulation of

phosphorylation promotes the interaction of FIP200 with the FIR2
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motif of CCPG1 (24). Therefore, it is likely that CCPG1 initiates

ER-phagy upon interaction with both proteins. Researchers have

found that in addition to the first two autophagy proteins, RB1-

inducible coiled-coil (RB1CC1) is also localized to the FIR of

CCPG1. Unlike other autophagy receptors, binding to RB1CC1 is

required for CCPG1 to trigger ER-phagy (25).

2.1.6 SEC62
SEC62 is a component of the translocon complex and a critical

ER-phagy receptor (26). Under ER stress induction, SEC62 binds to

the ATG8 autophagy-associated protein to assist in the formation of

autophagosomes containing misfolded or unfolded proteins and the

ER. Autophagosomes are then transmitted to lysosomes (27).

Recent studies have demonstrated that SEC62 not only

participates in the UPR, but also improves stress tolerance during

the ER stress recovery phase, indicating that SEC62 is a significant

autophagy receptor during the ER stress recovery phase (26, 27).

The bulk of secretory and membrane proteins is located in the ER

and is translocated via the SEC61 protein transduction channel.

Both SEC62 and SEC63 are associated with SEC61 channels, which

form the SEC complex and regulate protein translocation (28, 29).

2.1.7 CALCOCO1
Recently, researchers have found that in addition to the six

typical ER receptors in mammals, calcium-binding and

CALCOCO1 also mediate ER-phagy as soluble receptors.

CALCOCO1 consists of the N-terminal SKIP carboxyl homology

(SKICH) domain, the intermediate helix-helix region (CC), and

different carboxy-terminal (CT) domains. CALCOCO1 tends to

interact with the GABARAP subfamily of ATG8 to mediate

macroautophagy. During autophagy, the LIR docking site (LDS)

and UIM‐docking site (UDS) are required to stabilize the

GABARAP interaction with CALCOCO1, and the UDS sites do

not interfere with the role of the LDS sites. CALCOCO1 acts with

vesicle-associated membrane protein (vamp)-associated proteins to

mediate ER-phagy via two phenylalanines (FFs) in an acidic tract

(FFAT) motif (30).
2.2 Other novel regulatory mechanisms of
ER-phagy

With a more comprehensive understanding of the regulatory

mechanism of ER-phagy, researchers have found that OXPHOS

and DDRGK1-mediated ER surface UFMylation also promote ER-

phagy. OXPHOS is positively correlated with ER-phagy. Under

starvation conditions, deficiency of OXPHOS severely impedes ER-

phagy activation. UFM1-specific ligase 1 (UFL1) is recruited to the

ER by DDRGK1, which subsequently impels the activation,

conjugation, and ligation of UFM1 to the substrate ribophorin I

(RPN1) and ribosomal protein L26 (RPL26) via ubiquitin-like

modifier activating enzyme 5 (UBA5), ubiquitin-fold modifier

conjugating enzyme 1 (UFC1), and the UFL1 cascade, thus

triggering ER-phagy to ameliorate the intensity of ER stress

(Figure 2) (31).
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3 Potential roles and mechanisms of
ER-phagy in ARDS

Autophagy is of great value in delaying ARDS exacerbation. ER-

phagy, selective autophagy with high efficiency, plays a crucial role

in autophagy. ER-phagy may prevent and ameliorate ARDS

induced by different causes by regulat ing immunity ,

inflammation, apoptosis, pathogen invasion, and collagen

synthesis (Figure 3).
3.1 ER-phagy regulates immune and
inflammatory responses by regulating
immune cells, controlling inflammatory
material release, and inhibiting variant anti-
trypsin and severe pancreatitis

The inflammatory response is the main pathophysiology of ALI/

ARDS and the core of ALI/ARDS Pathogenesis (32). Dysregulation of

inflammation caused by immune cells is associated with ARDS

Pathogenesis (33), and macrophages have been demonstrated to

regulate lung inflammation. Macrophages can be polarized into two

subsets, namely, M1 and M2. M1 macrophages promote inflammatory

responses, while M2 macrophages contribute to the repair of damaged

tissue (34). Several studies have demonstrated that the polarization

regulation of macrophages plays pivotal roles in various stages of ALI/

ARDS (35, 36). Nevertheless, under different circumstances, the

properties of diverse macrophage subsets are not rigorously inflexible

in each phase of ALI/ARDS (34). Autophagy, responsible for the

maintenance of homeostasis, is associated with the polarization of

macrophages. Liu et al. found that autophagy promotes the
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downregulation of inflammation through modulating macrophage

polarization in LPS-treated mice (37). Moreover, researchers found

that certain drugs use the effect of autophagy on macrophage

polarization, thus improving the prognosis of associated diseases (38,

39). For example, Araloside C ameliorates atherosclerosis by regulating

macrophage polarization via autophagy (38). Whether ER-phagy is

involved in the paradoxical regulation of macrophage polarization

remains unresolved, whereas researchers suggested that the certain

target at ER affects macrophage polarization by activating selective

autophagy. For example, due to the enhancement of M2-like

macrophage polarization by regulating autophagy via NOD-like

receptor family, pyrin domain containing 3 (NLRP3)

deubiquitination, ubiquitin-specific protease 19 (USP19), an ER-

anchored deubiquitinating enzyme, may serve as an important target

in treating inflammation-related diseases (40). Autophagy is also

closely associated with ALI/ARDS. Lipopolysaccharide (LPS), a

common factor inducing ALI/ARDS, may aggravate inflammatory

responses via inhibition of autophagosome degradation (41). However,

several traditional Chinese medicines suppress inflammatory pathway

by promoting autophagosome degradation, such as Astragaloside IV,

JFNE-A (42, 43). In addition, the certain drug may alleviate ALI/ARDS

by modulating macrophage polarization via autophagy, such as Sirtuin

6 (SIRT6) (44). Be it autophagy itself or the regulation of macrophage

polarization via autophagy, all of thesemechanisms play critical roles in

inflammation. Therefore, the essential contribution of autophagy to

immunity is regulating inflammation, and modulating immune cells is

involved in the whole process (45).

As a critical type of organelle autophagy, ER-phagy plays a

crucial role in alleviating inflammation as well (46). ER-phagy may

regulates immune and inflammatory responses by regulating

immune cells. Unlike the traditional forms, Anti-PD-L1

(Programmed death ligand 1), a promising measure in treating
FIGURE 2

The Mechanism of Oxidative Phosphorylation and DDRGK1-mediated UFMylation Regulation for Propelling ER-phagy. Mitochondria OXPHOS can
directly promote ER-phagy. DDRGK1-mediated UFMylation interacts together with E1, E2, and E3. UFL1 delivers UFM1 to the ER surface proteins
RPL26 and RPN1, enabling the UFMylation of ER, which then initiates ER-phagy. ER-phagy inhibits IRE1 activity, which in turn blocks the UPR.
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ALI/ARDS, promotes autophagy by inhibiting the PI3K/Akt/

mTOR pathway at the ER in neutrophils, thus attenuating

inflammatory responses (47). USP19 anchored at ER alleviates

inflammatory responses and damaged tissues by increasing

autophagy flux in macrophages (40).Naive T cells differentiate

into effector T cells and long-lived memory T cells, which play

critical roles in immune responses. As a crucial regulator of T cell

quiescence, fully understanding cellular metabolism may be

required for developing novel approaches to modulate protective

and pathological T cell responses in human diseases (48). T cells

require functional autophagy to adapt to activated energy

requirements. In T-cell activation and differentiation, autophagy

promotes cellular metabolism by degrading cellular components,

thus accommodating the energy requirements of activated T cells

(49).A previous study has demonstrated that the initiation of ER-

phagy by ER stress maintains homeostasis in mature T

lymphocytes. Researchers have shown that ER-phagy regulates

calcium influx by maintaining ER homeostasis, which

subsequently improves T-cell function (50). Recently, the

prevalent coronavirus disease 2019 (COVID-19) has been the

critical cause of ARDS, and ICU patients with COVID-19 are

associated with severe ARDS. Researchers have found that

nonsurvivors have significantly increased neutrophils and

significantly reduced T cells. Therefore, maintaining homeostasis

of T cells is likely to be crucial for preventing and ameliorating ALI/

ARDS (51). Although the researches of ER-phagy of immune cells

in ALI/ARDS is not very clear, many researchers demonstrated that

immune cells maintain homeostasis through autophagy, thus

improving the prognosis of ALI/ARDS. Alveolar macrophages are

the main immune cells in lung, and researchers have suggested that

inducing autophagy in alveolar macrophages significantly alleviates

lung inflammation (52). MicroRNAs are associated with the

autophagy of alveolar macrophages in LPS-induced ALI/ARDS.

Exosomal miR-384-5p target the Beclin-1 autophagy protein to

maintain the stabilization of autophagy in alveolar macrophages,
Frontiers in Immunology 05
thus alleviating lung pathological changes and attenuating

inflammatory responses (53). Due to the induction of autophagy

of macrophages via inhibition of transforming growth factor-b-
activated kinase-1-binding protein 2 (TAB2), miR155 becomes a

potential candidate for anti-inflammatory therapy during septic

lung Injury (54). Moreover, researches demonstrated that some

drugs ameliorate ALI/ARDS by activated autophagy of

macrophages to mitigate inflammation. SIRT6 induces autophagy

of macrophages by activating the AMPK pathway, which leads to

M2 macrophage polarization and attenuates inflammation in

sepsis-induced ARDS (44). Lipoxins (LXs), synthesized by

immune cells such as macrophages and neutrophils, promote

anti-inflammatory activities. Researchers showed that LXA4

receptor agonist alleviates ALI-associated inflammation and lung

injury by stimulating autophagy (55). Sophoridine may inhibit LPS-

induced ALI by enhancing autophagy of macrophages and reducing

inflammation (41). At present, the role of autophagy of immune

cells in clinical practice is still under research, and these researches

mainly focus on immune system diseases. A-synuclein, an

autophagy-related marker of peripheral blood lymphocytes, is

potentially applied to diagnosis of systemic lupus erythematosus

in clinical practice (56). Due to inhibition of over-expansion of

activated T lymphocytes via autophagy, Tripterygium glycoside

fraction n2 (TGA2) provides an effective therapy for

inflammatory bowel disease (IBD) (57). These findings also

provide important values for exploring functions of ER-phagy of

immune cells in clinical practice.

When defending against infection, some immune cells,

including macrophages and neutrophi ls , of ten cause

inflammatory responses in the lung. Pulmonary inflammation is

mainly caused by inflammatory factors released from alveolar

macrophages. However, the autophagy-related proteins, ATG and

FIP200, have been found to maintain innate immune homeostasis,

thus avoiding aggravating ALI/ARDS caused by dysregulated

inflammation (58). Although ER-phagy effectively regulates lung
FIGURE 3

The Potential Role of ER-phagy in ALI/ARDS. Immunity and inflammation are closely associated with ALI/ARDS progression. During the ER-phagy,
the autophagy proteins initiate autophagy of immune cells. Autophagy of macrophages reduces inflammation in the lung, and autophagy of T cells
promotes cell metabolism, and enhances proliferation and differentiation of cells. ER-phagy can also reduce apoptosis and prevent pathogen
infection, which prevent and improve ALI/ARDS. Furthermore, ER-phagy maintains collagen quality and avoids the progression of ALI/ARDS to
pulmonary fibrosis.
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inflammation, excessive ER-phagy produces side effects.

Neutrophils are the first line of defense against pathogen

invasion, and the neutrophil extracellular trap (NET) is released

to control spread of the pathogen and then kill the pathogen (59).

SARS-CoV-2 induces NET release from neutrophils, while excessive

NET release causes apoptosis of lung epithelial cells and severe

inflammation (60). However, more vigorous activity of autophagy

proteins causes more NET release, suggesting that excessive ER-

phagy may lead to COVID-19-induced ARDS (60, 61). Oxidative

stress and the inflammatory response play vital roles in sepsis-

induced ALI/ARDS. Bhattacharya et al. found that the lack of

autophagy proteins alleviates oxidative stress and neutrophil-

mediated inflammation (62). Therefore, regulation of ER-phagy is

needed to alleviate sepsis-induced ALI/ARDS.

Some ER-phagy receptors also initiate ER-phagy to reduce lung

inflammation, thus preventing and ameliorating ALI/ARDS. Variant

antitryptases cause reduced lung tissue compliance and aggravate lung

inflammation. Researchers have found that endoplasmic reticulum to

lysosome-related degradation (ERLAD) removes these variant

proteins, while the delivery of variant proteins to the lysosome

requires LC3 lipidation. FAM134B-mediated ER-phagy degrades the

variant of anti-trypsin by binding to lipidated LC3, thus relieving lung

tissue inflammation and facilitating gas exchange (63). In the early

stage of acute pancreatitis, the local pancreatic tissue releases large

amounts of inflammatory cytokines into the bloodstream, which

invade the intestine via blood flow and damage the intestinal barrier.

Increased intestinal wall permeability allows bacteria and endotoxins to

enter the bloodstream, causing severe inflammatory responses that

disrupt the endothelial barrier (64). Nevertheless, Lahiri et al. found

that the exocrine trypsin accumulated in the ER triggers ER stress, and

CCPG1-mediated ER-phagy relieves pancreatic inflammation and ER

stress, thus avoiding severe pancreatitis-induced ALI/ARDS (65).

In addition, NF-kB plays a fundamental role in inflammatory

and immune responses, which is associated with pathogenesis of

ARDS. Nimbolide protects against ARDS through suppressing NF-

kB nuclear translocation (66). DDRGK1 and UFL1 mediate ER-

phagy by interacting with UFM1. Some researches found that

DDRGK1 and UFL1, UFM1 are involved in modulating NF-kB
signaling. DDRGK1 degrades inhibitors of nuclear factor kappa-B

(IkB), resulting in NF-kB nuclear translocation (67). In contrast,

UFL1 and UFM1 abrogates NF-kB activation. For example,

overexpression of UFM1 suppresses the LPS-induced toll-like

receptor 4 (TLR4) pathway, preventing NF-kB nuclear

translocation and alleviating the inflammatory response to avoid

endothelial damage (68). However, the functional relevance of ER-

phagy in NF-kB signaling requires further exploration, which may

provide novel approaches to the treatment of ALI/ARDS.
3.2 ER-phagy inhibits the apoptosis of
alveolar epithelial cells, lung capillary
endothelial cells induced by ER stress/
mitochondrial dysfunction

In the early stage, UPR maintains cellular homeostasis.

However, if unstable ER is persistent, UPR will induce cell death
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through apoptotic mechanisms, such as PERK- C/EBP homologous

protein (CHOP) (69), IRE1- apoptosis signal-regulating kinase

(ASK)-Jun N-terminal kinases (JNK) (70). In addition, Calcium

also plays a key role in apoptosis triggered by UPR (71). Similar to

ER stress, autophagy is a cytoprotective mechanism under

nonphysiological conditions. The relationship between autophagy

and apoptosis is changeable. Under normal circumstances,

autophagy can protect cells from apoptosis. However, prolonged

autophagy induced by ER-stress may contribute to apoptosis. In

some conditions, apoptosis induced by ER stress even turns to a

protective autophagy in resistance to some drugs (72).

ER-phagy is closely linked to ER stress, and the UPR is involved

in ER stress triggering ER-phagy (73). For example, Metformin

promotes autophagosome formation by activating UPR (74).

However, when ER stress loses its balance with ER-phagy,

excessive ER stress and ER-phagy induce apoptosis, which

exacerbates the progression of ALI/ARDS. Therefore, appropriate

regulation of the interaction between ER-phagy and ER stress

effectively reduces apoptosis, which may prevent and improve

ALI/ARDS. It has been found that both the activation and

inhibition of ER-phagy regulate the intensity of ER stress. Liu and

colleagues found that Dexmedetomidine induces ER-phagy by

activating FAM134B, which subsequently attenuated the ER stress

(75). Globular adiponectin has been found to activate SEC62-

mediated ER-phagy, thus mitigating ER stress-induced

cardiomyocytes apoptosis (76).However, Lim et al. found that

palmitate reduces ER stress by inhibiting ER-phagy (77).

Persistent ER stress has been demonstrated to cause apoptosis of

alveolar epithelial cells, whereas appropriate ER-phagy decreases

apoptosis by alleviating ER stress. In acute lung injury models, 4-

phenyl butyric acid (4-PBA) triggers ER-phagy to regulate excessive

ER stress, attenuating lung inflammation and reducing apoptosis of

alveolar epithelial cells (78). As a scavenger of reactive oxygen

species (ROS) and inducer of antioxidant systems, Melatonin

suppresses ER stress by restoring autophagic flux, thus

attenuating apoptosis and lower infiltration of inflammatory cells

in lung (79). Therefore, Melatonin may contribute to ameliorate

ALI/ARDS by regulating interaction between ER stress and ER-

phagy. In addition to persistent ER stress leading to apoptosis,

inhibition of ER-phagy also activates the apoptosis pathway in

certain conditions (80).

Mitochondrial dysfunction exacerbates hyperoxia-induced

damage to alveolar epithelial cells (81). As the most important

organelles in the cell, the ER and mitochondria have tight junction

structures known as mitochondria-associated ER membranes

(MAMs). Recently, the endoplasmic reticulum-mitochondria

encounter structure (ERMES) has been demonstrated to connect

the ER and the mitochondria, facilitating the exchange of material

between the two organelles. However, misfolded proteins

accumulated in the ERMES cause mitochondrial dysfunction (82).

Kellner et al. found that heavily accumulated ROS induces oxidative

stress, which later causes ALI/ARDS by increasing the apoptosis of

lung capillary endothelial cells (83). Chen et al. found that impaired

mitochondria produce excessive ROS. Nevertheless, ER-phagy has

been demonstrated to inhibit apoptosis due to oxidative stress and

ER stress in other tissues. In the model of mitochondrial injury,
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Panax notoginseng saponin (PNS) attenuates ROS-mediated

ryanodine receptor 2 (RYR2) oxidation, subsequently inhibiting

ER stress-induced apoptosis via ER-phagy (84). Luo et al. found

that the accumulation of AGEs activates the ROS pathway, which

initiates FAM134B-mediated ER-phagy and then impedes the

apoptosis of nucleus pulposus cells (85).

Although the apoptotic effect of ER-phagy on ALI/ARDS has

not yet been determined, researchers have demonstrated that ER-

phagy is closely associated with lung diseases, which plays crucial

roles in cellular survival. As inducers of ER-phagy, both FAM134B-

1 and FAM134B-2 isoforms are positive in normal lung tissue,

whereas a significant downregulation of FAM134B is observed in

lung cancer (86). In addition, many researches proved that

autophagy is involved in the progression of ALI/ARDS by

regulating apoptosis. Epithelial cell dysfunction, such as Alveolar

type 2 (AT2) cells, has emerged as a critical part of the

pathophysiology of diffuse parenchymal diseases. Quality control

systems, including UPR and autophagy, are essential to avoid the

occurrence of ALI/ARDS. AT2 cells maintain homeostasis by

selective removal of impaired cellular organelles via autophagy,

such as ER or lysosome-related organelles (87). The oxidative stress

is associated with ROS and autophagy, and autophagy is seen as a

secondary defense of oxidative stress. Beyer et al. found that

autophagy ameliorates dysfunctional mitochondria, thus restoring

barrier integrity by regulating apoptosis of lung microvascular

endothelial cells in ROS-induced lung injury (88). Certain drugs,

such as Genipin, inhibit apoptosis by mitigating oxidative stress and

mitochondrial damage via activation of autophagy in LPS-induced

ALI (89).

Besides, apoptotic alveolar macrophages releases more ROS and

exacerbates inflammatory cascading, resulting in apoptosis of

alveolar epithelial cells and aggravated lung injury (52, 90).

However, autophagy of alveolar macrophages contributes to

maintain cellular homeostasis and ameliorate lung injury by

regulating apoptosis. Fan et al. found that autophagy of alveolar

macrophages reduces alveolar macrophage apoptosis by mitigating

endoplasmic reticulum stress and oxidative stress (91). MiR−223

−3p−loaded exosomes activates alveolar macrophage autophagy

and restores anti-apoptotic effects by targeting serine/threonine

kinase 39 (STK39) in the lung tissue of ALI mice (92).

Meanwhile, the integrity of degradation is essential for the

autophagy process. Under reduced lysosome conditions, LPS

promotes the accumulation of autophagosomes in alveolar

macrophages, leading to severe inflammation and apoptosis of

alveolar macrophages (90). Certain drugs can alleviate ALI by

suppressing apoptosis of alveolar macrophages via autophagy of

alveolar macrophages, and some of them contributes to alleviate

lung inflammation as well, including LXA4 receptor agonist (55).

Nevertheless, Complement C5a exacerbates alveolar macrophage

apoptosis via enhancement of autophagy in acute lung injury (93).

ER-phagy is triggered by mediating ER surface UFMylation via

activated UFM1. IRE1a cleaves the X-box-binding protein 1 (XBP-

1)-encoded mRNA via endonuclease to produce the active

transcription factor XBP1, thus initiating the UPR. XBP-1 induces

the upregulation of UFM1 expression by inhibiting vesicular

trafficking (94). The translocation of UFM1 to the ER has been
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found to be dependent on UFM1-binding protein 1 containing a

PCI domain (UFBP1). Under ER stress, UFM1 and UFBP1 are

upregulated and reduce apoptosis, suggesting that UFM1-mediated

ER-phagy may protect tissue injury by inhibition of apoptosis (95).
3.3 ER-phagy avoids the proliferation and
transmission of pathogens

Pathogen infection is a common cause of ALI/ARDS, and ER-

phagy is closely related to pathogenicmicrobial clearance. ER-phagy

may prevent infection by activated ER-phagy receptors or

regulating immune cells, thus preventing or ameliorating the

development of ALI/ARDS.

ER-phagy receptors, including FAM134B, ATL3, SEC62, and

others, control viral proliferation and transmission. Viral invasion

of lung tissue leads to damaged vascular endothelium, the body then

initiates FAM134B-mediated ER-phagy and reduces the supply of

raw materials and vesicle membranes required for viral replication,

thus inhibiting viral proliferation and transmission (13). ATL3

interacts with the viral capsid, preventing virus assembly and

transport, and ATL3 cleaves the spike protein on the immature

SARS-CoV-2 surface by activating the Flynn protease (96). Upon

activation of SEC62 via viral infection, activated SEC62 drives

IRE1a phosphorylation, which subsequently induces the IRE1-

JNK pathway and delivers autophagosomes to lysosomes, thus

mitigating virus-induced ER stress and impeding viral replication

(97). However, RTN3 endures viral proliferation, facilitating the

virus to escape from the ER to the cytoplasm by reshaping the ER

membrane to make it more flexible (98). Usually, viruses are cleared

by ER-phagy, but coronaviruses inhibit autophagosome formation

through related proteases or their specialized structures, resulting in

impaired ER-phagy (99). ER-phagy, mediated by ER-phagy

receptors, is also associated with fungal infection. For example, in

response to A.fumigatus stimulation, the levels of CCPG1

expression are increased to a large extent. CCPG1-mediated ER-

phagy removes pathogens and suppresses excessive inflammatory

responses, thus avoiding aggravating ALI/ARDS caused by

pulmonary fungal infection in the immunocompromised

setting (100).

Many researches have shown that autophagy of immune cells

plays a vital role in improving the prognosis of ALI/ARDS, such as

alveolar macrophages. Due to the effective removal of intracellular

pathogens and subcellular organelles (including ER) through

activation of autophagy, STING was initially viewed as a crucial

molecule in immunity. However, a recent research has

demonstrated that in alveolar macrophages, STING inhibits

autophagic flux by perturbing lysosomal digestion, thus leading to

sepsis-induce ALI (101). Autophagy dysfunction induced by

prostaglandin E2 (PGE2) contributes to survival of P. aeruginosa

in alveolar macrophages, thus increasing the occurrence of ALI in P.

aeruginosa-infected bone marrow transplant (BMT) mice (102).

Defective autophagy leads to depletion of ATP synthesis by severe

mitochondrial dysfunction, then significantly decreases

antimicrobial activity. However, researchers have found that

AMPK- peroxisome proliferator-activated receptor-gamma,
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coactivator 1a (PPARGC1A) axis promotes antimicrobial host

defense through activation of autophagy in alveolar macrophages

(103). Although the direct effect of ER-phagy of immune cells on

pathogen infection is not largely explored, ER-phagy may regulate

the proliferation and differentiation of immune cells through

autophagy proteins. Catechins activate CD8+ T cytotoxic

lymphocytes by upregulating the protein levels of Beclin-1 and

Atg5-Atg12, thus enhancing the adaptive immunity against viral

infections (104). ATG proteins inhibit activated CD8+ T cells from

converting into effector cells, whereas autophagy also promotes the

transformation of effector cells into memory cells during this

process, which improves the quality of memory cells and

strengthens the host defense mechanisms (105). Pei and

colleagues found that ATG proteins are associated with the

proliferation and differentiation of NKT cells. The deletion of

ATG proteins causes a corresponding decrease in NKT cells,

which weakens both innate and acquired immune function. Due

to the limitation of resisting pathogen infection effectively,

infection-induced ALI/ARDS is more easily caused (106).

In addition to clearance of virus and fungus, ER-phagy is also

responsible for eliminating bacteria. Bacteria survive and proliferate

in host cells, which depend on a safe and nutritive environment.

The ER has such conditions, which encourage bacteria to stabilize

and multiply inside the cell (107). These bacteria are prone to

trigger ER stress. As a result, ER-phagy is initiated, immediately

eliminating bacteria and maintaining ER homeostasis (108).

Researchers have demonstrated that when infected by gram-

positive bacteria, the defensive machinery activates ER-phagy by

inhibiting mTOR activity. ER-phagy reduces PERK and CHOP

expression, and it improves the immune system to enhance the

defensive function of the host (109).

3.4 ER-phagy prevents the progression of
ALI/ARDS to pulmonary fibrosis by
controlling collagen synthesis

If the pathological changes of ALI/ARDS are not corrected

immediately, severe pulmonary fibrosis, the major cause of mortality

in ARDS patients, will occur in the later stage to aggravate the

development of the disease (110). Some researchers have attempted

to restore the integrity of alveolar-capillary barrier by two molecules,

platelet-endothelial cell adhesion molecule-1 (PECAM1) and wingless-

related integration site (Wnt), thus attenuating diffuse alveolar damage

and preventing fibroproliferative ARDS (111).

In addition to inducing apoptosis in lung epithelial cells, persistent

ER stress also exacerbates lung fibrosis. ALI appears in bleomycin-

treated mice, and palmitate increases apoptosis of lung epithelial cells,

which exacerbates endoplasmic reticulum stress by upregulating the

expression of UPR proapoptotic proteins, resulting in the progression

of ALI/ARDS to pulmonary fibrosis (112). Moreover, researches have

shown that ER stress promotes the development and progression of

pulmonary fibrosis by the regulation of alveolar epithelial cell (AEC)

apoptosis, epithelial–mesenchymal transition, and myofibroblast

differentiation (113). Therefore, controlling the intensity of ER stress

may be beneficial for the prognosis of ALI/ARDS through reduced

pulmonary fibrosis.
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ER stress is closely associated with autophagy, and some drugs-

mediated protection against pulmonary fibrosis through regulation of

ER stress and autophagy. For example, Spermidine has been shown to

resolve fibrosis by inhibiting ER stress and enhancing autophagy. Thus,

autophagy also plays a critical role in suppressing fibrotic lung.

Recently, researches demonstrated that defective autophagy

contributes to excess production of extracellular matrix and

alteration of fibroblasts to myofibroblasts (114). Yang et al. found

that Oridonin attenuates LPS-induced early pulmonary fibrosis by

restoring impaired autophagy (115). Therefore, high-quality autophagy

may prevent ALI/ARDS from progressing to pulmonary fibrosis. As a

cellular organelle with efficient autophagy, ER has been demonstrated

to be involved in a novel anti-fibrotic function (116). Excessive

deposition of extracellular matrix, mainly collagen protein, is the

main factor leading to pulmonary fibrosis. However, ER-phagy

maintains procollagen quality to prevent fibrosis due to intense ER

stress. Because collagen synthesis is complex and prone to errors,

FAM134B-mediated ER-phagy degrades misfolded collagen, avoiding

intense ER stress due to the accumulation of these proteins.

Researchers found that the ER-resident lectin chaperone protein,

CANX, and the ER phagocytic receptor, FAM134B, are pivotal in

this process. CANX, a coreceptor for FAM134B-mediated ER-phagy, is

responsible for binding and recognizing misfolded procollagen in the

ER lumen. FAM134B then binds to the LC3 autophagic protein and

transports the ER containing CANX and procollagen to lysosomes for

degradation (117). FAM134A and FAM134C also function in

maintaining collagen homeostasis. Therefore, deficiency of the

FAM134 protein inhibits ER-phagy, thus causing a significant

increase in collagen and leading to a dramatically increased incidence

of pulmonary fibrosis (118).

Apart from the regulation of immunity, inflammation, apoptosis,

and pathogen infection, autophagy of immune cells also plays an

important role in pulmonary fibrosis. Aggregated macrophages in

damaged lung areas may aggravate inflammation and accelerate

fibrogenesis, whereas Dioscin decreases chemokines and

proinflammatory cytokines secretion by inducing autophagy of

alveolar macrophages, thus avoiding pulmonary fibrosis due to

collagen deposition (52). Trehalose exerts antifibrotic effects by

restoring lysosomal function, accelerating autophagic substrate

degradation, and enhancing autophagic flux in Crystalline Silica

(CS)-treated Alveolar Macrophages (119). Nevertheless, Liu et al.

found that TP53-upregulated modulator of apoptosis (BBC3) triggers

the release of pro-fibrotic cytokines by enhancing autophagy of alveolar

macrophages (120).
4 Conclusions and perspectives

ALI/ARDS, an intractable inflammatory disease in ICU, has a

high mortality rate. It is urgent to find the treatment for ALI/ARDS,

and the key is to understand the pathogenesis. However, the

pathogenesis of ARDS is not elucidated up to now.

ER-phagy was discovered in 2007, and researchers began

intensively studying ER-phagy through ER-phagy receptors in

2015. Therefore, as an important organelle autophagy, ER-phagy

is a relatively new field of research. Recently, researchers have
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conducted many studies on ER-phagy. When ER stress asts too

long, and the proteasome degradation system is insufficient to

compensate, ER-phagy is mediated by different ER-phagy

receptors or other pathways, resulting in removal of damaged ER

fragments, effectively improving the intracellular environment. In

other damaged tissues, since ER-phagy is involved in the regulation

of inflammation and apoptosis, it is regarded as an important

therapeutic target of associated diseases.

ALI/ARDS is characterized by complex pathological changes,

and inflammation and apoptosis play crucial roles in each

pathological stage. Although the specific mechanisms of ER-

phagy in ALI/ARDS have not yet be determined, ER stress and

autophagy have been proved to be involved in the progression of

ALI/ARDS. Researches demonstrated that ER stress is a vital

pathogenesis leading to ALI/ARDS, and this damage can be

reversed by autophagy via activation or inhibition of related

pathways. ER-phagy may be involved in the different etiology-

related ARDS by regulating immunity and inflammation,

modulating apoptosis, preventing microbial infection, and

preventing lung fibrosis. Besides, immunity and inflammation are

the most important pathogenesis of ALI/ARDS, and immune cells

are essential to the immune and inflammatory responses. Although

ER-phagy of immune cells is not largely explored, the autophagy of

immune cells does play critical roles in ALI/ARDS through affecting

four aspects, including immunity and inflammation, apoptosis,

microbial infection, and fibrosis. Many researches have shown

that autophagy of immune cells can ameliorate ALI/ARDS.

However, several studies suggested that under certain

circumstances, autophagy has a detrimental role in ALI/ARDS

pathogenesis, which is related to the primary etiology, the cell

types, the stage of ALI/ARDS. Therefore, further study on ER-phagy

of immune cells is a promising measure to resolve problems of

therapies. As for the detail directions of researches, researchers can

mainly focus on the relevance of ER-phagy in macrophage

polarization and inflammatory signals in the future.

Existing studies have demonstrated that ER-phagy is pivotal for

improving the prognosis of many diseases. Accordingly, conducting

experiments on the effects of ER-phagy in ALI/ARDS may provide

significant values in developing novel therapies for ALI/ARDS.
Frontiers in Immunology 09
Author contributions

SL, XF, RZ, JZ, HW, JL, CW, LW, LZ wrote and reviewed the

manuscript. SL prepared the figures. SL and XF discussed the ideas

in the draft. LZ reviewed the manuscript and provided suggestions.

All authors contributed to the article and approved the

submitted version.
Funding

This work was supported by grants from the National Key

Research and Development Program of China (2021YFC2501800)

and National Natural Science Foundation of China (82102245).
Acknowledgments

The authors would like to acknowledge the literatures that has

contributed to this field but is not included here due to the length of

the manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Butt Y, Kurdowska A, Allen TC. Acute lung injury: a clinical and molecular
review. Arch Pathol Lab Med (2016) 140(4):345–50. doi: 10.5858/arpa.2015-0519-RA

2. Mowery NT, Terzian WTH, Nelson AC. Acute lung injury. Curr Probl Surg
(2020) 57(5):100777. doi: 10.1016/j.cpsurg.2020.100777

3. Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet
(2021) 398(10300):622–37. doi: 10.1016/s0140-6736(21)00439-6

4. Saguil A, Fargo MV. Acute respiratory distress syndrome: diagnosis and
management. Am Fam Physician (2020) 101(12):730–8.

5. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology,
patterns of care, and mortality for patients with acute respiratory distress syndrome in
intensive care units in 50 countries. Jama (2016) 315(8):788–800. doi: 10.1001/
jama.2016.0291

6. Auriemma CL, Zhuo H, Delucchi K, Deiss T, Liu T, Jauregui A, et al. Acute
respiratory distress syndrome-attributable mortality in critically ill patients with sepsis.
Intensive Care Med (2020) 46(6):1222–31. doi: 10.1007/s00134-020-06010-9
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