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Glioblastoma is the most common primary malignant tumor of the central

nervous system, which has the characteristics of strong invasion, frequent

recurrence, and rapid progression. These characteristics are inseparable from

the evasion of glioma cells from immune killing, which makes immune escape a

great obstacle to the treatment of glioma, and studies have confirmed that

glioma patients with immune escape tend to have poor prognosis. The lysosomal

peptidase lysosome family plays an important role in the immune escape process

of glioma, which mainly includes aspartic acid cathepsin, serine cathepsin,

asparagine endopeptidases, and cysteine cathepsins. Among them, the

cysteine cathepsin family plays a prominent role in the immune escape of

glioma. Numerous studies have confirmed that glioma immune escape

mediated by lysosomal peptidases has something to do with autophagy, cell

signaling pathways, immune cells, cytokines, and other mechanisms, especially

lysosome organization. The relationship between protease and autophagy is

more complicated, and the current research is neither complete nor in-depth.

Therefore, this article reviews how lysosomal peptidases mediate the immune

escape of glioma through the above mechanisms and explores the possibility of

lysosomal peptidases as a target of glioma immunotherapy.
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1 Introduction

Glioma is the most common primary intracranial tumor, with an

overall incidence after age-adjusted ranging from 4.67 to 5.73 per

100,000 (1). Gliomas are tumors that originate from glial cells or

precursor cells (2). According to histopathological classification,

g l iomas inc lude g l iob l a s toma(GBMs) , a s t rocy toma ,

oligodendroglioma, ependymoma, oligodendroglioma (mixed glioma),

and some rare tissues pathology (3). The 2021 World Health

Organization classification of gliomas comprises seven grades (4). For

the first time, a large subset of these tumors was defined based on IDH

mutations and 1p/19q co-deletion (5). Due to the early invasion of

surrounding tissues, high recurrence rate, rapid progression, and

inability to completely eliminate such tumors, they have not been

successfully treated so far (6). Surgery, radiotherapy, and chemotherapy

can only increase survival time and cannot radically cure this disease.

Although immunotherapy has improved survival in patients with

different types of cancer, it can easily lead to drug resistance (7). The

lack of effective treatment for glioma is related to its immune escape (8).

Mechanisms leading to tumor evasion of immune attack

in c lude immune ed i t in g and the f o rma t ion o f an

immunosuppressive environment within the tumor (9). In the

tumor microenvironment (TME), tumor cells produce chemokine

CCL22 to mediate the entry of regulatory T cells (Tregs) into the

TME (10). Tregs release TGF-b to suppress the activity of CD8+

cytotoxic T lymphocytes (11). Thus, tumor cells evade immune

monitoring. Tumors can also evade immune recognition by

modulating antigen expression, MHC-I surface levels, and

changes in antigen presentation and processing mechanisms in

tumor cells (12). In addition, tumors can destroy CTL function by

producing immunosuppressive cytokines such as TNF-a,IL-6, IL-
10, and IL-1b—thereby evading immune surveillance (13). Limited

cell apoptosis in tumor cells may promote cell survival and
Abbreviations: Cat D, cathepsin D; Cat C, cathepsin C; Cat B, cathepsin B; Cat A,

cathepsin A; PL, piperlongumine; SCO, scopoletin; Cat S, cathepsin S; Cat X,

cathepsin X; Skp2, S-phase kinase associated protein 2; Cat L, cathepsin L;GBM,

glioblastoma multiforme; CMA, chaperon-mediated autophagy; LAMP2A,

Lysosome-associated membrane protein; MHC, major histocompatibility

complex; TNF-a, Tumor necrosis factor; IL-6, Interleukin-6; JNK, Jun N-

terminal Kinase; GSCs, glioma stem cells; ATG4C, autophagy-related 4C

cysteine peptidase; MAPK, mitogen-activated protein kinase; AMPK, AMP-

activated Protein Kinase; ROCK, Rho-associated protein kinase; HCC,

Hepatocellular carcinoma; EMT, epithelial-mesenchymal transition; PI3K,

Phosphatidylinositol3-kinase; TGF-b, transforming growth factor; mTOR,

Mechanistic Target Of Rapamycin; STAT3, signal transducer and activator of

transcription 3; TRPML1, transient receptor potential mucolipin 1; NO, nitric

oxide; TME, tumor microenvironment; TAMs, tumor-associated macrophages;

MDSCs, myeloid-derived suppressor cells; CAFs, cancer-associated fibroblasts;

WISP1, Wnt-induced signaling protein 1; TLRs, Toll-like receptors; IRF3,

interferon regulatory factor 3; IFN, interferon; ECM, extracellular matrix;

MMP-9, matrix metalloproteinase-9; Mac-1, macrophag antigen-1 receptor;

NK cells, Natural killer cells; CTL, cytotoxic T cells; Tregs, Regulatory T cells;

VEGF, vascular endothlial growth factor; uPA, urokinase-type plasminogen

activator; uPAR, urokinase-type plasminogen-activated receptor.
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resistance to therapy by regulating the TME and generating

cancer-promoting effects (14).

Autophagy is closely related to the immune response system (15).

Yoshinori Ohsumi was awarded the Nobel Prize in Physiology or

Medicine in 2016 for discovering the mechanism of autophagy, which

has become the focus of many researchers. Autophagy is a highly

conserved catabolic process that is activated under various cell stress

conditions, such as hypoxia, nutritional deficiency, and chemotherapy

induction. Autophagy then facilitates the degradation process of

protein, lipid, nuclei, and mitochondria to prevent cell damage and

react to various cytotoxic damage. According to the mode of transport

of intracellular substrates to lysosomes, autophagy is a degradation

process and can be classified into three main types: macroautophagy,

microautophagy, and chaperon-mediated autophagy (CMA) (16).

Under normal conditions, autophagy functions to promote cell

survival and protect the stability of the chemical environment within

the cell. Autophagy dysfunction is associated with cancer,

cardiovascular disease, neurodegenerative disease, metabolic disease,

infectious disease, kidney disease, lung disease, musculoskeletal disease,

and ophthalmic disease (17). However, autophagy plays a dual role in

glioma (18). Autophagy has been found to enhance the anti-tumor

immune response in some cases, while in others it has been found to

promote immune escape from tumors. In malignant tumors such as

glioma (19), liver cancer (20), lung cancer (21), and breast cancer (22),

autophagy has been artificially associated with tumor immunotherapy,

chemotherapy, and resistance to targeted therapy (23–25). Studies have

found that autophagy can regulate tumor immunity by regulating the

antigen presentation process ofMHCclass Imolecules in dendritic cells,

exosomes, mitochondrial function, the PD-L1/PD-1 pathway, and the

activation and differentiation of immune cells.

Lysosomes are the primary site for the degradation of

endocytosed extracellular and autophagy-sequestered intracellular

material (26), and normal lysosomal function requires the

participation of lysosomal enzymes. In mammalian cells, most

major lysosomal peptidases can be divided into four main families:

Aspartate Histone (D and E), Serine Histone (A and G), Asparagine

Endopeptidase, and Cysteine Histone (B, C, F, H, K, L, O, S, V, W,

and X/Z) (27). Lysosomal peptidases participate in adaptive and

innate immunity, toll-like receptor (TLR) signal transduction,

regulation of antigen presentation, differentiation, migration,

apoptosis, autophagy, cytokine secretion, and cytotoxicity (28).

The biological mechanisms of glioma immune escape hinder

the implementation of efficient immune-mediated cancer

elimination and are not fully understood (29). Therefore, the

purpose of this review is to summarize the role of lysosomal

peptidases in glioma immune escape, and provide an idea for the

diagnosis and treatment of glioma.

2 Autophagy promotes the immune
escape process

2.1 By regulating the PD-1/PD-L1
checkpoint pathway

Current studies have shown that the PD-1/PD-L1 pathway

manipulates immune tolerance and is mediated by the TME. The
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PD-1/PD-L1 pathway is also associated with antitumor responses

induced by tumor cytotoxic secretion and T-cell activation. PD-1

can inhibit innate immunity and adaptive immunity, and is highly

expressed in T cells, NK cells, monocytes, macrophages, B

lymphocytes, activated T cells, and dendritic cells. PD-L1

expression is often associated with counteracting antitumor

immune responses (30). Therefore, blocking the PD-1/PD-L1

immune checkpo in t i s be l i eved to sens i t i z e tumor

immunotherapy. However, the EGFR/B3GNT3 pathway inhibits

the autophagic decomposition of PD-L1 and promotes immune

escape in breast cancer (31); DHHC-3 can cause a similar effect by

palmitoylating PD-L1 (32). In contrast, HIP1R in tumor cells can

induce the autophagic degradation of PD-L1 and enhance T-cell

toxicity to tumor cells (24). Targeting the autophagy-related protein

Vps34 converts cold immune tumors into hot immune-infiltrating

tumors and enhances anti-PD-1/PD-L1 efficacy, that is, inhibits the

effect of immunotherapy and promotes tumor growth (33).
2.2 By regulating MHC class I/II molecules

Major histocompatibility complex (MHC) molecule I mainly

present exogenous antigens that are interpreted by the proteasome,

then handled by exopeptidase in the endoplasmic reticulum, and finally

combined with MHC I molecules on the cell external surface and

presented to CTLs (34). Downregulated expression of MHC class I

molecules by tumor cells is a kind of immune-evasion mechanism of

cancer (35). MHC class II molecules are mainly expressed on mature

antigen-presenting cells. Compared with MHC I, the antigen peptides

bound by MHC class II molecules can be more than 13 amino acids in

length and accommodate peptide side chains, making the peptides it

binds more diverse (36). In pancreatic ductal adenocarcinoma cells,

MHC I is degraded by lysosomes through an autophagy-dependent

mechanism associated with the autophagy receptor NBR1, and

inhibition of autophagy restores MHC I molecular levels (37). Other

studies have shown that the autophagy-related protein Atg5 is a

molecule necessary for antigen phagocytosis and presentation to

MHC II (38). Gemcitabine is a nucleoside analogue, has been widely

used for treatment of many diseases of anti-cancer drugs, including

ovarian cancer, bladder cancer, non-small cell lung cancer, pancreatic

cancer and breast cancer. Gemcitabine inhibits the immune function of

macrophages by reducing the synthesis of MHC class II molecules and

the secretion of TNF-a and IL-6 through autophagy inhibition (39).
2.3 By regulating the proliferation and
differentiation of various immune cells in
the tumor microenvironment

Autophagy is also very important in the functional regulation of

various immunoactive cells present in the TME, including tumor-

associated macrophages, dendritic cells, and T cells, activation of c-

Jun N-terminal Kinase (JNK), activation of ATG5 cleavage-induced

autophagy, promotion of monocyte-to-macrophage differentiation,

production of cytokines, and prevention of monocyte apoptosis (40).

Autophagy also promotes M2 polarization of tumor-associated
Frontiers in Immunology 03
macrophages through the STAT-3 pathway (41). Autophagy has

been proved to play an integral role in degranulation, phagocytosis,

neutrophil granulopoiesis, and neutrophil extracellular traps (42).

Autophagy can also regulate CD36 molecule expression in dendritic

cells, and Atg5 is required for antigen phagocytosis and presentation

in MHC class II molecules (38). Autophagy is also an important

regulator of T-cell homeostasis, activation, metabolism, cell

differentiation, and senescence (43).
2.4 Others

One study indicated that glioma stem cells activate autophagy

through BCL2/Adenovirus E1B 19 KDa Protein-Interacting Protein

(BNIP3), giving tumor cells the ability to adapt to hypoxia. In addition

to adaptation to hypoxia, bip-3-mediated autophagy not only promotes

the growth of GBMs but also promotes chemoresistance through the

MT1-MMP-JAK-STAT axis (44). Inhibition of autophagy-related 4C

cysteine peptidase (ATG4C) can arrest tumor cells in the G1 phase and

promote apoptosis to inhibit the progression of glioma, indicating that

autophagy may promote glioma by promoting the proliferation of

tumor cell invasion (45). Chloroquine, an inhibitor of autophagy, can

partially block glioma progression using chloroquine, indicating that

autophagy is associated with glioma progression (46). In addition,

autophagy is also a crucial predictor of the prognosis of glioma patients.

The expression of autophagy-related proteins like beclin 1, p62, and

autophagy-related protein light chain (LC3) are negatively associated

with the prognosis of glioma patients, especially in tumors; the higher

the level, the higher the expression level of these proteins (47).

Although the contents of autophagosomes can be degraded by

lysosomal proteases (mainly cathepsin B, D, L, and S), lysosomal

proteases can also regulate the autophagic process through some

signal pathways (e.g., MAPK and ERK), which is closely related to

the aggressiveness of tumors. Thus, lysosomal proteases may induce

immune escape by regulating the autophagic process.
3 Lysosomal peptidases promote
glioma immune escape

Lysosomal peptidases can promote the immune escape of

glioma cells through a variety of complex mechanisms, including

the regulation of autophagy, immune cell activity, apoptosis, and

MHC molecules; and the stimulation of cytokine production and

epithelial interstitial transformation (EMT). The regulation of these

mechanisms by lysosomal peptidases is more complex, and we

illustrate it from a variety of perspectives.
3.1 Lysosomal peptidases regulate
autophagy through signaling pathways

The regulation of autophagy involves many complicated

mechanisms, including autophagy-related proteins, autophagosome

formation, and signaling pathways such as MAPK, mTOR, AMPK,

and Wnt/b-catenin (48) (Figure 1). Lysosomal peptidases can also
frontiersin.org
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impact cell autophagy involved in anti-tumor immunity through

these mechanisms. Because there is only a small amount of research

involving the other two mechanisms, this review mainly focuses on

the signaling pathways. Lysosomal peptidases interact with these

signaling pathways, which is closely correlated with the activation of

cell autophagy; thus, lysosomal peptidases influence the process of

tumor autophagy by relying on these mechanisms and finally regulate

tumor immune evasion. According to existing studies, cathepsin S

has been shown to regulate autophagy through the EGFR-ERK1

signaling pathway and play a role in tumor invasion (49) (Figure 1).

3.1.1 MAPK/JNK signaling pathway
The MAPK signaling pathway is one of the most classic

eukaryotic cell pathways. MAPK is also a highly conserved serine/

threonine protein kinase with six major subfamilies: JNK1/2, ERK1/

2, ERK3/4, ERK5/BMK1, ERK7/8, and p38MAPK. p38MAPK can

directly regulate autophagy by directly regulating autophagy-related

proteins such as LC3 and Atg5. p38MAPK can also interplay with

Wnt/b-catenin by regulating the key molecule of the Wnt/b-catenin
pathway, GSK3b, where Wnt/b-catenin is also a key signaling

pathway of autophagy. JNK1/2/3 can regulate autophagy by the

regulation of Beclin, sestrin2, and DRAM (50). The MAPK family

can regulate inflammatory response, cell proliferation, cell

differentiation, stress response, apoptosis, and other physiological
Frontiers in Immunology 04
processes (51). At the same time, it also participates in the

occurrence of autophagy events induced by various stimuli.

Some studies have pointed out that autophagy activation is closely

related with mitogen-activated protein kinases (MAPKs). It is worth

noting that the phosphorylation of extracellular signal-regulated kinase

(ERK) and c-Jun N-terminal kinase 1 (JNK1) can induce the activation

of autophagy (52, 53). Caffeine therapy can weaken the transcription

and translation levels of cathepsin B, reduce the activity of matrix

metalloproteinase-2 (MMP-2), negatively regulate the degradation of

the extracellular matrix, and reduce the invasiveness of tumors. In

conclusion, caffeine impairs the invasion ability of glioma cells through

the Rho-associated protein kinase–cathepsin B/FAK/ERK pathway

(54). The downregulation of cathepsin B and uPAR also inhibits the

MAPK/JNK pathway and impairs the migration ability of glioma cells

(55). The p38MAPK inhibitor trametinib can inhibit cathepsin C

expression, indicating that p38MAPK may positively regulate

cathepsin C activity (56). Other studies have directly shown that

inhibition of cathepsin A can restrain the p38MAPK signaling

pathway and inhibit the invasion and growth of prostate cancer (57).

3.1.2 AMPK signaling pathway
Amp-activated protein kinase (AMPK) is a kind of conservative

serine/threonine protein kinase and plays a crucial part in various

metabolic activities in cells. AMPK can also regulate autophagy by
FIGURE 1

Cathepsin regulates autophagy through four pathways. Cathepsin A and B acts on MAPK/JNK pathway, and its reduction can promote the
production of Beclin, sestrin, DRAM, Atg5 and LC3. Those materils promote autophagy, tumor metastasis and cell proliferation; AMPK can promote
the production of Atg5 and LC3 through phosphorylation and then regulate autophagy. Cathepsin D and AMPK work together to activate autophagy;
Cathepsin L and S through wnt/b- Catenin pathway, and resulting in b- Catenin accumulates and generates DAG and IP3, thus promoting gene
expression to promote cell autophagy. Tissue factor acts on PI3K/AKT/mTOR pathway and regulates the generation of Atg to regulate autophagy.
The above four pathways jointly affect autophagy, metastasis and proliferation of tumor cells, and participate in the immune escape process of
tumors. This figure has been created with https://app.biorender.com (accessed on 19 January 2023).
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phosphorylating autophagy-related proteins, regulating

mitochondrial autophagy degradation, and regulating the

expression of autophagy-related genes (58). In vivo studies have

shown that inhibition of AMPK may inhibit lysosomal peptidases

activity and inhibit autophagic flux (59, 60). Knocking down STAT3

can also stimulate the TSC2-AMPKa-ULK1 signaling pathway,

upregulate cathepsin D, and activate autophagy (61). Lysosomal

peptidases do not appear to regulate AMPK signaling upstream but

rather act in concert with AMPK to activate autophagy.
3.1.3 Wnt/b-catenin signaling pathway
The Wnt pathway involves a series of life activities such as cell

migration, intercellular communication, cell proliferation,

embryogenesis, evolution, differentiation, and organ function

maturation (62). It is also one of the important signaling pathways

that regulate autophagy. It has been reported that theWnt/beta-catenin

pathway plays a part in the tumor immune control of autophagy, such

as in glioma (63), hepatocellular carcinoma (HCC) (64), squamous cell

carcinoma of the lung (65), and multiple myeloma (66). Furthermore,

lysosomal peptidases have been shown to affect the Wnt/b-catenin
pathway. One 2009 study reported that cystatin D, a cathepsin

inhibitor, inhibits the growth of colon cancer cells by inhibiting c-

MYC gene expression through antagonizing the Wnt/b-catenin
pathway (67). This is mainly achieved by the GSK3b molecule,

which affects the Wnt/b-catenin pathway. GSK3b can shuttle

between the cytoplasm and the nucleus, and after entering the

nucleus, GSK3b can block the transcription factors required for

cancer proliferation (62). CTLD can inhibit the expression of EMT

inducers SNAI1, SNAI2, ZEB1, and ZEB2 by affecting the Wnt/b-
catenin pathway, and inhibit the growth of colon cancer cells. Later, in

a 2012 study, in the process of hepatocellular carcinoma human

mesenchymal stem cells differentiating into hepatocytes, cathepsin B

and D, inorganic pyrophosphatase, phosphotriglycan isomerase,

adenine phosphoribosyltransferase, lactate dehydrogenase b-chain,
peptidylprolyl cis-trans isomerase A, and 11 other proteins in the

Wnt pathway, the expression of hepatocytes activated by the b-catenin
pathway was upregulated, indicating that cathepsin B and D are closely

related to autophagy, as mediated by the Wnt/b-catenin pathway (68).

The PI3K/AKT/mTOR/LC3/P62 pathway and theWnt/Dvl/GSK3b/b-
catenin pathway can interact through complex mechanisms to jointly

regulate autophagy (62). Cathepsin L can also induce SNAIL

expression through the Wnt/b-catenin and PI3K−AKT pathways,

and regulates EMT in breast cancer and mediates tumor metastasis

(69). Unfortunately, no reports about the relationship between

cathepsin and Wnt/b-catenin in gliomas are available.
3.1.4 PI3K/AKT/mTOR signaling pathway
The PI3K/AKT/mTOR pathway is a major regulator of cellular

metabolic processes and a positive carcinogenic factor that is

present in many tumors, stomach cancer, and ovarian cancer

(70); it also plays a crucial role in the course of autophagy (71).

Therefore, targeted inhibition of the PI3K/AKT/mTOR pathway is

a new direction in anticancer therapy (72).

In a 2014 study, experimental results revealed that the use of the

cathepsin S inhibitor ZFL resulted in the upregulated expression of
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the autophagy-related protein LC3 and the phosphorylation of

AKT, mTOR, and p70S6K in human glioblastoma cells, thereby

promoting autophagy and apoptosis. These results indicate that

cathepsin S may inhibit autophagy and mediate immune escape

through the PI3K/AKT/mTOR/p70S6K signaling pathway (73).

Inhibition of cathepsin S can also inhibit TGF-b-mediated EMT

through the PI3K/AKT/mTOR signaling pathway, as well as the

invasive growth of glioblastoma (74). Conversely, in a study on

colorectal cancer, inhibition of the PI3K/AKT pathway activated

autophagy and apoptosis (75). Another study found that cathepsin

D may be able to regulate the PI3K/AKT/mTOR pathway and

thereby regulate autophagy (75). Moreover, impairing the activity of

PI3K/AKT/mTOR can also affect the activity of lysosomal

cathepsins (59), which may indicate that there is a feedback loop

between lysosomal peptidases and the PI3K/AKT/mTOR pathway.

3.1.5 Others
In addition to cellular pathways, lysosomal peptidases can affect

autophagy through a variety of other mechanisms. Tyrosine

phosphorylation of signal transducer and activator of transcription

3 (STAT3) inhibits autophagy in GBM cells (76). Bhattacharya et al.

found that STAT3 knockdown enhanced LC3-II lipidation and

autophagy by increasing lysosomal cathepsin D processing by

activating the AMPKa/ULK1/TSC2 signaling axis (61). Their

findings suggest that glioma cells are sensitized to apoptosis by

inhibiting autophagy, whereas cathepsin D enhances autophagy,

which may indicate that cathepsin D can mediate immune escape

by activating autophagy. A number of studies have proved that

cathepsin B and cathepsin L appear to be synergistic with

autophagy (77, 78). Furthermore, cell death and autophagy have

been closely linked to cathepsins (79). A 2012 study showed that

CatD can activate autophagy and play a protective role in cell death

induced by oxidative stress (80). Inhibition of cathepsin D can also

improve the sensitivity of glioma radiotherapy by promoting

autophagy (81). Silencing transient receptor potential mucolipin 1

(TRPML1) induces nitric oxide production, defective autophagy, and

cathepsin B-dependent apoptosis in glioma cells (81). In addition to

lysosomal peptidases affecting autophagy, autophagy can also in turn

affect lysosomal peptidases, and the hyperactivation of autophagy by

pimozide and loperamide treatment promotes LMP and lysosomal

stress, thus enhancing cathepsin B activity (23).
3.2 Lysosomal peptidases regulate tumor
microenvironment and immune cells

The TME refers to the cellular environment that cancer stem cells

and tumor cells rely on to survive, which has the function of

promoting cancer growth and invasion. The TME mainly

comprises cancer cells, immune cells [T lymphocytes, B

lymphocytes, tumor-associated macrophages (TAMs), myeloid-

derived suppressor cells (MDSCs)], and cancer-associated

fibroblasts. The TME includes tumor blood vessels, the extracellular

matrix of the lymphatic system, and a large number of cytokines (82,

83). Glioma stem cells and other cells that exist in the glioma

microenvironment play a crucial role in mediating glioma immune
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escape, tumor invasion, and recurrence (84). Therefore, the TME is

considered an important mechanism of glioma immune escape and

an important target for the treatment of glioma (85, 86). It has been

found that the TME can be modulated to improve the efficacy of

glioma treatment through various ways, such as regulating tumor-

associated macrophages, tumor-infiltrating centriocytes, regulating

signaling pathways, and cytokines. Furthermore, multiple studies

have demonstrated the exciting significance of the TME in glioma

therapy. A recent study involved developing a brain-targeted

liposome and disulfiram/copper synergistic delivery system (CDX-

LIPO) to remodel tumor metabolism and tumor immune

microenvironment(TIME) by modulating the mTOR pathway, and

honokiol can interact with disulfiram/copper to produce a synergistic

effect for the combined treatment of GBM (87). Another study

suggested that targeting neutrophil extracellular trap formation

may also be a therapeutic approach to inhibit glioma (88).

Furthermore, Wnt-induced signaling protein 1 (WISP1) plays a

vital role in the maintenance of TAMs and glioma stem cells,

suggesting that targeting Wnt/b-catenin-WISP1 signaling may

improve survival and treatment outcomes in GBM patients (89).

3.2.1 Tumor-associated immune cells
Tumor-associated immune cells are a vital constituent of the

glioma TME and are closely linked to glioma progression and tumor
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immune escape (90). Lysosomal peptidases can regulate immune cells

in the TME through complex mechanisms, among which are mainly

cathepsin B and cathepsin L of the cysteine cathepsin family; there are

also some reports about cathepsin D of the aspartate cathepsin family.

TLRs are associated with innate and adaptive immune reaction

and can promote the expression of inflammatory cytokine and the

immune activity of cytotoxic T cells to enhance antitumor response

(91). One study found that, in Ba/F3 cells, cathepsin B/L is an

essential molecule for TLR9 response and mainly affects the

recognition process of the latter. Cathepsin B/L can promote B

lymphocyte proliferation and CD86 upregulation through TLR9

response (91). Lack of cathepsin H leads to the impairment of TLR3

function and disables the activation of interferon regulatory factor

3, which in turn affects the subsequent secretion of IFN-b by

dendritic cells, resulting in microglia death (92). In lupus patients,

overexpression of cathepsin S can upregulate TLR7 and IFN-a, and
promote the proliferation of monocytes and neutrophils. Whether

this effect also exists in glioma patients has not been reported in the

literature. TLR signaling can also regulate the activity of cathepsins

B, L, and S in macrophages through positive feedback (93).

Recent studies have suggested that cathepsin can mediate

immune evasion by regulating tumor-associated myeloid cells and

MDSCs (Figure 2). Tumor-associated myeloid cells mainly include

TAMs and MDSCs (94). TAMs, the main culprit in promoting
FIGURE 2

Lysosomal peptidases mediate immune evading primarily by regulating TAMs, MDSCs, and cytokines (e.g.TNF-a,VEGF,IL-6,IL-10 etc.). Lysosomal
peptidases stimulates TAMs through gamma-enolase and PI3K/AKT signaling pathway to activate autophagy and regulate glycolysis and lipid
metabolism, stimulates immune cells to produce cytokines such as TNF-a, VEGF,IL-6 and IL-10. On the one hand, these cytokines act on TAMs and
MDSCs and regulate their function; on the other hand, they activate the signaling pathways TNF-a/p38MAPK and PI3K/AKT/mTOR. lysosomal
peptidasesto stimulate the production of IL1-b by MDSCs and inhibit the function of cathepsin L and NK cells. The inflammasome also has this
effect. The above three pathways jointly promote the proliferation of glioma cells, the formation of tumor neovascularization and the degradation of
extracellular matrix. Eventually, glioma invasion and metastasis occur and immune escape occurs. This figure has been created with https://app.
biorender.com (accessed on 19 January 2023).
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immune escape from the TME, are a crucial factor in the progress of

treatment resistibility and are often associated with poor prognosis.

With both M1-pro-inflammatory and M2-anti-inflammatory

phenotypes, in malignancies, macrophages tend to transition to

the M2 phenotype (83). High levels of g-enolase, which plays a

significant regulatory role in cell proliferation and aerobic

glycolysis, are correlated with the proliferation, aerobic glycolysis,

and immune escape of tumor cells (95). Cathepsin X is upregulated

in glioma cells and promotes the proliferation of TAMs by acting on

g-enolase to activate the PI3K/AKT signaling pathway, supports

tumor growth, improves GBM cell viability, and promotes GBM-

related immune cell proliferation (96). One study showed that

TAMs were a crucial constituent of the TME of pancreatic

cancer. Cathepsin B, L, and S can induce a series of effects in

tumor cells by affecting autophagy, including the enhancement of

PGE2 synthesis, glycolysis, and lipid metabolism, and by guiding

the transformation of the M2 phenotype of tumor-related

macrophages, promoting angiogenesis and tissue remodeling,

inhibiting anti-tumor immunity, and mediating immune escape

(97). MDSCs mainly include two major cell populations,

granulocytes or polymorphonuclear cells and monocytes, and are

a predictive marker of cancer (98). MDSCs can inhibit the function

of cytotoxic T cells (CTLs) and natural killer (NK) cells and

promote tumor immune escape (99). Cysteine cathepsin is highly

expressed in the MDSCs of highly metastatic breast cancer.

Therefore, inhibiting cysteine protease can reduce the occurrence

of breast cancer-related osteoclasts, as well as metastatic bone

disease (100). LCL521, a lysosomotropic inhibitor of acid

ceramidase, can target cathepsin B/D, leading to MDSC death by

terminating autophagy and endoplasmic reticulum stress (99).

Therefore, it can enhance the immune function of CTL, which is

beneficial for CTL-based tumor immunotherapy. MDSCs can

induce CD4+ T cells to secrete IL-17 by producing IL-1b, which
is resistant to the anticancer effect of chemotherapeutic drugs,

whereas IL-1b depends on cathepsin B to activate the NLRP3

inflammasome (101). Using Tick Cysteine Protease Inhibitor

RHcyst-1, a cathepsin inhibitor and a member of the cystatin 1

family, can decrease and increase the activity of MDSCs in

peripheral blood mononuclear cells (PBMC) and the spleen,

respectively (102). In breast cancer, cathepsin L/X can also

increase the activity of MDSCs in breast cancer and are related to

breast cancer invasion (103). Cathepsin B also promotes the

formation of neutrophil extracellular traps and modulates tumor

aggressiveness in vitro (104). In summary, lysosomal peptidases are

more likely to promote the immune escape process of tumors by

enhancing the activity of MDSCs (Figure 2).

3.2.2 Integrin
Integrins can bind to the extracellular matrix, participate in the

actin network after binding to the actin cytoskeleton, activate the

Ras-ERK, PI3K/AKT, and YAP/TAZ pathways, and activate

intracellular signals to regulate complex cellular biology learned

behaviors, including immune escape, survival, proliferation, and

migration (105). Integrin signaling can initiate a variety of stem cell

functions and mediate cell adhesion. Deregulation of integrin

signaling in tumors enhances the immune evasion and
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invasiveness of tumor cells (106). In a study on breast cancer,

inhibition of cathepsin K restrained the adhesion, migration, and

metastasis of cancer cells through integrin molecules and their

downstream targets: MMP-9, PI3K, and the MAPK signaling

pathway (107). Studies have found that cathepsin X activates

macrophage antigen-1 receptor–dependent phagocytosis and cell

adhesion by interacting with the integrin receptor b2 subunit, as

macrophage antigen-1 receptor is an inhibitor of lymphocyte

proliferation. Conversely, the regulation of LFA-1 by cathepsin X

promotes lymphocyte proliferation (108), which suggests that

cathepsin X may have dual effects on lymphocyte activation

through integrin receptors.

3.2.3 NK cells
NK cells and CTLs are important components of the body’s

cellular immune response; they can induce apoptosis mainly

through the death receptor pathway and the extracellular release

of granzymes. They also play an indispensable role in immunity

against pathogens and tumor cells (109). Progranzymes must be

processed in lysosomes to be converted into active granzymes (110).

Among them, cathepsins C, H play an important role. Cystatin F

produced in immune cells and tumor cells can be internalized into

NK cells to inhibit the activity of cathepsins C, H, and L, reduce the

cytotoxicity of NK cells, and play a part in facilitating cancer cell

metastasis (111).

Previous works have shown that the suppression of cathepsin X

affects the immune function of dendritic cells and T cells (112), but

whether this affects NK cells is not clear. Interestingly, a recent

study showed that cathepsin X has no effect on the adhesion

between Jurkat T cells and target cells. In this study, cathepsin X

did not affect the formation of immune synapses in NK cells but

entered into target cells with the release of cytotoxic particles.

Therefore, the inhibition of cathepsin X does not impair NK cell

cytotoxicity (113).

3.2.4 Tregs
Tregs are a type of immunosuppressive cells that also have a

significant role in the immune escape of glioma (86). One study

found that cathepsin S inhibits Treg immunosuppressive activity,

which reduces T cell immunity under normal conditions but

enhances the immune killing of CD8+ T cells in bladder cancer

cells (114). Similar mechanisms may exist in gliomas, but research is

still needed to confirm them.
3.3 Lysosomal peptidases and cytokines

In the TME, cytokines in the background can also cause chronic

inflammation and tumor immune escape. Common cytokines

include TNF-a, IL-6, IL-8, and IL-10, which have the effect of

promoting tumor invasion, growth, and angiogenesis (83).

Nowadays, numerous studies have revealed that lysosomal

peptidases can regulate the synthesis of cytokines, thereby

affecting the TME and immune cells, as well as participate in

tumor immune escape. For example, cathepsin C produced by

tumor cells participates in the recruitment of neutrophils and the
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formation of extracellular traps by promoting the processing and

activation of IL-1b and NF-kB, upregulating IL-6 and the

chemokine CCL3, and promoting breast cancer progression and

lung metastases (115). Cathepsin K in rectal cancer cells stimulates

the synthesis of cytokines such as IL10 and IL-17 and promotes the

metastasis of colorectal cancer cells through the NF-kB
pathway (116).

3.3.1 TNF-a
Tumor necrosis factor-a (TNF-a) is a classic cytokine that can

be found in inflammatory reactions, autoimmune diseases, tumor

immunity, blood diseases, and even acute respiratory distress

syndrome. However, as its name suggests, TNF-a should

downregulate the proliferation of tumor cells and kill them. In

fact, TNFs can promote tumor invasion by inducing the

upregulation of chemokines and matrix metalloproteinases, and it

cooperates with TGF-b to promote tumor metastasis (117).

Glioma-related studies have shown that lysosomal peptidases are

not regulated upstream of TNF-a, and, in gliomas, TNF-a activates

cathepsin B/D to mediate cell necrosis, causing RIP1 and RIP3

kinases–driven necroptosis (118). In hepatocellular carcinoma, on

the one hand, TNF-a can activate cathepsin C, and, on the other

hand, cathepsin C can also activate the TNF-a/p38MAPK pathway,

which has a close relationship with the growth of hepatocellular

carcinoma (56). Inhibition of cathepsin K may inhibit breast cancer

bone metastasis by reducing the expressions of TNF-a, IL-6, and
IL-1b (119).

3.3.2 TGF-b
Transforming growth factor (TGF)-b plays a vital role in the

progression of glioblastoma. TGF-b inhibits tumor growth in the

early stages of tumors but promotes the growth and invasion of

advanced tumors (120). TGF-b can induce EMT, and play a role in

promoting tumor immune escape through Smad-dependent or

Smad-independent signaling pathways such as PI3K/AKT, P38

kinase, and Ras/ERK (121). Inhibition of cathepsin S reverses

TGF-b-mediated EMT by inhibiting the PI3K/AKT/mTOR

pathway. Inhibition of cathepsin S can also increase the

expression of E-cadherin, reduce the expression of Vimentin and

N-cadherin, and restore TGF-b–induced changes in cell

morphology (74). Inhibition of cathepsin L can also inhibit the

EMT process of breast cancer cells mediated by TGF-b through

Wnt signaling and PI3K-AKT signaling pathway–related Snail (69).

3.3.3 Urokinase-type plasminogen activator
The urokinase-type plasminogen activator (uPA) system is

essential for endothelial cell invasion and migration during tumor

angiogenesis. In cancer cells, proteolysis of the uPA system releases

b-FGF and VEGF (122). An older study found that cathepsin B can

hydrolyze pro-uPA to generate active double-stranded uPA (123).

Inhibition of uPAR and cathepsin B can inhibit the angiogenesis

around tumor cells by reducing JAK/STAT-dependent VEGF

expression and impairing tumor invasion ability (124). A study

on gliomas found that tivozanib, a pan-inhibitor of VEGF receptor,

inhibits cathepsin B/uPA/MMP-2. The proteolytic cascade inhibits

GBM cell invasion (125), which indicates that cathepsin B may be
Frontiers in Immunology 08
able to regulate the expression of VEGF by regulating the uPA

system, and affect the angiogenesis of glioma.

3.3.4 Vascular endothelial growth factor
VEGF plays an important role in the invasion and growth of

various malignant tumors, including gliomas (126), which is mainly

due to its ability to promote tumor angiogenesis. Therefore, glioma

therapy targeting VEGF is also a current research hotspot. The

VEGF-targeted therapeutic bevacizumab is currently approved for

the treatment of recurrent glioma (127). Both cathepsin B and

urokinase-type plasminogen-activated receptor (uPAR) are

overexpressed in tumor angiogenesis, and their inhibition can

inhibit tumor cell–induced endothelial cell migration by disrupting

the JAK/STAT pathway, synthesis of VEGF receptor-2, cyclin D1 and

cyclin-dependent kinase, inhibits tumor angiogenesis (124). In vitro

glioma experiments showed that the inhibition of cathepsin B

resulted in the downregulation of MMP-9 and VEGF expression.

This study indicated that cathepsin B may be able to regulate the

release of MMP-9 and VEGF, suggesting that the inhibition of

cathepsin B will also inhibit tumor growth by inhibiting cathepsin

B. Angiogenesis has emerged as a therapeutic approach to inhibiting

glioma (128). In addition, the knockdown of VEGF receptor 2, AKT3,

and PI3KCA in glioma cells by antisense RNA can significantly

reduce the expression of cathepsin D, suggesting that the relationship

between lysosomal peptidases and VEGF may not be unidirectional

(129). This was also demonstrated in another study, where VEGF

receptor inhibitors impaired the cathepsin B/uPA/MMP-2 pathway

and inhibited glioma invasion (125).

In addition, in some other diseases, cathepsins can also affect

cytokines, thereby affecting immune function. In neurons and glial

cells in hypothermic brain injury, cathepsin C intensifies

neuroinflammation by promoting the increased expression of

chemokines CCL2, CXCL2, TNF-a, L-1b, IL-6, and iNOS (130).

After infection by Harvey bacteria, cathepsin C can significantly

enhance the body’s ability to resist Vibrio harveii and promote the

expression of TNF-a, interferon-g, interleukin-1b (IL-1b), IL-6, and
IL-8 (131).
3.4 Lysosomal peptidases and apoptosis

Induction of apoptosis is one of the important mechanisms of

glioma immune escape (86). Lysosomal peptidases affect apoptosis

mainly by activating caspase-3, -7, -9, Bax and regulating the

activity of MMP-9, and cathepsin B and cathepsin L are mainly

involved in these mechanisms (132–134). Another study reported

that cathepsin L has an anti-apoptotic effect in the early stage of

apoptosis, and high levels of cathepsin L play a protective role

against apoptosis in the case of intact lysosomes (135).

Furthermore, cathepsin B plays a key role in microglial

conditioned culture medium (MCM)–induced apoptosis in

glioma cells, and nitric oxide is likely the major glioma cytotoxic

mediator in microglial conditioned culture medium (136). Silencing

the expression of MMP-9 and cathepsin B can also produce a pro-

apoptotic effect by inhibiting the repair of damaged DNA,

downregulating DNA repair–related protein kinases ATM,
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RAD51, and pCHK2 and survival signaling proteins pERK and

AKT (137). The histone variant H2AX is a safeguard of the cellular

genome and is involved in chromatin remodeling, apoptosis, and

DNA damage response. Silencing cathepsin B and uPAR can inhibit

the c-Met pathway and upregulate H2AX, increasing the

radiotherapy sensitivity of glioma cells (138), and the knockdown

of cathepsin L has a similar effect (139). These results may point to a

new direction for glioma treatment.
3.5 Changing the expression patterns of
MHC molecules

MHC molecules, also known as human leukocyte antigens

(HLAs), play an essential role in the activation of immune cells.

MHC class I antigens are composed of classical genes HLA-A, B,

and C, and non-classical genes HLA-E, F, G. MHC class II antigens

are mainly composed of HLA-DR, DP, and DQ (86). Among them,

class I molecules, as antigen-presenting molecules of CTL, are

indispensable in the immune response mediated by CD8+ T cells,

aiming at the presentation of endogenous antigens (140). Class II

molecules are mainly presented to antigen-presenting cells for the

presentation of exogenous antigens. As NK cells can kill MHC I

molecules independently, tumor cells will retain part of MHC I on

the cell surface to escape recognition (141). Interestingly, changes in

the expression pattern of MHC molecules can affect the process of

antigen presentation, which is an important mechanism of glioma

immune escape (86). However, there are not many studies on the

effect of lysosomal peptidases on MHC molecules in gliomas. In a

mouse model, the expression level of MHC class I molecules in

mouse dendritic cells lacking cathepsin G decreased, and cathepsin

G may induce the expression of MHC molecules through the PAR1

signaling pathway. CatG also upregulates the surface of

glioblastoma stem cells. The expression of MHC-I molecules

plays a positive role in the recognition of tumor cells by CTLs

(34). However, in contrast, in another study, CatG promoted the

hydrolysis of MHC class I molecules, and the lack of CatG in glioma

cells prevented the complete degradation of MHC class I molecules

and prevented them from being attacked by NK cells (35). This

phenomenon may be related to the concentration of CatG, which is

known to play a part in the post-transcriptional processing of MHC

class I molecules (34). A low concentration of CatG may promote

the expression of MHC class I molecules, whereas a high level of

CatG can completely degrade them; however, the specific

mechanism remains to be confirmed. In previous studies,

cathepsin B and cathepsin D were required for the degradation of

MHC class II molecular invariant chains (li) in endosomes/

lysosomes, suggesting that cathepsin B and D are involved in

functional MHC II molecular mediated immune responses (142).

New studies show that cathepsin S is also involved in the

manufacture of the MHC class II chaperon-invariant chain Li

(143), as already demonstrated in head and neck cancer cells

(144). In other malignancies, lysosomal peptidases can also

influence tumor immunity through MHC molecules. In acute

myeloid leukemia, cathepsin G attacks leukemia cells in a MHC

class I molecules–dependent manner (145).
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Gliomas are classified as adult diffuse gliomas, pediatric diffuse

low-grade gliomas, pediatric diffuse high-grade gliomas, and

localized astrocytoma (146, 147), and different types of gliomas

are treated differently. In general, treatment modalities for gliomas

include surgical resection, radiation therapy, and chemotherapy.

However, due to the highly aggressive characteristics of malignant

gliomas and the emergence of drug resistance, the long-term

treatment effect of gliomas is not satisfactory (148). This article

reviews the treatment of glioma mainly from the aspect of lysosomal

peptidases and discusses some therapeutic drugs and the future

direction of drug research. From a research perspective, we

categorize these drugs into those that affect the activity of

lysosomal proteases, those that affect the gene expression of

lysosomal proteases, and those that affect lysosomal function. It is

important to note that these categories are not completely

independent, as some substances may affect multiple mechanisms

of action simultaneously (Table 1).
4.1 Therapeutic drugs

4.1.1 Affecting the activity of lysosomal proteases
4.1.1.1 Curcumin

Curcumin is considered an effective drug in the treatment of

many types of tumors, including gliomas. Studies have shown that

in the treatment of glioma, curcumin plays a vital part in the

treatment of tumors by downregulating the S-phase kinase

associated protein 2 pathway in glioma cells (149). Fei et al.

found that curcumin-induced cytotoxicity could be enhanced by

inhibiting cathepsin L (159). In the experiment, it was found that

curcumin inhibited the proliferation of tumor cells by intensifying

cell cycle arrest and apoptosis, and also inhibited the metastasis of

glioma cells. Notably, by inhibiting cathepsin L, the radiosensitivity

of gliomas can also be increased (139, 160, 161), which provides a

new idea for drug combination radiotherapy.

4.1.1.2 Caffeine

Caffeine, a substance widely present in coffee and tea, has been

shown to inhibit the MAPK pathway and induce apoptosis in

osteosarcoma cells (162). Later studies found that caffeine also

has a positive role in the treatment of gliomas. Cheng et al. found

that caffeine can inhibit the cathepsin B and MAPK signaling

pathways, thereby reducing the invasion of glioma cells (54).

Therefore, caffeine may serve as a potential preventive drug for

glioma, as well as an adjuvant treatment drug.

4.1.1.3 Insulin-like growth factor-binding protein-4

Insulin-like growth factor-binding protein-4 (IGFBP-4) has

been found to have anti-angiogenic functions in experiments and

can attenuate the aggressiveness of gliomas, and is considered a

potential candidate for glioma therapy (163). Functionally,

cathepsins in lysosomal peptidases have basement membrane

degradation and are involved in tumor invasion and angiogenesis.
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New research also found that the anti-angiogenic and anti-tumor

effects of IGFBP-4 are related to lysosomal peptidases, especially

cathepsin B. Moreno et al. demonstrated that IGFBP-4 was capable

of inhibiting cathepsin B activity in glioma cells, and confirmed the

ability of IGFBP-4 to inhibit cathepsin B activity in vitro (151).

Remarkably, tumor growth was reduced by 60% in the experimental

IGFBP-4-treated animal model.

4.1.2 Affecting the gene expression of lysosomal
proteases
4.1.2.1 siRNA

In addition to cathepsin L being associated with the

radiosensitivity of gliomas, another study also found that

cathepsin D was expressed at significantly higher levels in

radioresistant clones than in parental cells. The CTSD gene is

responsible for encoding cathepsin D, which is widely considered

to be closely correlated with the prognosis of glioma. Zheng et al.

found in their experiments that knockdown of CTSD by small

interfering RNA (siRNA) increased the sensitivity of glioma cells to

ionizing radiation, and the autophagy level of tumor cells was

enhanced (81).

4.1.2.2 Piperlongumine and scopoletin

Cathepsin C, encoded by the CTSC gene, is a member of the

cysteine cathepsin family and also belongs to lysosomal peptidases.

Cheng et al. found that the synthesis of CTSC in glioma cells was

significantly higher than that in non-cancer cells, and the protein

expression was higher in high-grade gliomas (150). In their

experiment, glioma cells were treated with piperlongumine and

scopoletin separately, and the results showed that the synthesis of

CTSC was significantly inhibited. Therefore, piperlongumine and

scopoletin may have potential as drugs targeting CTSC for the

treatment of glioma.

4.1.2.3 Tachyplesin I

Tachyplesin I, a peptide present in the blood cells of Tachypleus

tridentatus, has shown positive effects in some tumors, such as lung,
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stomach, liver cancer (164–166). Ding et al. found that Tachyplesin

I also had therapeutic effects toward gliomas and demonstrated that

Tachyplesin I inhibited glioma development by disrupting the

plasma membrane and inducing glioma stem cell differentiation

(167). Another study found that the expression levels of cathepsins

(especially cathepsin A, cathepsin B, and cathepsin D) in lysosomes

were significantly changed after Tachyplesin I treatment (152).

Therefore, Tachyplesin I can inhibit tumor cell metastasis by

downregulating cathepsin, so as to achieve the effect of

treating glioma.

4.1.3 Affecting lysosomal function
4.1.3.1 Guggulsterone

Guggulsterone (GS), a phytosterol extracted from Commiphora

mukul, has been shown to have anti-tumor cell proliferation effects

in various tumors, such as pancreatic tumors, bladder carcinoma,

and colorectal carcinoma (168–170). Remarkably, GS not only

induces apoptosis in human bladder cancer cells but also inhibits

lysosomal migration in bladder cancer cells, suggesting that it can

suppress tumors through the lysosomal pathway (169). Some

studies have found that GS is capable of inhibiting the

proliferation, migration, and invasion of glioma cells (153). Yang

et al. found that after treating glioma cells with GS, cell viability and

invasion ability were significantly reduced, and the expressions of

adhesion complex, MMP-2, MMP-9, and cathepsin B were also

reduced (154). Therefore, GS may play an anti-glioma role through

proteasome and lysosome degradation. In addition, GS was found

to enhance the effect of temozolomide in glioma chemotherapy by

downregulating the EGFR/PI3K/Akt signaling pathways and NF-кB

activity (155, 171).

4.1.3.2 Other drugs

In addition, some drugs have been less studied, and the

processes by which they affect lysosomes and their mechanisms of

action are not yet clear, but existing research has shown that they

may also have potential therapeutic effects in the treatment of

glioma. Glioma cell proliferation is dependent on cholesterol
TABLE 1 Therapeutic drugs or therapeutic targets for glioma.

Therapeutic drugs Site of action Effect References

Curcumin Skp2 Inhibits growth, promotes apoptosis, inhibits metastasis. 149

siRNA CTSD gene, Cat D Increase radiosensitivity and enhance autophagy. 81

PL and SCO CTSC gene, Cat C TBD 150

caffeine Cat B and MAPK pathway Inhibit invasion. 54

IGFBP-4 Cat B growth inhibition, antiangiogenic. 151

Tachyplesin I Cat A, Cat B and Cat D Inhibit invasion. 152

Guggulsterone Lysosomes and Cat B Inhibit tumor proliferation, migration and invasion, enhance the effect of chemotherapy (153–155)

Platycodin D Lysosomes inhibit tumor growth 156

mefloquine Lysosomes Inhibits tumor growth and angiogenesi 157

FIN56 Lysosomes inhibit tumor growth 158

Sulbactam Lysosomal sulfatase inhibit tumor growth 159
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homeostasis, and inhibition of intracellular cholesterol transport

can mediate cancer cell death (172, 173). Platycodin D has been

shown to inhibit angiogenesis by targeting multiple signaling

pathways, and can inhibit cancer cell invasion and metastasis by

inducing apoptosis and autophagy (174). For glioma, Platycodin D

promotes the uptake of LDL cholesterol by upregulating LDL

receptors, leading to cholesterol accumulation in lysosomes and

glioma cell death, and inhibits the growth of glioma (156).

Mefloquine is a drug widely used in the prevention and

treatment of malaria, and has shown anti-tumor effects in many

studies (175–178). Wan et al. found that mefloquine can destroy the

integrity and function of lysosomes in glioma cells, leading to

oxidative stress and lysosomal damage, and inhibiting the growth

and angiogenesis of glioblastoma (157).

FIN56, a novel ferroptosis-specific inducer, has been identified

to induce ferroptosis and autophagy in bladder cancer cells by

increasing the degradation of GPX4 (179, 180). Ferroptosis also has

an impact on glioma (181). X. Zhang et al. found that FIN56 can

induce lysosomal membrane permeabilization and inhibit the

growth of glioma cells both in vitro and in vivo (158).

M.-M. Zhang et al. found that the expression of lysosomal

sulfatase is related to the prognosis of glioma, and sulbactam can

inhibit the cell proliferation related to lysosomal sulfatase, thereby

inhibiting the growth of glioma (182). This study suggests that

sulbactam may be a promising therapeutic agent for glioma.
4.2 The direction of drug research

Although specific drugs have not yet been discovered through

current research, certain metabolic processes and substances play a

crucial role in the proliferation and invasion of tumors. By

regulating these cellular processes and the activity of substances,

it is possible to inhibit the proliferation and metastasis of gliomas.

Therefore, the metabolic processes and substances discussed in the

following sections are likely to provide direction for future

exploration of drugs for the treatment of gliomas.

4.2.1 MEOX2-cathepsin S axis
There has been substantial evidence that lysosomal peptidases

are important mediators of tumor development in a variety of

tumors. McDowell et al. showed that cathepsin S plays an important

role in tumor invasion, angiogenesis, and metastasis (183). In a

previous study, inhibition of cathepsin B and MMP-9 genes in

glioma cells by RNA interference successfully reduced tumor

growth and angiogenesis and inhibited tumor cell invasion (184).

Recent studies have also found that enhanced glioma aggressiveness

is associated with increased expression of cysteine cathepsins B and

S and downregulation of the endogenous cell adhesion molecule

NCAM (185). Wang et al. found that the nuclear transcription

factor Mesenchyme Homeobox 2 (MEOX2) contributes to the cell

proliferation and motility of gliomas, and that cathepsin S of the

cathepsin family of cysteine proteases is a downstream target of

MEOX2 (186, 187). In conclusion, direct or indirect inhibition of

cathepsin B activity and the MEOX2-cathepsin S axis in glioma cells

may be a direction of future drug research.
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4.2.2 Cathepsin X
Lysosomal cysteine carboxypeptidase cathepsin X, which is

mainly present in immune cells, is thought to be involved in

intracellular signaling and plays an important role in tumor

proliferation and invasion (188). Majc et al. found that the

expression and activity of cathepsin X in human glioma tissues

were significantly higher than those in low-grade gliomas and

normal brain tissues (189). The viability of macrophages and

microglia in glioma was successfully reduced by selective

cathepsin X inhibitor. Thus,. cathepsin X is a potential

therapeutic target for glioma. Studying the role of cathepsin X in

signal transduction and finding drugs acting on cathepsin X may be

important research directions for glioma treatment.

4.2.3 Netrin-1
In a study on ovarian cancer, Y. Li et al. found that Netrin-1

promoted cell invasion and angiogenesis in ovarian cancer (190). In

the study of Vásquez et al., it was found that Netrin-1 is also

involved in the process of promoting the neovascularization of

gliomas, thereby enhancing their invasiveness (191). Shimizu

demonstrated that an important process in the mechanism of

Netrin-1–induced glioma angiogenesis and increased glioma

invasiveness is cathepsin B–dependent (192). Therefore, targeting

Netrin-1– and cathepsin B–dependent pathways may be a new

strategy for glioma therapy.

This section mainly discusses the treatment of glioma from the

perspective of lysosomal peptidases of tumor cells themselves, but

numerous studies have demonstrated that lysosomal peptidases can

also originate from other cells in the TME, such as endothelial cells,

macrophages, and T cells. Future research should focus on tumor

cell–derived lysosomal peptidases and comprehensively study the

role of other cell-derived lysosomal peptidases in the TME in the

occurrence and development of gliomas. The results of such studies

could ultimately be used in the early diagnosis, adjuvant therapy,

and prognosis monitoring of glioma.
5 Conclusion

Lysosomal peptidases-mediated immune escape in glioma has

become one of the factors causing poor prognosis of glioma

patients. Its mechanisms mainly include activating autophagy,

regulating immune cells, promoting the production and release of

cytokines, affecting cell apoptosis and regulating MHC-mediated

antigen presentation. Curcumin, Piperlongumine, Scopoletin,

caffeine and other drugs targeting Lysosomal peptidases can

negatively regulate the immune escape of glioma cells by

inhibiting the formation or down-regulating the activity of

Lysosomal peptidases, and can also increase the sensitivity of

glioma to radiotherapy.

However, at present, the research on the mechanism of

Lysosomal peptidases-mediated immune escape is not complete,

and there are many possible mechanisms waiting for us to discover.

Drug therapy targeting Lysosomal peptidases has only been

confirmed by many studies to reduce the immune escape of

glioma, but it is difficult to completely block it, and the potential
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adverse reactions of the drug, Factors such as price are huge barriers

to the clinical use of these drugs. Lysosomal peptidases can promote

immune escape not only in glioma, but also in other tumors.

Perhaps the tumor therapy targeting Lysosomal peptidases will be

one of the research hotspots.
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