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Respiratory infections are a major public health concern caused by pathogens

that colonize and invade the respiratory mucosal surface. Nasal vaccines have

the advantage of providing protection at the primary site of pathogen infection,

as they induce higher levels of mucosal secretory IgA antibodies and antigen-

specific T and B cell responses. Adjuvants are crucial components of vaccine

formulation that enhance the immunogenicity of the antigen to confer long-

term and effective protection. Saponins, natural glycosides derived from plants,

shown potential as vaccine adjuvants, as they can activate the mammalian

immune system. Several licensed human vaccines containing saponins-based

adjuvants administrated through intramuscular injection have demonstrated

good efficacy and safety. Increasing evidence suggests that saponins can also

be used as adjuvants for nasal vaccines, owing to their safety profile and potential

to augment immune response. In this review, we will discuss the structure-

activity-relationship of saponins, their important role in nasal vaccines, and future

prospects for improving their efficacy and application in nasal vaccine for

respiratory infection.
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1 Introduction

The human respiratory tract is a common entry point for various infectious

microorganisms, including viruses such as coronavirus, respiratory syncytial virus

(RSV), and influenza virus, as well as bacteria such as Streptococcus pneumoniae,

Staphylococcus aureus, Acinetobacter baumannii, and Mycobacterium tuberculosis, which

cause a significant global health concern, especially for older, or immunocompromised

people (1–3). Vaccination is a cost-effective and effective way to prevent these infections.

Although systemic vaccines against severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) or influenza virus can induce robust systemic immunity, they are not

sufficient to prevent virus transmission and only reduce the development of severe disease

(4, 5). Thus, a vaccine regimen that promotes mucosal immune responses in respiratory

tract is crucial in preventing pathogens invasion (5–7).
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Nasal vaccines are considered as a promising strategy by

inducing antigen-specific protective immune responses in both

mucosal surfaces and throughout the body. The respiratory route

has unique physiological and immunological characteristics, and

the nasopharyngeal-associated lymphoid tissue (NALT) is a key

induction site for mucosal immunity after nasal vaccination (8).

Compared to common injectable vaccines, nasal vaccination is

more likely to elicit a robust mucosal response, characterized by

antigen-specific T cell response in combination with secretory

immunoglobulin A (sIgA) (9). Secreted IgA helps bind and

eliminate pathogens before they can cause an infection (7). In

addition to inducing mucosal immune response, nasal vaccine can

also elicit systemic immune responses (7). Therefore, nasal vaccines

are an attractive strategy for combating pathogens that use the

respiratory tract as an entry point into the body. Furthermore, nasal

vaccination has several benefits, such as a larger mucosal surface

area for antigen uptake and convenience of being needle-free and

easy to self-administer.

So far, only three nasal vaccines have been licensed for human

use. The first is FluMist™, an attenuated influenza virus vaccine,

approved by U.S. Food and Drug Administration (FDA) (10). The

other two are SARS-CoV-2 vaccines, one is iNCOVACC™, a

chimpanzee adenovirus-vectored SARS-CoV-2 vaccine licensed

for restricted use in emergencies in India (11, 12); Another is

CA4-dNS1-nCoV-RBD, a nasal spray influenza virus vector

vaccine approved in China for emergency use (13). Despite the

potential benefits of these vaccines, there are safety concerns since

they use live viruses. Recombinant protein-based subunit vaccines

are a safer alternative, but their immunogenicity is often weak,

making it challenging to stimulate mucosal immunity. Meanwhile,

the unique physiological and immunologic properties of the

respiratory mucosa, such as the mucus layer and cilia movement,

can pose obstacles in the development of nasal vaccines, and pH

and enzyme conditions can degrade antigens (14). To overcome

these challenges, adjuvants play a crucial role in enhancing antigen

immunogenicity and vaccine efficacy in the respiratory

mucosa (15).

Adjuvants are important components of vaccine formulations

together with antigens and function to enhance the immunogenicity

of the co-inoculated antigens to confer long-term and effective

protection against pathogens (16). They can be broadly categorized

into immunostimulatory molecules and delivery systems that

transport the vaccines to the immune system (16). While various

mucosal adjuvants such as cholera toxin, Escherichia coli heat-labile

toxin, polyethyleneimine, alum, chitosan, and others have been

tested in experimental subunit vaccines for respiratory infections,

none of them have been approved for use in nasal vaccines (17).

Saponins, which are extracted from plants, have generated great

interest as vaccine adjuvants due to their multiple biological and

immunomodulatory properties (18). Quil A and its purified fraction

QS-21 are the most widely used saponins as adjuvants, owing to

their exceptional ability to enhance antibody responses and activate

T helper type 1 cells (Th1) and cytotoxic T lymphocyte (CTL)

immune responses by activating dendritic cells (DCs) (19, 20).

Additionally, QS-21-based adjuvants, including adjuvant systems
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(AS01, AS02, et al.) and immunostimulating complexes (ISCOMs)

have been developed with improved adjuvant effects and lower

toxicity (19). AS01 has been successfully used as an adjuvant in the

licensed vaccines, including the herpes zoster vaccine (Shingrix®)

and the malaria RTS,S/AS01vaccine (Mosquirix™), showing their

good efficacy and safety (20, 21). Currently, licensed adjuvants

containing saponins are administrated intramuscularly. Saponins

have also been used as adjuvants in nasal vaccines in several

experiments and they are believed to have great potential to elicit

strong mucosal and systemic immune responses (22). In this review,

we aim to explain the structure-activity relationship of saponins, the

crucial role of saponin-derived adjuvants in nasal vaccines, and

provide insights into the future research on saponins-

based adjuvants.
2 Chemical structure and effect
of saponins

Saponins are a type of naturally occurring glycosides that are

found in many plants. They consist of a steroid or triterpene trunk

linked to one or more carbohydrate chains (23, 24). The structure of

saponins varies greatly, which contributes to the diverse biological

activities that they possess, such as immunomodulatory, anti-

tumor, anti-inflammatory, antiviral, antifungal, cholesterol-

lowering, and others (25). The adjuvant activity of saponins is

mainly attributed to their ability to activate the mammalian

immune system (25). Quil A, a saponin mixture extracted from

the bark of the South American tree Quillaja saponariaMolina, has

been widely used as an adjuvant due to its good adjuvant activity

(26, 27). The purified fraction of Quil A, known as QS-21, was later

separated using reversed-phase high performance liquid

chromatography (RP-HPLC) and showed better adjuvant activity

with lower toxicity (28). QS-21 has since become a popular adjuvant

in vaccine studies and has been included in some approved

vaccines (29).

QS21 is a triterpene glycoside that is soluble in water and

consists of two isomers, QS-21 Apiose (QS-21 Api) and QS-21

Xylose (QS-21-Xyl) in a 2:1 ratio (Figure 1) (24). It features a central

quil laic acid triterpene core, surrounded by complex

oligosaccharide chains that are attached to C-3 and C-28

positions of the triterpene aglycone (Figure 1). The trisaccharide

moiety at the C3 position is made up of d-glucuronic acid, d-

galactose, and d-xylose. A linear tetrasaccharide, consisting of d-

fucose, l-rhamnose, d-xylose, and either d-apiose or d-xylose (for

QS-21Api or QS-21Xyl, respectively), is attached at the C-28

carboxylate of the triterpene via an ester bond. Finally, the

triterpene saponins are completed by a structurally complex l-

arabinose-terminated fatty acyl chain linked to the 4-position of

the fucose residue, making them amphiphilic in nature

(Figure 1) (30).

The underlying structure basis for the adjuvant activity of

saponins has been extensively studied. Factors such as branched

sugar chains, aldehyde groups, and an acyl residue on the aglycone

can contribute to the adjuvant activity. QS-21 may bind to cell
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surface lectins through its carbohydrate domain, leading to the

uptake of antigen by antigen-presenting cells (APCs) and the

stimulation of specific cytokines that activate cellular and/or

humoral responses (19, 31). The aldehyde group on the triterpene

has been identified as crucial for adjuvanticity of saponins, as QS-21

derivatives modified at an aldehyde did not exhibit adjuvant activity

for antibody stimulation or induction of CTL responses (32). The

imine-forming carbonyl group can also form Schiff bases with

amino groups on T cell surface receptors, leading to co-

stimulation for T cell activation and inducing Th1 immunity and

a CTL specific response (32, 33). The acyl chains on QS-21 have

been associated with cytotoxic T-cell proliferation activity, since the

removal of the acyl chain has been shown to be inactive for

stimulation of antibody and CTL responses (24, 34). However,

other saponins, such as soyasaponins and lablabosides, have been

shown to have strong adjuvant activity despite lacking acyl residues

(35). These studies suggest that acyl chain might contribute to the

adjuvant activity, but not play an essential role. The amphiphilic

structure of saponins, with a hydrophobic aglycone backbone and

hydrophilic sugar side chains, has been related to the adjuvant

activity (30, 36, 37). The triterpene’s affinity for cholesterol is

essential for antigen cross-presentation and QS-21 destabilizes

lysosomal membranes through cholesterol-dependent cytocytosis,

leading to activation of innate immunity (19, 31, 38). Additionally,

the amphiphilic nature of saponins makes them easy to formulation

into other adjuvant complexes, such as liposomes or nanoparticle.

In addition to Quil A and QS-21, other plant sources of

saponins with immune-stimulatory properties and low toxicities

have been investigated, such as Quillaja brasiliensis, Panax

notoginseng (39), Panax ginseng (40), Platycodon grandiflorum

(41), Pulsatilla chinensis (42), Soybeans (43), Polygala tenuifolia
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(44), and Paris polyphylla (45). However, the limited availability of

these sources, low isolation yields, and high purification costs have

led to the exploration of other methods to obtain new saponins.

Modification and synthesis of saponins are being developed to

create more effective adjuvants with lower toxicity. The goal is to

develop synthetic saponins with improved adjuvant-antigen activity

and lower toxicity (46). For example, Shirahata et al. prepared a

series of new simplified oleanolic acid saponins with a glycosyl ester

moiety at C28 and found that cinnamoyl esterification of the

glucose residue at C-28 was critical for providing mucosal

adjuvant activity after intranasal immunization (46). Synthetic or

semisynthetic saponins, such as GPI-0100, a semi-synthetic

derivative of Quil A, and VSA-1, a newly developed semisynthetic

a n a l o g o f QS - 2 1 , h a v e s h owed s hows p r om i s i n g

immunostimulatory activity in enhancing the immune responses

(47–49).
3 The respiratory mucosal adjuvant
effects of saponins

3.1 Adjuvant effects of plain saponins

Saponins are well-known for their ability to induce systemic

immune responses when co-injected with antigen via intramuscular

immunization (36). Additionally, saponins are effective as mucosal

adjuvants when delivered intranasally (Table 1). Intranasal

administration of a DNA vaccine encoding the envelope of

human immunodeficiency virus type 1 (HIV-1) along with QS-21

as an adjuvant has been shown to increase both systemic and

mucosal immune responses against HIV-1, including production of
FIGURE 1

Structure of QS-21. QS-21 contains a central quillaic acid triterpene core, which is surrounded by complex oligosaccharide chains that are attached
to C-3 and C-28 positions of the triterpene aglycone. The triterpene is essential for antigen cross-presentation and activation of innate immunity.
The C4-aldehyde substituent on the triterpene is involved in the formation of Schiff base with amino groups on T cell surface receptors and
providing a co-stimulatory signal to activate T cell. The acyl chain on QS-21 is associated with CTL responses. The branched trisaccharide is
dispensable for activity. Linear tetracosaccharides can be structurally-modified to study the in vivo biological distribution of QS-21. Its carbohydrate
domain involves in the uptake of antigen by APCs and the stimulation of specific cytokines that activate cellular and/or humoral responses.
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intestinal sIgA and cytolytic activity of mesenteric lymph node cells

(50). Saponins derived from Polygala tenuifolia or Chenopodium

quinoa have demonstrated enhanced ant igen-specific

immunoglobulin G (IgG) and local IgA responses to co-

administered antigens in lungs when used as adjuvants following

intranasal administration (44, 51). In another study, QS-21 loaded

on liposome induced higher levels of sIgA compared to liposome

without QS-21 when used as an adjuvant for a tetanus toxoid

antigen after nasal administration (52). The use of oleanolic acid 28-

cinnamoylglucoside as an adjuvant in a nasal-administered

influenza split vaccine showed a slight but statistically

significantly enhancement in anti-influenza virus sIgA in the

nasal washes (46). Moreover, intranasal immunization of

saponins-adjuvant vaccines showed protective effects against

influenza virus and Toxoplasma gondii cysts challenge (44, 49, 53,

54). These studies highlight the potential of saponins as adjuvants

for nasal vaccines.
3.2 ISCOMs and ISCOMsATRIX (IMX)

ISCOMs was first described in the 1980s by Morein et al. as a

novel type of immunostimulating complex. It has a spherical cage-

like structure composed of saponin, cholesterol, phospholipids, and

antigens (55, 56). On the other hand, ISCOMsATRIX (IMX), also

called empty ISCOMs, has similar structure and composition to

ISCOMs but without the incorporated antigens (56, 57). Both

I SCOMs and IMX hav e b e en f ound to b e h i gh l y

immunostimulating due to the combination of an in-built
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adjuvant (Quil A) with a particulate delivery system. Moreover,

they are less toxic and do not have hemolytic activity due to the

embedding of saponins into cholesterol (56). The assembly of

ISCOMs relies on hydrophobic interactions, making them

suitable for incorporation of hydrophobic antigens derived from

envelope viruses or cell membranes. In contrast, IMX has a

negatively charged surface, which enables it easily to interact with

a broad range of positively charged antigens to make IMX vaccines

(57). However, this approach limits the binding of neutral or

negatively charged hydrophilic antigens to IMX (57). Thus,

further research is needed to expand the range of antigens

available for IMX vaccines and simplify the production process

(58). ISCOMs and IMX vaccines have been developed for a variety

of diseases, including viruses, bacteria, parasites, and tumors (56).

Both have shown good safety and well-tolerated in animal and

human studies, with the ability to induce strong antigen-specific

cellular or humoral immune responses (56, 59). There are several

ISCOMs vaccines registered for veterinary use, but no ISCOMs or

IMX vaccines have been approved for human use yet (60).

Studies have demonstrated that intranasal administration of

ISCOMs or IMX vaccines with a variety of antigens can elicit potent

mucosal cellular and humoral immune responses, including local

IgG and sIgA antibodies in the respiratory tract, as well as systemic

and distal mucosal responses, such as in the genital and intestinal

tracts (61–70). Pulmonary delivery of ISCOMs or IMX vaccines has

also been shown to induce both systemic and mucosal antibody

responses against various antigens, including those of influenza

virus andMycobacterium tuberculosis (71–73). Protective efficacy of

intranasal immunization with ISCOMs or IMX vaccines has been
TABLE 1 Plain saponins used as adjuvants in nasal vaccines.

Vaccine Antigen Adjuvant Animal
model

Pathogen
Challenge

Main findings Reference

HIV-1
DNA
vaccine

Plasmid
encoding the
env and rev
genes

QS-21 BALB/c
mice

– QS-21 can enhance the antigen-specific sIgA and promote Th1, CTL
responses

(50)

Model
antigens

Cholera toxin
ovalbumin

Chenopodium
quinoa
saponins

BALB/c
mice

– Chenopodium quinoa saponins enhance the antibody responses to
the co-administered proteins, possibly by increasing mucosal
permeability

(51)

Tetanus
toxoid
vaccine

Tetanus toxoid QS liposome Rabbits – Tetanus toxoid plus QS liposomes induce higher sIgA levels in
comparison with TT liposomes

(52)

Influenza
vaccine

Influenza split
vaccine

Cinnamoyl
saponin 2

BALB/c
mice

– The synthetic saponins with the C28 4-O-cinnamoyl glucosyl ester
moiety are efficacious vaccine adjuvants

(46)

DPT or
Influenza
vaccine

DPT
HA

Onjisaponins BALB/c
mice

Influenza
virus A/PR8
(H1N1)

Onjisaponins-adjuvanted vaccines induces serum IgG and nasal IgA
antibody; Onjisaponins adjuvanted HA vaccine inhibites proliferation
of influenza virus

(44)

T.gondii
vaccine

Crude rhoptry
proteins

Quil-A Cats Cysts of the
ME49 strain.

Quil-A–djuvanted vaccines yields more intestinal IgA antibodies and
partially protect cats against T. gondii cysts challenge

(53)

T.gondii
vaccine

Crude rhoptry
proteins

Quil-A Pigs Oocysts of
VEG strain

Quil-A-adjuvanted vaccine induces serum IgG, IgM and stimulate a
strong response in mesenteric lymph nodes, and partially protect
animals from brain cyst formation

(54)
f

HIV-1, human immunodeficiency virus type 1; DPT, diphtheri–pertussis–tetanus; HA, Hemagglutinin; T. gondii: Toxoplasma gondii. "–" means "not done".
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demonstrated in several studies against various pathogens such as

influenza virus, Helicobacter pylori, Angiostrongylus costaricensis,

and Eimeria tenella (74–80). These findings highlight the great

potential of ISCOMs or IMX as adjuvants for nasal vaccine

development (Table 2) (22).
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3.3 Saponins-based Adjuvant Systems

Since the 1990s, saponins-based adjuvants have moved forward

to combine saponins with other adjuvants to provide a synergistic

adjuvant effect. GlaxoSmithKline (GSK) biologicals developed
TABLE 2 ISCOMs used as adjuvants in nasal vaccines.

Vaccine Antigen Adjuvant Animal
model

Pathogen
Challenge

Main findings Reference

ISCOMs Influenza
vaccine

Glycoproteins ISCOMs Mice – ISCOMs vaccine induces similar serum IgG response and
slightly higher IgA and IgM titres than that induced
subcutaneously

(61)

Influenza
vaccine

Solubilized
enveloped
proteins

ISCOMs BALB/c
mice

– ISCOMs vaccine induces influenza -specific antibody-
secreting cells (ASC), memory B cell, and cytotoxic T cell
responses in lung.

(62)

HSV
vaccine

gD2 ISCOMs
IMX

BALB/c
mice

– gD2-ISCOMs induces mucosal antibody responses, even
in the lower genital tract

(63)

RSV vaccine Solubilized
virus

ISCOMs BALB/c
mice

– RSV-ISCOMs induces high levels and long-lasting of IgA
antibodies in respiratory tracts and also induce earlier,
higher, and longer-lasting IgM and IgG1

(64)

RSV vaccine Envelope
proteins

ISCOMs BALB/c
mice

– ISCOMs vaccine induces potent serum IgG, and strong
IgA responses to RSV locally and remotely in the genital
and the intestinal tracts

(65)

Hepatitis B
vaccines

HBsAg ISCOMs BALB/c
mice

– ISCOMs prromotes humoral, mucosal, and cellular
immune responses

(66)

OVA model
antigen

OVA IQB-90 Rockfeller
mice of the
CF-1 breed

– IQB-90 is a promising alternative to classic ISCOMs as
vaccine adjuvants, capable of enhancing humoral and
cellular immunity

(67)

Influenza
vaccine

Solubilized
envelope
glycoproteins

ISCOMs NMRI
mice

PR/8/34
(H1N 1)

ISCOMs vaccine induces high levels of antibody and
protection against virus challenge.

(74)

Influenza
Vaccines

Split-
inactivated
influenza
vaccine

IQB90 Mice H1N1
pdm2009

IQB90-adjuvanted influenza vaccine triggs a protective
immune response

(75)

Eimeria
tenella
vaccine

Sporozoite
antigens

ISCOMs Broiler
chickens

sporulated
oocysts

ISCOMs vaccine reduces the percentage of oocyst
shedding and lesion score

(76)

Eimeria
tenella
vaccine

E.tenella total
antigens

ISCOMs
containing
Gg6, Ah6
and Gp7

Broiler
chickens

oocysts ISCOMs vaccine produces higher serum antibodies,
increases the weight of broilers, and provides better
protection

(77)

A.
costaricensis
vaccine

A
recombinant
peptide of
PP2A

ISCOMs C57BL/6
mice

L3 larvae ISCOMs vaccine partially protects mice against A.
costaricensis challenge.

(78)

IMX HTLV-
1vaccine

Chimeric
peptide

IMX BALB/c
mice

– IMX vaccine increases antibody titers containing IgG2a,
mucosal IgA, IFN-g and IL-10 cytokines, and decrease the
level of TGF-b1, compared to other vaccine formulations.

(68)

Influenza
vaccine

HA IMX BALB/c
mice
sheep

– IMX vaccine induces serum HAI antibody and mucosal
and serum IgA.

(69)

Influenza
vaccine

PR8 antigen IMX BALB/c
mice

– PR8- IMX elicits IFN-g response, IgG1 and IgG2a
antibody responses

(70)

IMX (79)

(Continued)
f
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several Adjuvant Systems (AS) that incorporate QS-21 with other

immunostimulants in different formulations (81). For instance,

AS01 is a liposome-based system containing QS-21 and 3-O-

desacyl–monophosphoryl lipid A (MPL), while AS02 contains

QS-21 and MPL in an oil-in-water emulsion (81). AS05 is a

liposome-based system with QS-21, MPL, and alum, while AS15

contains QS-21, MPL, and CpG7909 (82, 83). The U.S. Army has

also developed an adjuvant called Army Liposome Formulation

containing QS21 (ALFQ) which with different liposome properties

to AS01 (84). MPL, a detoxifying lipid from Salmonella Minnesota

LPS, is a Toll-like receptor 4 (TLR4) agonist and promotes the

production of pro-inflammatory cytokines by activating APCs (85,

86). The combination of QS-21 and MPL in AS enhances innate

immunity, stimulates antigen-specific T cell responses, and converts

mouse antibodies to IgG2c subtype (87, 88). The use of saponins in

combination with cholesterol in adjuvant complexes can also

reduce hemolytic toxicity. These adjuvant systems have shown

good effects in various vaccines against pathogens such as

malaria, tuberculosis, SARS-CoV-2, HIV, and Campylobacter

jejuni (20, 88–93). In particular, AS01 has been licensed for use

in the malaria RTS,S/AS01 vaccine and herpes zoster vaccine

(Shingrix®) (94). However, there are currently no reports of the

use of ASs or ALFQ in nasal vaccines.

AS01, AS05, AS15, and ALFQ are liposome-based adjuvants.

Liposomes can protect antigens from degradation and increase

antigens absorption across the nasal epithelium, which can

prolong the time antigens remain in the respiratory tract (95).

They are biocompatible, biodegradable, and safe for nasal vaccine

development (95). Intranasal vaccination of influenza vaccine with

liposome-based adjuvants has been shown to protect mice from

both homologous and heterologous influenza virus challenge (96).

Therefore, as liposome-based adjuvants, ASs and ALFQ could be

promising options for nasal vaccines development, which needs

further investigation.
3.4 ISCOMs technology-based Matrix M

Matrix M is the third generation of ISCOMs technology that

contains two matrix particles, Matrix-A and Matrix-C, each made

from a different, well-characterized saponin fraction from

purified Quillaja saponin fractions A and C, along with
Frontiers in Immunology 06
cholesterol and phospholipids (97, 98). Matrix-C is a highly

adjuvant active saponin, while Matrix-A is a weaker but very

well-tolerated saponin. The optimal ratio of mixture of Matrix-A

and Matrix-C can be explored with co-administering the antigen to

achieve the best balance of adjuvant activity and safety (98, 99).

Matrix M has been shown to effectively activate and recruit immune

cells such as DCs, B cells, and T cells to draining lymph nodes,

resulting in strong cellular and humoral immune responses (100,

101). It has been used in clinical trials for vaccines against influenza,

malaria, and SARS-CoV-2 (98, 99, 102–104). Interestingly, Matrix-

M has mucosal adjuvant properties that enhance mucosal immune

responses. Intranasal immunization of Matrix-M (in a ratio of 91:9

of Matrix-A and Matrix–C) adjuvanted a virosomal influenza

H5N1 vaccine elicited a significant cross-reactive serum antibody

response and protected against a highly pathogenic viral challenge

in a mouse model (105). Another study found that intranasal

immunization of mice with a Matrix-M-adjuvanted DNA vaccine

encoding the P6 outer membrane protein of nontypeable

Haemophilus influenza resulted in the induction of P6-specific

nasal IgA and serum IgG, as well as enhanced bacterial clearance

(Table 3) (106). These results highlight that Matrix-M adjuvant is a

promising mucosal adjuvant for nasal vaccines formulations.
4 Understanding the mechanism of
action of saponins-based adjuvants in
respiratory mucosal responses

The exact mechanism of action of saponins-based adjuvants

after nasal administration is not yet well-understood. However,

based on the unique immune structure of the nose and the known

mechanism of saponins-based adjuvants (20), the current

understanding of how they work as effective adjuvants for nasal

vaccine can be reviewed (Figure 2).
4.1 Delivery of antigens to nasal
epithelial cells and APCs

The mucosal immune system is composed of inductive and

effector sites. NALT and local and regional cervical draining lymph

nodes are induction sites that can trigger both systemic and local
TABLE 2 Continued

Vaccine Antigen Adjuvant Animal
model

Pathogen
Challenge

Main findings Reference

Influenza
vaccine

Split MEM
vaccine

BALB/c
mice

MEM71
virus

IMX vaccine elicits specific antibody in serum and
mucosa when delivered to the entire respiratory tract and
protect virus challenge

H. pylori
vaccine

HpaA ISCOMs/
IMX

Mice H. pylori HpaA ISCOMs or IMX-vaccine induces protective
immunity against H. pylori when delivered by the
respiratory route

(80)
f

HSV, herpes simplex virus; gD2, glycoprotein D2; RSV, respiratory syncytial virus; HBsAg, Recombinant hepatitis B surface antigen; OVA ,Ovoalbumin; IQB-90, ISCOMs formulated with the
QB-90; A. costaricensis, Angiostrongylus costaricensis; HTLV-1, human T-cell lymphotropic virus type 1; HAI, haemagglutination inhibition; PP2A, the serine/threonine phosphatase 2 A. " -"
means "not done".
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mucosal immune responses following nasal vaccination (8, 107).

NALT is an organized structure that contains all the immune cells

and is covered by a lymphoid epithelium with microfold (M) cells,

which are specialized for antigen uptake (8, 107). M cells can

transport antigens and adjuvants to APCs, such as DCs, which

accumulate immediately below the epithelium and M cells. The

APCs phagocytose, process and present antigens to the surrounding
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naive T cells (108, 109) (Figure 2A). Vaccines administered nasally

can partially pass into the lungs, where alveolar macrophages take

them into the interstitium and to draining lymph nodes to activate

DCs (110, 111) (Figure 2B). Saponins-based adjuvants in liposome

or ISCOMs can deliver antigens to epithelial cells and APCs. The

negatively charged IMX nanoparticles have mucoadhesion

properties, and the intranasal administration of IMX vaccine has
FIGURE 2

The mechanisms of action of saponins-based adjuvant in nasal vaccines. (A) Saponins-based adjuvants promote antigen delivery and uptake by nasal
epithelial cells or M cells to the underlying lymphoid follicles. Then dendritic cells (DCs) internalize antigens and adjuvants to be activated and
present antigens to stimulate T cells. With the help of activated T cells, the activation of B cells further leads to the formation of the germinal center
(GC) in the nasal lymphoid follicles. Afterwards, activated B cells differentiate into plasma cells that secrete IgA, which forms a dimer and is
transported back to the effect site of the nasal mucosa, where it provides antigen-specific targeting of respiratory pathogens. Meanwhile, saponins-
activated DCs carry antigens to migrate to regional lymph nodes, where they interact with T and B cells to generate antigen-specific T cell and B
cells. (B) Nasal vaccines, passed through nose to the lung, may also be phagocytized by alveolar macrophages or DCs, and then taken into the
interstitium and to hilar lymph nodes. (C) In draining lymph node, DCs present antigens to corresponding B- or T-cell to elicit adaptive immune
responses. (D) Activated B cells and T cells enter the blood circulation to distant systemic or mucosal sites to induce systemic immune responses.
TABLE 3 Matrix-M used as adjuvants in nasal vaccines.

Vaccine Antigen Adjuvant Animal
model

Pathogen
Challenge

Main findings Reference

Influenza
vaccine

Virosomal
influenza A
H5N1
vaccine

Matrix-M BALB/c
mice

A/Vietnam/
1194/2004
(H5N1)
virus.

Matrix-M adjuvanted virosomal vaccine induces influenza specific
CD4+ and CD8+ T cells and protects against virus challenges

(105)

NTHi
vaccine

DNA plasmid
encoding the P6
outer membrane
protein

Matrix-M BALB/c
mice

NTHi (strain
76)

Matrix-M DNA vaccine induces P6-specific IgA, serum IgG and IgA-
producing cells in the nasal passages and induces P6-specific Th1, Th2
and Th17 responses in NALT. Matrix-M DNA vaccine enhances
bacterial clearance

(106)
f

NTHi, nontypeable Haemophilus influenza (NTHi); NALT, Nasal-associated lymphoid tissue.
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been shown to be retained in the nasal cavity for a longer period of

time, allowing antigens to access immune inductive sites in the nasal

mucosa and inducing to high mucosal and systemic immune

responses (57). Saponins can activate the production of cytokines

by resident innate cells, including stromal cells, which then recruit

neutrophils, monocyte, and DCs into the respiratory tract to take up

more antigens (20).
4.2 Induction of proper innate immune
response in the local environment.

Proper induction of innate immune response in the respiratory

mucosal and draining lymph nodes is crucial for the quality and

magnitude of the adaptive responses and vaccine efficacy. Saponins,

such as AS01 and QS-21, have been shown to activate and stimulate

APCs to release inflammatory cytokines at draining lymph nodes

when administrated intramuscularly (88). Saponins can activate

innate immune response by binding to the lectin receptors in the

innate immune cells, such as DC-SIGN on DCs, and eliciting

cytokines and chemokines production in APCs (38, 88, 112)

(Figure 2A), which leads to a rapid and substantial influx of

neutrophils, monocytes, DCs and T-cell populations in the lymph

node. AS01 can also enhance the expression of the costimulatory

molecules such as CD86 and CD40 on the cell surface of APCs (88).

The activated innate immune responses are largely resolved by day

7 (88). These immunostimulant responses could also occur in the

respiratory mucosa, NALT, and cervical lymph node, when

saponins are delivered intranasally (Figure 2A). As intranasal

delivery of IMX-adjuvanted human T-cell lymphotropic virus

type 1 vaccine was shown to modulate cytokines expression, with

increased IFN-g and IL-10 expression and decreased TGF-b1
levels (68).
4.3 Induction of proper adaptive
immune responses

The induction of antigen-specific resident memory cells is

important for long-term protection against pathogens, which is

where mucosal vaccines play a critical role. In NALT or draining

lymph node, activated DCs (by saponins and antigens) are capable

of activating T cells that differentiate into effector cells and later into

memory cells. Activated CD4+ T cells, especially follicular helper T

cells (Tfh) induce the development of IgA-secreting B cells in NALT

or draining lymph nodes (Figure 2A, C). AS01 may activate Tfh

responses, which are correlated with antigen specific IgG and

memory B cells (67, 113–115). The resulting B lymphocytes

migrate locally to the lymphatic follicles and proliferate in the

germinal center, leading to mucosal and systemic immune

responses characterized by the secretion of IgA and IgG,

respectively (15). Antigen-specific dimeric immunoglobulin A

(dIgA) is transported by epithelial cells through polymeric

immunoglobulin receptors (pIgRs) and released as sIgA into the

nasal lumen (116, 117) (Figure 2A). The antigen and adjuvant-
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loaded DCs the mature and migrate to the follicular B-cell areas and

interfollicular T-cell zone in local draining lymph nodes of nasal

tissue or lungs, where they present the antigen to neighboring naive

T cells, triggering adaptive immune responses (Figure 2C) (106,

118). T cells and B lymphoblasts activated by APCs migrate

throughout the body via the circulatory system, such as Intranasal

immunization of Matrix-M adjuvanted influenza vaccine can

activate antigen-specific CD4+ and CD8+ T cells responses in

spleen (105). In addition, immune cells can diffuse through the

common mucosal immune system that connects the induction site

to the effector sites (Figure 2D) (119). Thus, adaptive immune

responses are not confined to the site of induction, but also occur at

distant mucosal region (63, 119) (Figure 2D). Such as, ISCOMs

vaccines after nasal administration can induce local antibody

secreting cells, CTL, and memory B and T cell responses in lungs

(62, 63, 120, 121). The underlying mechanism of saponins to induce

mucosal and systemic immune response after intranasal

administration requires further study.
4.4 Effector sites of respiratory tract

Antigen-specific T cells and IgA+ B cells that are induced in

NALT and lymph nodes migrate to the mucosa of the respiratory

tract through the thoracic duct and circulation. At these effector

sites, the IgA+ B cells differentiate to IgA+ plasma cells to secret

sIgA, which is very important in preventing infections by

inhibiting the adhesion, invasion, and spread of pathogens to

epithelial cells (15, 16, 116) (Figure 2A). Intranasal immunizations

with ISCOMs vaccines containing different antigens induced not

only local IgG and sIgA antibody production in the lungs, but also

in distal mucosal system (61, 63–65). The antigen-specific T cells

that homing to mucosal region can further differentiate into

tissue-resident memory cells that express cell surface markers

such as the CD69 and CD103. These memory cells persist in the

mucosal tissue for extended periods without entering the

circulation and provide a front-line defense against pathogenic

invasion by rapidly reactivation in response to antigenic

pathogens. Numerous studies have shown that intranasal

administration of saponins can induce sIgA production in the

respiratory mucosa (Tables 1-3) (Figure 2A) (44, 50, 53, 61, 64,

68). Further research is needed to understand the regulation of

tissue-resident memory T cell and B cell responses triggered by

nasal administration of saponins.
5 The potential disadvantages
of saponins-based adjuvants for
nasal vaccine

5.1 The safety of saponins-based
adjuvants for nasal vaccine

Ensuring the safety of the effective adjuvants is the first priority

in vaccine development, particularly for those based on saponins
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used in nasal vaccine, where their safety profile in humans is not yet

fully established. Saponins are amphiphilic compounds containing

both hydrophobic and hydrophilic regions and their hydrophobic

regions can interact with the cell membranes of red blood cells and

disrupt the membrane integrity, leading to hemolysis. To mitigate

the toxicity, saponins can be formulated with other components,

such as cholesterol used in AS01 and ISCOMs, which can interact

with the hydrophobic region of saponins to prevent their

interaction with cell membranes (122). The adjuvant effects of

saponins are dependent on their immunostimulatory effect, which

can stimulate transient inflammation at the injection site. The

effects usually are mild and transient, returning to normal within

several days after administration. However, high dose of adjuvants

may cause strong inflammation or cell death. Although saponins

and saponin-based adjuvants are generally considered safe for

parenteral immunization (93, 102, 106 (90, 99, 102, 103, 106,

123), they have been associated with some adverse effects,

including local pain, redness, swelling, and fever, especially at the

injection site (124, 125). So, intranasal administration of saponin-

based adjuvants may induce inflammation and cellular damage in

respiratory tract and lungs at high doses, which is a safety concern

that requires careful evaluation in the development of nasal vaccines

(50). Another important safety concern for nasal adjuvants is their

potential side-effects on the central nervous system, since they may

be transported from the olfactory epithelium to central nervous

system (126, 127). Thus, evaluating the local and systemic toxicities

of nasal vaccines containing saponin-derived adjuvants is crucial,

which should be carefully evaluated for a good balance of efficacy

and side effects in pre-clinical and clinical studies.
5.2 Challenges in developing saponins-
based adjuvants for nasal vaccine

Successful development of saponin-based adjuvants for nasal

vaccines requires consideration of the unique physiological,

chemical, and immunological properties of the nasal cavity. The

physiobiological barrier system, including the mucus and

mucociliary movement, may hinder antigens and adjuvants

absorption (14). Nasal mucus containing proteases and

aminopeptidases may degrade the vaccine components (14).

However, saponins-based adjuvant such as ASs or ISCOMs,

which use liposome as a delivery system, may overcome these

barriers and transport antigens and adjuvants to epithelial cells and

APCs, which require further evaluation. Additionally,

administering vaccines through the nasal cavity may result in the

passage of vaccines into the lungs or oral cavity, making it difficult

to determine the exact amount of antigens or adjuvants that reach

the immune system. To address this issue, metered-dose nasal spray

devices can be used to control the amount of solution delivered per

spray, allowing for the evaluation of efficacy and side effects to

determine the optimal spray dose. In conclusion, overcoming these

obstacles is critical when developing saponins-based adjuvant for

nasal vaccines.
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6 Future perspective of saponin-
based adjuvants

6.1 Combination of saponin-based
adjuvants with other adjuvants

Different adjuvants have unique immunomodulatory effects

and the protective immune responses for different pathogens can

vary. To achieve enhanced and broad protective immune responses

for co-administered antigens, a combination of saponins with

different mucosal adjuvants or delivery systems can be used,

potentially resulting in additive enhancing effects on mucosal

immune responses

AS01 is a successful example of combining two adjuvants, MPL

and QS-21, in one formulation. Other attempt to combine different

adjuvants includes intranasal administration of the ginseng stem-

leaf saponins (GSLS) in combination with selenium (GSLS-Se). This

combination enhanced the adjuvant effect on live vaccines for

Newcastle disease virus and infectious bronchitis virus in

chickens, promoting significantly higher antigen-specific antibody

responses, increased lymphocyte proliferation and production of

IFN-g and IL-4 compared to GSLS alone. The increased antibody

was able to neutralize corresponding viruses (128). Antigen-specific

sIgA and the numbers of IgG+, IgA+, IgM+ plasma cells were

significantly higher in GSLS-Se group than the control in the

Harderian gland (129). Another example is the combination of

cyclic guanosine monophosphate-adenosine monophosphate

(cGAMP) and saponins, which improved protective response to

influenza. Saponins can increase the permeability of cell membrane,

allowing more cGAMP to enter the cells and increasing the

utilization rate of saponins, leading to stronger immune effects

(130, 131). Furthermore, nasal delivery systems such as

microspheres or nanospheres made of chitosan, PLGA (poly[D,L-

lactic-co-glycolic acid]), alginate, or cross-linked dextran have been

employed to encapsulate saponins for nasal administration (132–

135). These studies provide compelling evidence for the potential of

developing mucosal adjuvants through combinations of saponins

and other adjuvants.

ISCOMs and IMX complexes are also a promising option for the

development of combined adjuvant carriers with other adjuvants to

increase adjuvant activity. Combination of a mucosal adjuvant

cholera toxin B (CTB) with ISCOMs has shown increased adjuvant

effects. Intranasal immunization of synthetic peptide polymerized

with the CTB in ISCOMs showed increased protection against

polymerized synthetic peptide in ISCOMs (78). In addition, the

cholera toxin subunit A1 (CTA1) fused to a dimer of the Ig-

binding D-region of Staphylococcus aureus protein A (CTA1-DD)

has been incorporated into ISCOMs to create CTA1-DD/ISCOMs

adjuvant. This adjuvant significantly augments the immunogenicity

of the antigen, as demonstrated by increased levels of specific serum

antibodies, balanced Th1 and Th2 priming, and strong activation of

DCs (136–138). Moreover, intranasal vaccination with CTA1-DD/

ISCOMs adjuvanted antigens Ag85B-ESAT-6 from M. tuberculosis

significantly reduced the M. tuberculosis burden in the lungs
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compared to control animals (139). However, combination of

adjuvants does not always show enhanced effects. For instance, the

combination of chitosan with IMX nanoparticles in a vaccine using

the PR8 antigen induced a weaker immune response compared to

IMX nanoparticles alone after intranasal administration (70).
6.2 Combination of different immunization
routes of adjuvants

Combining different routes of adjuvant delivery through prime-

boost strategies has the potential to enhance both mucosal and

systemic immune responses. For example, a systemic prime-

intranasal boost strategy with an influenza vaccine adjuvanted

with the liposomal dual TLR4/7 adjuvant has been shown to

enhance both systemic and local/mucosal immunity. This

regimen results in the secretion of antigen-specific sIgA and

development of tissue-resident memory T cells in the respiratory

tracts, as well as cross-reactive sIgA to multiple influenza virus

strains (140). Similarly, this prime-boost strategy has been

successful in preventing SARS-CoV-2 transmission and disease

development through vaccination (141). Therefore, combining

different routes of adjuvant delivery can provide comprehensive

and effective immune responses at both the systemic and mucosal

levels. Such strategies can also be applied to the study of saponin-

based adjuvants in nasal vaccines. However, the optimal

combination of administration routes may vary depending on the

specific vaccine and pathogen being targeted, and thus requires

thoroughly experimentation.
6.3 Understanding the mechanism of
adjuvants through new technologies

Achieving effective vaccine-induced immune responses requires

a deeper understanding of the mode of action of saponin-based

adjuvants, which can expedite the development of novel vaccine

strategies. Collaborative research efforts between various

disciplines, including chemistry, biochemistry, molecular biology,

immunology, material science, and artificial intelligence, are crucial

to achieve this goal. By using of multiomics technology such as

transcriptomics, proteomics, and metabolomics at bulk and single-

cell levels, researchers can uncover the function and mechanism of

saponins-based adjuvants. Machine learning algorithms have also

been applied to identify immune signatures associated with

adjuvant formulations like AS01B, AS02A, AS03, CpG, and MF59

(142–144). Combining machine learning with in-depth profiling of

vaccine-induced immune signatures including cytokine, cellular,

and antibody responses can lead to identify adjuvant-specific

immune response characteristics that can predict the efficacy and

safety of the adjuvants in human (142–145). Moreover, immune

response patterns in mice may not be predictive of responses in
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human (146). Therefore, organoids derived from lymphoid tissues,

such as tonsils, will proved a powerful platform for studying key

immune mechanisms related to human and enable rapid preclinical

research on saponins-based adjuvants (146).
7 Conclusion

Saponin-based adjuvants have been demonstrated to have

minimal side effects and are relatively non-toxic. Their

administration via the nasal route has been shown to enhance the

immune response, making them an appealing option for

the development of nasal vaccines. This review aims to highlight

the potential of saponins-based adjuvants for respiratory mucosal

vaccines, offer further adjuvants candidates for the purpose of

rational delivery system design, and ultimately drive the progress

in the field of nasal vaccine development. We hope that this review

will provide valuable insights and stimulate further research in

this field.
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