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Antibody-mediated rejection is the leading cause of kidney graft dysfunction.

The process of diagnosing it requires the performance of an invasive biopsy and

subsequent histological examination. Early and sensitive biomarkers of graft

damage and alloimmunity are needed to identify graft injury and eventually

limit the need for a kidney biopsy. Moreover, other scenarios such as delayed

graft function or interstitial fibrosis and tubular atrophy face the same problem. In

recent years, interest has grown around extracellular vesicles, specifically

exosomes actively secreted by immune cells, which are intercellular

communicators and have shown biological significance. This review presents

their potential as biomarkers in kidney transplantation and alloimmunity.
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1 Introduction

In kidney transplantation, antibody-mediated rejection (ABMR) continues to represent

the most significant challenge to be resolved in order to improve graft and patient survival

(1, 2). Although acute ABRM is a potentially treatable disease, chronic ABMR has limited

therapeutic options. It invariably progresses to end-stage chronic kidney disease (ESKD),

representing over 50% of death-censored graft losses. Therefore, early detection of acute

ABMR, timely treatment, and prevention of its progression to chronic ABMR are vital to

guarantee satisfactory results for kidney transplant recipients, especially in the high

immunological risk group. With this premise, some centers have developed a strategy

based on protocol kidney graft biopsies. However, a biopsy is an invasive method with
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potential risk of associated complications; moreover, it presents a

high financial and resource cost (1, 2).

For this reason, many transplant centers choose to perform

biopsies only “by indication” when some classical parameters are

altered, such as creatinine, proteinuria, or the existence of specific

anti-Human Leukocyte Antigen (HLA) donor antibodies (DSA) (3).

However, these indicators need more sensitivity and change when

rejection is established (3). This unmet clinical need led to a quest to

discover early and sensitive biomarkers of graft damage, limiting

renal graft biopsies’ performance to only those patients with a high

likelihood of rejection. Furthermore, beyond the rejection field,

other scenarios in kidney transplantation, such as delayed graft

function (DGF) or interstitial fibrosis and tubular atrophy (IFTA),

run into the same problem without biomarkers that allow for early

detection or differentiation from other pathologies.

Among these possible biomarkers, it is worth highlighting

circulating extracellular vesicles (EVs), specifically, exosomes

actively secreted by immune cells, which are intercellular

communicators that carry microRNA, DNA, and proteins with

biological significance as intercellular mediators (4).

This review summarizes the current EVs literature in kidney

transplantation and their use as biomarkers.
2 Types of EVs

The discovery of EVs dates to the last century. Since then,

several names have been attributed to them, and a sharp increase in

scientific publications has been evidenced in the last decade (5). In

2014, the Minimal Information for Studies of Extracellular Vesicles

(“MISEV”) guidelines were released by the International Society for

Extracellular Vesicles (ISEV). Subsequently, an update was

proposed in 2018 by consensus of the largest group of EV

experts, defining EVs as “the generic term for particles naturally

released by cells that are delimited by a lipid bilayer and cannot

replicate” (6). One year later, in 2019, another publication released

by the corresponding authors of the MISEV guidelines asserted the

accuracy and clarity of EV nomenclature to specialists and non-

specialists and their use as a scaffold for progressively more detailed

designation (7).

EVs are classified into three categories: exosomes, which are

intraluminal vesicles contained in multivesicular bodies (MVBs)

and released into the extracellular environment upon fusion of

MVBs with the plasma membrane, microvesicles (also called

microparticles) budded from the plasma membrane, and

apoptotic bodies, the largest of the known vesicles and released

during programmed cell death when the plasma membrane blebs

(8–12) (Table 1).
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Due to the internal origin of exosomes from MVBs, they

represent the parental cell’s internal activity and conditional state

more closely than other types of EVs (5, 10, 11, 16, 17).

EVs seems that can be secreted by any cell type studied,

including immune cells, are believed to play a central role in cell-

to-cell communication (5, 6, 11). Their content is diverse and

includes protein, lipids, nucleic acids, and other bioactive

molecules that are determined according to the type of cell from

which they arise (11, 16, 18). These content molecules provide EVs

with different capabilities in terms of biogenesis and transport.

Moreover, membrane curvature, which begins in the parent cell

during membrane budding, determines the shape, composition, and

size of each EV and therefore has a role in their physiological

function (19–22).

Surface-exposed components and ligands determine EVs’

biodistribution and their binding to target cells or binding to the

extracellular matrix, allowing intracellular signaling pathways via

simple interaction with the surface of the target cells or by

internalization. For instance, proteins such as tetraspanins (CD81,

CD82, CD63, or CD9) help penetrate exosomes inside cells,

invasion, and fusion, whereas heat shock proteins such as HSP70

and HSP90 are involved in antigen binding and presentation. Other

proteins such as Alix, annexins, Rab, or TSG101 are associated with

exosome release, membrane transport, and function. Notably, some

of these proteins, such as CD63, CD81, HSP70, and TSG101, which

are enriched explicitly in exosomes, are generally used as their

marker proteins (13, 17, 18)

Lipids such as cholesterol and sphingomyelin enrich EV

membranes and, as well as their essential structural role, can also

be transferred between cells (23).

The parent cell source and the properties of target cells

determine EVs’ biodistribution, and their quantity in circulation

is determined by the balance between production and clearance.

Clearance occurs via interactions with target cells through

endocytosis, phagocytosis, pinocytosis, or membrane fusion (14),

and also through the liver, spleen, and lungs (24, 25). Regarding the

half-life, different studies have described a predominantly short one,

ranging from 2–5 min to 5 h (24–27).
3 Isolation techniques

Up to now, there is no unique standardized protocol for EV

isolation (28), and obtaining highly pure EVs is necessary to

attribute them a specific function or property to be used as

biomarkers (6). Their isolation and purification are decisive for

most downstream applications due to their overlap with

lipoproteins or protein aggregates; these can easily mistake EV
TABLE 1 Characteristics of the different types of EVs (13–15).

Exosomes Microvesicles Apoptotic bodies

Origin: multivesicular bodies Origin: plasma membrane Origin: apoptotic cell death

Size: 50–100 nm Size: 100–1,000 nm Size: 1,000–5,000 nm

Protein markers: CD9, CD81, CD63, TSG101, ALIX Protein markers: CD40 ligands, integrins, selectins, annexin V Proteins markers: Histones
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detection due to their similar biophysical properties and act as

contaminants (5, 15, 28).

EVs can be isolated from many sources, including biological

fluids and cell culture supernatants (29, 30). Initial publications on

blood-derived EVs prompted the recommendation to preferably

conduct plasma studies due to platelet-derived EV released in the

serum after blood collection during clot formation (30). In contrast,

other studies have found EV isolation from serum to be more

reproducible (29) and, in kidney transplantation, the serum content

could reflect renal and endothelial recovery functions (31, 32)

According to MISEV 2018, differential ultracentrifugation was

the most common isolation technique (6). It consists of consecutive

centrifugation steps, each with an increase in centrifugation forces

and durations, aiming to isolate smaller from larger particles based

on differences in their densities (33). Other procedures, such as size

exclusion chromatography (SEC), ultrafiltration, precipitation, or

immunoisolation, were used by approximately 5–20% of

researchers (6).

Since then, an assortment of techniques has been developed,

such as field-flow fractionation (FFF), variations of size exclusion

chromatography (SEC), ion exchange chromatography, microfiltration,

fluorescence-activated sorting, novel immunoisolation techniques, and

microfluidics or precipitation techniques using a plethora of commercial

kits (5, 6).

Further information on EV isolation is beyond the scope of this

review. All these methods, along with their strengths and

weaknesses, are extensively discussed elsewhere (34, 35).
4 Biological function
and role in immunology

EVs are involved in the regulation of physiological functions

such as maintenance of homeostasis, enhanced coagulation (36–

38), vessel integrity (39), tissue repair (40), or synaptic plasticity

(41). They are also involved in inflammation, angiogenesis, or

transmission of oncogenic molecules to neighboring cells,

favoring neoplasia propagation and procoagulant capacity (4, 10,

11, 42–44).

Regarding their role in immunology, EVs act in innate and

adaptative immune systems. In the innate, their major role has been

described as pro-inflammatory mediators secreted by activated

macrophages, neutrophilic granulocytes, NK cells, or mast cells in

scenarios such as infection (45–47), sepsis (47–49), or chronic

inflammation (50). In addition, an anti-inflammatory role also

has been described through TGF-b secretion or regulation of

endogenous lipid mediators (51).

Regarding adaptive immunity, EVs are a source of antigens for

antigen-presenting cells (APC) such as macrophages, dendritic cells

(DCs), and B cells. Depending on their cargo and parenting cells,

they can induce immunogenic or tolerogenic responses (8, 42, 52).

Recipient APCs can release EVs containing peptide-MHC I or II

complexes and co-stimulatory molecules that contribute to antigen

presentation (53, 54). This release is carried out constitutively,

although this process can be increased after stimulation (55).

Furthermore, graft-derived exosomes can initiate the immune
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response in a direct or semi-direct pathway that will end up

causing graft rejection (56, 57). The direct pathway consists of

exosomes from donor tissue behaving as donor APCs presenting

MCH molecules or tissue-specific self-antigens to recipient T cells

(58, 59). In contrast, in the semi-direct pathway, graft exosomes are

taken up by recipient APCs, presenting intact MHCmolecules from

these graft exosomes on the surface of APCs, known as MHC cross-

dressing (60).

Besides promoting intercellular information exchange via their

surface molecules, their role as carriers of soluble mediators such as

cytokines has been described. These cytokines include interleukin

1b (IL-1 b), interleukin 1a (IL-1 a), interleukin 18 (IL-18),

macrophage migration inhibitory factor (MIF), interleukin 32,

membrane-bound tumor necrosis factor (TNF), interleukin 6 (IL-

6), vascular endothelial growth factor (VEGF), interleukin 8

(CXCL8), fractalkine (CX3CL1), CCL2, CCL3, CCL4, CCL5, and

CCL20, and transforming growth factor b (TGF b) (27, 61).
5 Extracellular vesicles as biomarkers
in kidney transplantation

Nowadays, biomarkers of the different EVs in circulation have

been assessed in plenty of publications. The most developed field is

oncology, where tumor mass has been linked to the amount of

tumor-derived circulating exosomes. In the field of kidney disease,

some studies demonstrate the participation of exosomes in different

processes, which include acute kidney failure, autoimmune kidney

disease, diabetic kidney disease, glomerulonephritis, vasculitis, or

thrombotic microangiopathies (16).

Regarding transplantation, EVs in body fluids have been

proposed as liquid biopsies. Mainly, publications focus on heart,

lung, or pancreatic islet allografts. A profile of blood-derived EVs

through multiplex flow cytometric assay using antibody-coated

capture beads has been described in heart transplant recipients. A

significant increase in the concentration of plasma-derived EVs in

patients undergoing both acute cell and ABMR has been confirmed

compared with subjects not undergoing them (62). In the lung,

circulating exosomes with lung self-antigens can be a viable non-

invasive biomarker for identifying patients at risk of developing

chronic lung allograft dysfunction (63–65). Regarding pancreatic

islet allografts, a human-into-mouse xenogeneic islet transplant

model led to a marked decrease in the transplant islet exosome

signal in early rejection, and changes in exosomal microRNA and

proteomic profiles preceded hyperglycemia (66).

In kidney transplant, a decrease of circulating microparticle

levels and their procoagulant activity after graft has been described

in comparison to the prior hemodialysis status, hypothesizing that

microparticles could be associated with cardiovascular risk

improvement after transplant (67, 68). Studies have also been

carried out on the urine and plasma of recipients, revealing their

potential use as markers of cellular or humoral rejection, DGF,

IFTA, mediated drug toxicity, and other non-specific graft injuries

(18). Below, we expand the role of EVs in all of these settings

(Figure 1). The methods of isolation for each study are summarized

in Table 2.
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5.1 Biomarkers for acute kidney rejection

In graft rejection, all the immune system components are involved

in causing graft injury, including T and B lymphocytes, antibodies,

endothelial cells, NK cells, macrophages, polymorphonuclear cells, or

complement components (86).

Qamri et al. analyzed early post-transplant changes in

circulating endothelial CD31+/CD42b− microparticle (EMP)

levels after kidney transplant in 213 kidney recipients and 14

kidney + pancreas recipients. In the first cohort, no changes in

circulating EMP levels were observed when graft dysfunction was

unrelated to acute rejection. However, when this dysfunction was

due to an episode of acute rejection (confirmed through a graft

biopsy), an elevation in circulating EMP was detected. At the time

of stratification according to PTC C4d staining, in patients with the

negative one, a faster decrease in EMP levels was observed in

comparison with patients with positive PTC C4d staining. This

led the authors to suggest that circulating EMP levels could inform

about ongoing endothelial cell injury. Moreover, when analyzing

the different etiologies of end-stage kidney disease, a trend was

found toward a decline in post-transplant EMP levels in causes due

to diabetes mellitus, obstructive/inherited kidney disease, and

autoimmune disease (69).

In another study by Peake et al., urinary exosomal mRNA from

frequent kidney injury biomarkers such as neutrophil gelatinase-

associated lipocalin (NGAL), interleukin-18 (IL-18) and kidney

injury molecule-1 (KIM-1), together with the constitutively

produced cystatin C, were compared with their corresponding
FIGURE 1

Extracellular vesicles as biomarkers in kidney transplantation. EMP, endothelial microparticles; NGAL, neutrophil gelatinase-associated lipocalin; IL-
18, interleukin 18; EVs, extracellular vesicles; Tfh, T follicular helper; gp130, glycoprotein 130; SH2D1B SH2, domain containing 1B, TNFa, tumor
necrosis factor alpha; CCL4, chemokine ligands 4; DGF, delayed graft function; IFTA, interstitial fibrosis and tubular atrophy.
TABLE 2 Methods of EV isolation in each study mentioned.

Study EV isolation method

Qamri et al. (69) Centrifugation

Peake et al. (70) Centrifugation

Sigdel et al. (71) Ultrafiltration

Park et al. (72) Differential ultracentrifugation + immunoisolation

Tower et al. (73) Centrifugation

Zhang et al. (74) Precipitation - exoRNeasy serum/PlasmaMidi Kit

Yang et al. (75)
Precipitation - ExoQuickTM Kit (SBI

Corporation)

Lim et al. (76) Ultracentrifugation

Chen et al. (77) Size-exclusion chromatography

Cucchiari et al. (78) Size-exclusion chromatography

Alvarez et al. (79) Ultracentrifugation

Dimuccio et al. (80) Ultracentrifugation

Wang et al. (81) Precipitation - exoEasy Maxi Kit (Qiagen)

Saejong et al. (82) Precipitation - polyethylene glycol (PEG)

Carreras-Planella et al.
(83) Size-exclusion chromatography

Carreras-Planella et al.
(84) Size-exclusion chromatography

Costa de Freitas et al. (85) Precipitation - miRCURY Exosome Kit (Qiagen)
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synthesized urinary protein levels as well as with the creatinine

reduction ratio (CRR) on post-operatory day 7. The results showed

that, although urinary NGAL and IL-18 protein levels did correlate

with CRR on day 7, this was not the case for mRNA inside urinary

exosomes. The explanation for these findings lay in the selectivity

for exosome packaging and does not have to be representative of the

parenting cell (70).

One year later, Sigdel et al. described 11 proteins to be enriched

in the urinary exosomes of patients with biopsy-proven acute

rejection; three of these proteins (CLCA1, PROS1, and

KIAA0753) had not been previously identified in healthy urine

exosomal proteins (71).

Park et al. reported a urine-based platform, iKEA (integrated

kidney exosome analysis), to detect rejection of kidney transplants

through T-cell-derived EVs. This platform, based on a magneto-

electrochemical sensing system, revealed a higher level of CD3-

positive EVs in kidney rejection recipients, with an accuracy of

approximately 91.1% (72).

Tower et al. found a correlation between plasma C4d+,

especially C4d+/CD144+ microvesicles, and the presence of

ABMR and its severity and response to treatment in kidney

recipients. Ninety-five kidney recipients with for-cause biopsies

performed and twenty-three healthy volunteers were evaluated.

After histopathologic examination of the graft biopsies, 28

patients with ABMR were found. In them, the density of C4d

+/CD144+ microvesicles was 11-fold greater than in kidney

transplant patients without ABMR and 24-fold greater than in

healthy volunteers. The densities of C4d+ and C4d+/annexin V+

(C4d+/AVB+) microvesicles were also higher in ABMR recipients.

Moreover, C4d+/AVB+ microvesicles correlated with ABMR

biopsy severity. Lastly, in nine cases, treatment was associated

with a reduction in the densities of C4d+/CD144+ and CD144+

microvesicles, which also showed them to be a treatment response

monitoring tool (73).

Zhang et al. selected 21 genes (related to inflammatory and IL-6

signaling events or elevated in renal biopsies of patients with

ABMR) whose mRNA transcript levels were increased in plasma

exosomes of ABMR kidney recipients compared with cell-mediated

rejection and/or no rejection. The authors also generated a gene

score with the combination of the transcript levels of four of these

genes (gp130, SH2D1B, TNFa, and CCL4), which was significantly

higher in the ABMR group than the other groups (74).

Yang et al. suggested a correlation between ABMR and follicular

helper T cell (Tfh cell)-derived exosomes through their increase in

the circulation of such patients compared with non-ABMR patients.

Moreover, Tfh cell-derived exosomes promoted B cell proliferation

and differentiation. Moreover, their study reported a decline in

CTLA-4 expression on the Tfh cell-derived exosome surface in

kidney transplant patients with ABMR. CTLA-4 is a leukocyte

differentiation antigen and a transmembrane receptor on T cells,

with an established role in alloantigen-driven T cell activation and

various autoimmune diseases. CTLA-4 on exosomes inhibited

human T cell activation by directly interacting with the molecules

CD80 or CD86. Furthermore, intracellular CTLA-4 can inhibit Tfh

cell differentiation, reduce IL-21 secretion, and inhibit B cell

proliferation and differentiation into plasma cells (75).
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Regarding acute T cell-mediated rejection, Lim et al. identified

several urinary exosomal biomarker candidates in an Asian

population of kidney transplant patients using a proteomics

approach. Validation of the findings by western blot assay proved

that tetraspanin-1 and hemopexin were significantly higher in

TCMR patients (76).

Chen et al. established a circulating exosomal miRNA panel by

extracting plasma exosomes from 58 kidney transplant recipients

and 27 healthy controls. Exosomal miR-21, miR-210, and miR-4639

could discriminate between subjects with chronic kidney

dysfunction and those with normal graft function. At one year

follow-up, patients with a low calculated score from this three-

miRNA panel revealed a stable recovery of allograft function (77).

Lastly, our group has proposed using B-cells–derived EVs

(BEVs) to check B cell proliferation in secondary lymphoid

organs and bone marrow after desensitization. BEVs (CD19+ or

HLA-II+) were associated with surviving B cells in lymph nodes

retrieved upon surgery on patients who received desensitization

with Rituximab, plasma exchanges, and immunoglobulins. After the

administration of Rituximab, no B cells were circulating. CD19+ or

HLA-II+ EVs may reflect the mass of surviving B cells in secondary

lymphoid organs that may predispose them to subsequent rejection.

This is suggested by the rebound of BEVs in patients who develop

ABMR after desensitization (78).
5.2 Biomarkers for DGF

DGF leads to a higher risk of acute rejection and progression to

chronic graft dysfunction (80, 87–89). The leading cause of DGF,

ischemia-reperfusion injury (IRI), prompts a complex, alloantigen-

independent immune response, which includes crosstalk between

polymorphonuclear cells, macrophages, and donor cells as well as

the release of EVs with pro-inflammatory and anti-inflammatory

effects (80, 90, 91). Moreover, endothelial cells and renal tubular

epithelial cells release EVs when exposed to oxidative stress,

hypoxia, an acidic environment, or inflammation (8, 90, 91).

Among the first studies on exosomes and kidney dysfunction,

Alvarez et al. evaluated if the different urine fractions (cellular or

exosomal) have different NGAL expression in 15 kidney allograft

recipients (eleven living donors and four deceased donors) soon

after transplantation. Western blot analysis showed that the average

NGAL expression in the exosomal fraction was significantly higher

in deceased donor patients from the first post-operatory day and

that its expression lasted increased in patients with DGF compared

with non-DGF patients (79).

Dimuccio et al. showed lower levels of CD133-positive EVs in

urine samples of transplanted patients. This decrease was

evidenced from the first post-operatory day until day 7, when

an increase was described. However, compared with patients with

DGF, these last had a significant rise. Moreover, in patients with

severe pre-transplant vascular injury of the allograft, CD133-

positive EVs did not increase. The origin of CD133-positive EVs

appeared restricted to glomeruli and proximal tubules. These data

implicate CD133-positive cells in renal tissue regeneration after

injury due to cold ischemia and IRI. Accordingly, no increase was
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observed in recipients with severe pre-transplant vascular damage,

implying an inefficient regeneration of the graft tissue in these

recipients (80).

In another study, Wang et al. explored miRNA expression

profiling in the DGF process. Fifty-two known and five conserved

exosomal miRNAs expressed in kidney-transplanted patients with

DGF were identified. Three co-expressed exosomal miRNAs: hsa-

miR-33a-5p R-1, hsa-miR-98-5p, and hsa-miR-151a-5p, were

further observed to be significantly upregulated in the peripheral

blood of DGF patients. Moreover, hsa-miR-151a-5p was positively

correlated with the patient’s first-week serum creatinine levels,

blood urea nitrogen, and uric acid after transplantation (81).
5.3 Biomarkers for interstitial fibrosis and
tubular atrophy

In the field of kidney transplant, fibrosis serves as the final and

irreversible stage of the pathogenic mechanisms that lead to the loss

of allograft function (92). For this reason, beyond the invasiveness

of renal biopsy, clinical data need to be more specific to allow for

early detection (92–95).

Saejong et al. describe the potential use of microRNA (miR)-21

expression in plasma exosomes for non-invasive monitoring of

high-grade IFTA in kidney transplant patients. There are already

previous studies on the role of exosomal miR-21 as a fibrosis

biomarker and its association with TGF-b, a cytokine known to

be involved in fibrosis pathogenesis. In the study by Saejong, miR-

21 from the plasma exosome fraction (but not from the whole

plasma) could discriminate between low- versus high-grade IFTA.

It is demonstrated that the released miR-21 decreases phosphatase

and tensin homolog (PTEN), which causes the phosphorylation of

Protein kinase B (AKT) signaling, in turn reducing the expression of

E-cadherin and raising the expression of a-SMA and fibronectin in

kidney tubules (82).

More recently, Carreras-Planella et al. describe the search for

kidney allograft dysfunction protein biomarkers related to four

biopsy-proven diagnoses: IFTA, acute T-cell rejection, calcineurin

inhibitors toxicity, and normal kidney function. The authors carried

out a proteomic analysis of the urinary EVs (uEVs), discovering

some EV-associated proteins that show different expressions

depending on whether they come from pathological or normal

kidney function allografts. Moreover, a change in the expression of

vitronectin (VTN) was also evidenced in recipients with chronic

IFTA, suggesting urinary VTN levels as another possible biomarker

for monitoring fibrotic changes in kidney transplant patients. For

the fibrosis process to occur, VTN must join the potent profibrotic

glycoprotein PAI-1, although the precise mechanisms are arguable.

VTN has been reported to increase PAI-1 activity in the renal tissue,

hindering fibrinolysis. However, other studies described the

opposite, highlighting a protective role against fibrosis (83).

The same group also demonstrated the potential role of uEVs as

biomarkers of chronic calcineurin inhibitor toxicity (CNIT). Their

nephrotoxicity and role in kidney fibrosis are known and have been

described in multiple studies and they are first-line agents in the

immunosuppressive regimen of kidney transplantation. The
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problems we continue to face are CNIT diagnosis and

management. In this study, the urine from kidney transplant

recipients with CNIT diagnosis is compared with recipients with

IFTA and without CNIT or normal allograft function (all of them

under a similar immunosuppressive scheme that included CNI).

After data analysis, members of the uroplakin (UPK1A, UPK1B,

UPK2, and UPK3A) and plakin families (periplakin and

envoplakin) were significantly upregulated in the CNIT group,

suggesting a central role in CNIT development. The binding of

uroplakin proteins covers the urothelium’s surface to prevent urine

influx from the lumen, also covering the renal pelvis, ureters,

urinary bladder, and prostatic urethra. Periplakin and envoplakin

function as cell-linker proteins. The upregulation of these proteins

in the CNIT recipient’s uEV suggests that the toxic effect of CNI on

the urothelium may increase their citolinker activity (84).

Lastly, Costa de Freitas et al. also evaluated the expression of

different urinary exosome-derived miRNAs (exo-miRs) in

transplant patients on a tacrolimus regimen. As a result, a

difference in the expression of 16 exo-miRs was observed. Among

them, the marked upregulation of miR-155-5p and downregulation

of miR-223-3p and miR-1228-3p stand out. Moreover, it was found

that the tacrolimus dose correlated with the expression of miR-155-

5p and miR-223-3p, serum creatinine with the expression of miR-

223-3p, and the number of blood leukocytes with miR-223-3p and

miR-1228-3p (85).
6 Discussion

EVs participate in intercellular communication in physiological

and pathological processes, and in recent years, interest in them has

grown as tools to monitor post-transplant evolution in a non-

invasive way. Previous studies on diverse biological samples (blood

or urine) include a wide range of pathologies such as kidney graft

rejection (both cellular and humoral), DGF, IFTA, and drug

toxicity. The limitations we have to consider are that the studies

published and presented here do not often include multiple centers,

the number of patients included is low, and the results have yet to be

validated in larger cohorts. Appropriate method validation studies

need to be improved, and the isolation protocol needs

standardization to avoid the co-isolation of various vesicles or

differences in contamination levels. The most modern

technologies will likely offer new opportunities in this field; for

instance, the Imaging Flow Cytometry (IFCM)-based methodology

for the direct detection (without prior isolation) of donor-derived

EVs (dd-EVs) in the plasma of kidney transplant patients based on

Human Leukocyte Antigen (HLA) mismatch (96) or further

investigation into the proteomic landscape and protein signature

in urinary EVs (97).

Despite the promising published data, nowadays, we cannot use

EVs as a definitive decision tool. Future studies are required before

their analysis could facilitate the decision process in routine clinical

practice. We still need basic parameters such as creatinine,

proteinuria, or specific anti-HLA donor antibodies, and EV

analysis may not replace the invasiveness of graft biopsy as the

gold standard.
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Future studies will extend our knowledge of the role of EVs as

biomarkers in the kidney transplant field. A combination of

biomarkers could help us decide whether a biopsy should be done

and may have a supportive role when interpreting data provided by

an allograft biopsy.
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A. Small extracellular vesicles in transplant rejection. Cells (2021) 10(11):2989.
doi: 10.3390/cells10112989

19. Kralj-Iglic VVP. Curvature-induced sorting of bilayer membrane constituents
and formation of membrane rafts. Adv Planar Lipid Bilayers Liposomes (2006) 5:129–
49. doi: 10.1016/S1554-4516(06)05005-8

20. Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, López-Martıń S, Ursa A,
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