
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Sina Taefehshokr,
University of Manitoba, Canada

REVIEWED BY

Fatemeh Kazemi-Lomedasht,
Pasteur Institute of Iran (PII), Iran
Ming Yi,
Zhejiang University, China
Jon Weidanz,
University of Texas at Arlington,
United States

*CORRESPONDENCE

Ali-Akbar Delbandi

Delbandi.ak@Iums.ac.ir;

Delbandi@yahoo.com

Mahzad Akbarpour

Makbarpour@

medicine.bsd.uchicago.edu

RECEIVED 31 January 2023
ACCEPTED 15 June 2023

PUBLISHED 27 June 2023

CITATION

Farhangnia P, Ghomi SM, Akbarpour M and
Delbandi A-A (2023) Bispecific antibodies
targeting CTLA-4: game-changer troopers
in cancer immunotherapy.
Front. Immunol. 14:1155778.
doi: 10.3389/fimmu.2023.1155778

COPYRIGHT

© 2023 Farhangnia, Ghomi, Akbarpour and
Delbandi. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 27 June 2023

DOI 10.3389/fimmu.2023.1155778
Bispecific antibodies targeting
CTLA-4: game-changer troopers
in cancer immunotherapy

Pooya Farhangnia1,2, Shamim Mollazadeh Ghomi2,
Mahzad Akbarpour2,3* and Ali-Akbar Delbandi1,2,4*

1Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,
2Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal
Scientific Education and Research Network (USERN), Tehran, Iran, 3Advanced Cellular Therapeutics
Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology,
Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States,
4Reproductive Sciences and Technology Research Center, Department of Immunology, School of
Medicine, Iran University of Medical Sciences, Tehran, Iran
Antibody-based cancer immunotherapy has become a powerful asset in the

arsenal against malignancies. In this regard, bispecific antibodies (BsAbs) are a

ground-breaking novel approach in the therapy of cancers. Recently, BsAbs have

represented a significant advancement in improving clinical outcomes. BsAbs are

designed to target two different antigens specifically. Over a hundred various

BsAb forms currently exist, and more are constantly being manufactured. An

antagonistic regulator of T cell activation is cytotoxic T lymphocyte-associated

protein 4 (CTLA-4) or CD152, a second counter-receptor for the B7 family of co-

stimulatory molecules was introduced in 1996 by Professor James P. Allison and

colleagues. Contrary to the explosive success of dual immune checkpoint

blockade for treating cancers, a major hurdle still yet persist is that immune-

related adverse events (irAEs) observed by combining immune checkpoint

inhibitors (ICIs) or monoclonal antibodies such as ipilimumab (anti-CTLA-4)

and nivolumab (anti-PD-1). A promising strategy to overcome this hurdle is

using BsAbs. This article will summarize BsAbs targeting CTLA-4, their

applications in cancer immunotherapy, and relevant clinical trial advances. We

will also discuss the pre-clinical rationale for using these BsAbs, and provide the

current landscape of the field.
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1 Introduction

Numerous advancements in cancer immunotherapy during the

last decade have included altering T cell-mediated immunity. Using

three kinds of cancer immunotherapies, including immune

checkpoint inhibitors (ICIs) or monoclonal antibodies (mAbs),

genetically modified T cells expressing chimeric antigen receptors

(CARs), and bispecific antibodies (BsAbs), are now licensed for

clinical use (1, 2). mAb-based cancer immunotherapy has become a

potent weapon in the arsenal against malignancies. Up to now, the

FDA has approved several therapeutic mAbs for treating various

malignancies and autoimmune disorders. Target cells may undergo

cellular cytotoxicity when mAbs selectively attach to their antigens.

After gaining crowning achievements of mAbs in treating cancer,

another molecular platform of mABs was developed. Meanwhile,

BsAbs, which target two antigens simultaneously, were introduced

as therapeutic medications for various cancers (3).

During the 1960s, Nisonoff and colleagues played a significant

role in popularizing the concept of BsAbs. The subsequent

development of innovative antibody engineering methods

produced numerous BsAb molecular platforms. BsAbs are

superior to mAbs in several ways. Outstanding cytotoxicity effects

of BsAbs in cancers are one of these benefits. BsAbs also exhibit a

lower level of therapeutic resistance (4). Some BsAbs have a small

size, typically consisting of two basic single‐chain fragments with

variable domain (5). As an example, BsAbs that are based on single-

chain fragment variables (scFvs) have demonstrated a high degree

of specificity for tumor cells and are able to penetrate tissues

effectively (6). BsAbs may be an innovative new pillar in the fight

against cancer. In terms of improving clinical treatment results,

BsAbs represent a promising milestone. Many BsAbs have been

developed within the context of tumor immunotherapy throughout

the last few decades, and the first BsAb named blinatumomab was

licensed in 2009 (7, 8). Lymphomas, in particular, appear to

respond well to BsAbs, while myeloid neoplasias and solid tumors

have shown more limited success (9). Although BsAbs have been

shown to penetrate solid tumors effectively, there are concerns

about their safety due to their short half-life, and this remains an

area of active research (10).

An antagonistic regulator of T cell activation is cytotoxic T

lymphocyte-associated protein 4 (CTLA-4) or CD152, a second

counter-receptor for the B7 family of co-stimulatory molecules,

which was introduced in 1996 by professor James Allison and

colleagues (11). CTLA-4 is an inhibitory immune checkpoint,

which inhibits immune responses through both an intrinsic

mechanism that transmits a negative signal directly to effector T

lymphocytes (Teff) and an extrinsic mechanism that is primarily

connected to regulatory T lymphocyte (Treg) functions (12). B7-1

(CD80) and B7-2 (CD86) are the ligands shared by CD28 and

CTLA-4, which have a greater affinity to bind CTLA-4.

Consequently, CTLA-4 and CD28 are antagonistic concerning

ligand binding (12, 13). The discovery that CTLA-4 can impede T

cell activation provided the basis for the notion that interrupting its

function might allow T cells to mount a therapeutic attack on

cancer (14, 15). In mice, mAbs against CTLA-4 improved the
Frontiers in Immunology 02
immune system’s ability to fight against colon cancer and

fibrosarcoma (11). Moreover, in subsequent exposure to tumor

cells, animals that had been given anti-CTLA-4 treatment were able

to quickly eradicate the cancerous cells by means of the immune

system. This suggests that suppressing CTLA-4 leads to sustained

immunological memory (11, 16).

At present, numerous clinical trials are underway to investigate

the effectiveness of BsAbs targeting CTLA-4 in treating various

types of cancer. These trials have yielded promising results in

certain types of tumor cells and have been associated with a

prolonged anti-tumoral response (17–19). Although BsAbs

targeting CTLA-4 have been a significant breakthrough in the

field of cancer immunotherapy, there are still numerous aspects

that require clarification and challenges that need to be addressed

related to the safety, effectiveness, and range of tumors that could be

treated. This review summarizes BsAbs targeting CTLA-4, their

applications in cancer immunotherapy, relevant challenges, and

clinical trial advances. We also discuss the pre-clinical rationale for

using BsAbs targeting CTLA-4 and provide the current landscape of

the field.
2 Bispecific antibodies mechanisms of
action: a general viewpoint

BsAbs are designed to bind two distinct antigens concurrently.

BsAbs exert their functions by redirecting and activating immune

cells, inhibiting immune cell co-inhibitory receptors, activating co-

stimulatory molecules, inhibiting signaling pathways, and

combinatorial targeting of cancer antigens (Figure 1) (20).

Recruiting Immune Cells. In addition to stimulating T cells,

BsAbs such as blinatumomab and catumaxomab that target CD3,

CD19, and EpCAM also guide these cells toward cancer cells, where

they can lead to lysis them (4). Besides, BsAbs such as AFM13 can

crosslink the cancer antigen CD30 on tumor cells with CD16a on

natural killer (NK) cells, rerouting NK cells to the tumor cells for

lysing by antibody-dependent cellular cytotoxicity (ADCC) (3).

Blocking of Immune Checkpoints and Co-inhibitory

Molecules. Programmed death-ligand 1 (PD-L1), programmed

cell death protein 1 (PD-1), and CTLA-4 are well-known immune

checkpoints that prevent immune cells from becoming activated.

Thus, blocking immune checkpoints with antibodies can

reinvigorate immune cells. BsAbs targeting immune checkpoints

are mostly used for treating solid tumors, including AK104 (PD-

1×CTLA-4) (17), MGD019 (PD-1×CTLA-4) (18), XmAb20717

(PD-1×CTLA-4) (21), MEDI5752 (PD-1×CTLA-4) (22),

MGD013 (PD-1×Lymphocyte-activation gene 3 [LAG-3]) (23),

and RO7121661 (PD-1×T-cell immunoglobulin and mucin

domain 3 [TIM-3]) (NCT03708328), which are capable of

targeting two immune checkpoints simultaneously. Dysregulation

of lymphocyte functions co-expressed by PD-1 and LAG-3 is

common, and combined therapy involving PD-1 and LAG-3 can

effectively restore T cell function (24). Furthermore, BsAbs

targeting immune checkpoints combined with tumor-associated

antigens (TAAs) have been developed, including AK112 (PD-
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1×Vascular endothelial growth factor [VEGF]) and IBI315 (PD-

1×Human epidermal growth factor receptor 2 [HER2]) (4, 25).

Co-stimulatory Receptors Activation. To maintain a stable

anti-cancer immune response against advanced malignancies, one

strategy might be proposed that co-stimulatory receptors can be

targeted along with the blockage of immunological checkpoints.

Numerous BsAbs have been emerging for binding co-stimulatory

receptors, such as inducible T cell co-stimulator (ICOS) or CD278,

OX40, and 4–1BB (3, 20). OX40, like CTLA-4, is significantly up-

regulated on activated T cells in the tumor microenvironment

(TME), particularly on Tregs (26, 27). Targeting two

overexpressed receptors, for instance CTLA-4 and OX40, in the

tumor has the potential to increase the localization of BsAbs to the

tumor site compared to monospecific antibodies, which may reduce

the risk of systemic T cell activation and improve efficacy.

Additionally, it has been suggested that combining a checkpoint

inhibitor with a T cell co-stimulatory agonistic antibody may

convert a “cold” tumor into a “hot” tumor by enhancing T cell

expansion and effector functions while controlling the suppressive

function of Tregs (28, 29).

Combinational Targeting of Tumor Antigens. “On-target off-

tumor” toxicity is a significant issue that needs to be considered in

antibody-based therapeutic modalities. This toxicity refers to a side

effect of cancer immunotherapy where the immune system attacks

not only cancer cells but also healthy cells expressing the same

target antigen, leading to unintended damage to healthy tissues

(30). In line with this issue, both healthy and malignant cells express

TAAs. One of the BsAb’s advantages is that it targets tumor cells

more precisely, which directs its power to only tumor cells in

circulation, TME, and metastatic sites and not healthy cells. Thus,
Frontiers in Immunology 03
healthy cells are unharmed as a result of this. In other words, BsAbs

targeting dual TAAs bind specifically to cancer cells that express

both antigens, while avoiding healthy cells that express only one

antigen (31).

The fact that many cancer antigens are cleaved by enzymes,

releasing soluble extracellular domains, presents another obstacle.

Indeed, a major challenge in developing immunotherapies for

hematologic malignancies, for instance, acute lymphocytic

leukemia (ALL), is that cancer cells can lose the CD19 antigen

while retaining CD22 after CD19 shedding (32). Due to this

mechanism, tumor antigen escape happens, but BsAbs can offset

this mechanism via combinational targeting. As an illustration, a

BsAb called DT2219ARL has been developed to overcome antigen

loss-mediated relapse in ALL. DT2219ARL targets CD19 and

CD22, which are two antigens commonly expressed in ALL cells

(20, 33, 34).

Blocking of Signaling Pathways. BsAbs can reduce the

progression of tumors by targeting the molecules of signaling

pathways involved in angiogenesis, metastasis, and proliferation. In

this regard, there are several BsAbs such as YM101 (35–37), MCLA-

128 (zenocutuzumab) (38, 39), BI 836880 (40, 41), vanucizumab (42),

ABT-165 (43), OMP-305B83 (navixizumab) (44, 45), TR009

(ABL001) (46), and EMB01 (47, 48). For instance, YM101 has the

ability to specifically bind to transforming growth factor-beta (TGF-

b) and PD-L1. Results from in vitro experiments demonstrated that

YM101 effectively inhibited the biological impacts of TGF-b and the

PD-1/PD-L1 pathways, which includes the activation of Smad

signaling, induction of epithelial-mesenchymal transition, and

immunosuppressive activities (35). Furthermore, MCLA-128

targets VEGF and angiopoietin-2 (4).
FIGURE 1

Bispecific antibodies (BsAbs) mechanisms of action. 1) BsAbs can guide effector T cells toward cancer cells, where they can lead to lysis them. 2)
Simultaneous inhibition of two inhibitory immune checkpoints leads to more reinvigoration of effector T cells to eradicate the tumor cells. 3) BsAbs
can be deployed as agonistic agents activating co-stimulatory receptors such as ICOS and OX-40, leading to better activation of tumor-specific
effector T cells. 4) BsAbs targeting dual TAAs bind specifically to tumor cells that express both antigens. Thus, tumor cells can be targeted more
specifically. 5) BsAbs can suppress signaling pathways that are involved in angiogenesis and T cell exhaustion, such as those that inhibit TGF-b and
PD-L1 signaling pathways. TAA, Tumor-associated antigen; TSA, Tumor-specific antigen; ICOS, Inducible T cell co-stimulator; TGF-b, Transforming
growth factor-beta; PD-1, Programmed cell death protein 1; PD-L1, Programmed death-ligand 1; CTLA-4, Cytotoxic T-lymphocyte associated
protein 4.
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3 Mechanism of action of bispecific
anti-CTLA-4 antibodies

BsAbs that target CTLA-4 are a novel class of immunotherapies

that are being developed to improve the effectiveness and safety of

immune checkpoint blockade in cancer treatment. The mechanism of

action of bispecific anti-CTLA-4 antibodies involves, for instance, the

simultaneous binding of CTLA-4 on Tregs and co-stimulatory receptor

such as OX-40 on Teff (49). The dual engagement of these two

molecules helps to modulate the balance between immune activation

and suppression, which is important for achieving an optimal anti-

tumor response. For instance, by binding to CTLA-4 on Tregs, ATOR-

1015 can selectively deplete or down-regulate these cells (49), which are

known to play a role in suppressing immune responses and promoting

tumor growth. At the same time, by binding to OX-40 on Teff, ATOR-

1015 can enhance T cell activation and proliferation, leading to

increased colon, pancreatic, and bladder tumor cell killing (49, 50).

BsAbs targeting both CTLA-4 and another molecule, such as PD-1

(17, 51) or PD-L1 (52), enhance the immune response against cancer by

blocking two separate immune checkpoints that can inhibit anti-tumor

immunity. By targeting both CTLA-4 and PD-1, these bispecific

antibodies can simultaneously promote activation and proliferation of

T cells, reduce regulatory T cell function, and enhance the killing of

tumorcells bycytotoxicT lymphocytes.Thecombinationof these effects

allows for a more robust and sustained anti-tumor response (4, 20).
4 Anti-CTLA-4 antibody and
combinational therapies

There is a compelling strategy regarding combinational using

the anti-CTLA-4 mAbs with other therapies against poorly

immunogenic tumors (53). Wei et al. (54) demonstrated that

contrary to either monotherapy, CTLA-4/PD-1 dual immune

checkpoint blockade is sufficient to stimulate specific cellular

responses. Anti-CTLA-4 and anti-PD-1 inhibition considerably

improves responses in pre-clinical tumor models, leading to

much higher Teff-to-suppressor cells (myeloid-derived suppressor

cell and Treg) ratios and the generation of pro-inflammatory

cytokines including interferon-gamma (IFN-g) and tumor

necrosis factor-alpha (TNF-a) (55). Combinational therapy

ipilimumab plus nivolumab led to enhance the effectiveness of

treatment in melanoma (56), renal cell carcinoma (57), colorectal

cancer (58) compared with monotherapy. In melanoma, the

combination of PD-1 and CTLA-4 blockade was linked to specific

cellular immune responses, including a dramatic increase in

cytokine production, an increase in T cell frequency, and a

decrease in circulating B cells (59, 60).
5 Pre-clinical rationale for using
bispecific antibodies targeting CTLA-4

The currently known BsAbs are fragment-based, symmetric,

asymmetric or Bi-specific T cell engagers (BiTEs). These forms
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determine their half-life, immunogenicity, target selectivity, and

production complexity (61). Contrary to the explosive success of

dual immune checkpoint blockade for treating cancers, two major

hurdles persist. First, immune-related adverse events (irAEs) were

observed by combination ICIs such as ipilimumab and nivolumab

(62). Second, compared to BsAbs, there is an MHC restriction of the

TCR when using ICIs, leading to immune escape (63). A promising

strategy to overcome these hurdles is simultaneously co-blockade of

two cancer antigens, for example, CTLA-4 and PD-1, preferentially

in the TME by BsAbs, restricting immune responses specific to the

tumor site. Thus, it can be expected that immune-mediated toxicity

toward normal tissues is reduced (12).

Immunotherapies for cancer, such as the blockade of CTLA-4

and PD-1, often result in severe autoimmunity as a side effect (64,

65). Overall, there is a tendency for the efficacy of anti-tumor

responses to be associated with the occurrence of autoimmune

diseases, particularly when a systemic approach is taken to deplete

Tregs (66). A promising strategy to elicit potent anti-tumor immune

responses while minimizing the risk of inducing detrimental

autoimmune reactions might be to selectively engage effector Tregs

in the TME using BsAbs. This approach has the potential to

preserve the pool of naive Tregs in non-tumor tissues, which are

essential for maintaining immune tolerance and preventing

autoimmunity. In other words, it is desirable to avoid Treg

depletion in normal tissues while targeting immune checkpoint

pathways in the TME. One potential advantage of using BsAbs is

that they can be designed to selectively bind to cells expressing both

PD-1 and CTLA-4, which are mainly tumor-infiltrating

lymphocytes (TILs). Thus, by selectively targeting TILs, BsAbs

may spare Tregs in normal tissues and avoid the potential adverse

effects associated with their systemic depletion.

On the one hand, the possibility that anti-tumor reactive T cells

will be inadequate in quantity or malfunctioning and anergic are two

key issues with chimeric antigen receptor (CAR) T cell treatment that

are addressed by BsAbs. On the other hand, increased tumor-reactive

T cell frequency is the ultimate goal of BsAbs. In order to accomplish

this, T cells and tumor cells are connected effectively via BsAbs in an

intercellular space name immunological synapse. Their activation

occurs without the need for co-stimulation, peptide antigen

presentation, and major histocompatibility complex (MHC) class

1/2 (61, 67). All in all, the aforementioned basic concepts provide a

rationale for using BsAbs.

There are some BsAbs, which have been described in pre-

clinical (Table 1) and clinical investigation (Table 2). These include

XmAb20717 (Vudalimab), MEDI5752, AK104, MGD019, KN046,

and ATOR-1015. According to preliminary results, XmAb20717,

which targets CTLA-4 and PD-1 simultaneously, was well-tolerated

in patients with advanced cancer and had complete and partial

responses in various tumor types. T cell population changes in the

tumor and surrounding tissues were consistent with effective dual

checkpoint inhibition (21). In pre-clinical studies, using another

BsAb targeting CTLA-4 and PD-1 named MEDI5752 was

associated with lower cytotoxicity and equivalent activity to anti-

PD-1 and anti-CTLA-4 antibodies, providing an improved

therapeutic index (22). In the following, we will elaborate on the

clinical trials of BsAbs targeting CTLA-4 (Table 2).
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TABLE 2 BsAbs targeting CTLA-4 in clinical development.

Name Type and
Structure Targets Indication Treatment

regimen
Status/
Phase Participants Developed by NCT

identifier

XmAb20717
(Vudalimab)

Humanized
BsAb/XmAb
technology

CTLA-4
+ PD-1

-Melanoma
-Breast carcinoma

-HCC
-Renal cell
carcinoma
-Colorectal
carcinoma

-non-small-cell
lung carcinoma
- Cervical cancer
-Mesothelioma

MT
Active, not
recruiting/I

154 Xencor NCT03517488

MEDI5752

Fully human
BsAb (a

monovalent
bispecific

human IgG1

mAb with an
engineered Fc

domain)

CTLA-4
+ PD-1

Advanced solid
tumors

Combinational
therapy: Pemetrexed,

Carboplatin,
Pembrolizumab,

Paclitaxel

Recruiting/
I

366 MedImmune NCT03530397

Renal cell
carcinoma

Combinational
therapy: Axitinib,

Lenvatinib

Recruiting/
I

70 MedImmune NCT04522323

Metastatic NSCLC

Combinational
therapy:

Durvalumab,
Danvatirsen,
Oleclumab,
Pemetrexed,
Carboplatin,
Gemcitabine,
Cisplatin, Nab-

paclitaxel, AZD2936

Active, not
recruiting/I

258 AstraZeneca NCT03819465

AK104
(Cadonilimab)

IgG1 scaffold
Fc-engineered
humanized
antibody

CTLA-4
+ PD-1

Cervical cancer MT
Completed/

II
30 Akeso NCT04380805

Recurrent or
metastatic cervical

cancer

Combinational
therapy:

Bevacizumab,
Paclitaxel, Cisplatin
or Carboplatin

Active, not
recruiting/

II
50 Akeso NCT04868708

Nasopharyngeal
carcinoma

MT
Completed/

II
34 Akeso NCT04220307

Advanced MSI-H/
dMMR gastric

MT 29 Peking University NCT04556253

(Continued)
F
rontiers in Immu
nology
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TABLE 1 Pre-clinical status of BsAbs targeting CTLA-4.

Name Targets Main findings Reference

MEDI5752 CTLA-4 +
PD-1

1. High saturation of CTLA-4 on PD-1+ tumor cells by MEDI5752.
2. Inhibition of CTLA-4 on TILs while sparing peripheral T cell populations and reducing toxicity.
3. MEDI5752 induces internalisation and subsequent degradation of PD-1 by tethering CTLA-4 to PD-1.

(22)

MGD019 CTLA-4 +
PD-1

1. Combinatorial blockade of PD-1 and CTLA-4 via single molecule.
2. MGD019 is well-tolerated in non-human primates.
3. Increasing in the count of Ki67+CD8+ and ICOS+CD4+ T cells upon MGD019 administration.

(18)

ATOR-
1015

CTLA-4 +
OX40

1. ATOR-1015 activates T cells and reduces Tregs in vitro.
2. In various preclinical models, ATOR-1015 reduces tumor growth and improves survival, including in bladder, colon,
and pancreas cancer models.
3. ATOR-1015 generates long-term tumor-specific immunological memory and enhances response to PD-1 inhibition.
4. ATOR-1015 targets the tumor area, where it boosts the number and activation of CD8+ T-cells and decreases Tregs.

(49)
f

CTLA-4, Cytotoxic T-lymphocyte-associated protein 4; PD-1, Programmed cell death protein 1; Treg, Regulatory T cell; TIL, Tumor-infiltrating lymphocyte; ICOS, Inducible T-cell costimulator.
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TABLE 2 Continued

Name Type and
Structure Targets Indication Treatment

regimen
Status/
Phase Participants Developed by NCT

identifier

carcinoma and
colorectal cancer

Not yet
recruiting/

II

-Gastric
adenocarcinoma
-Advanced solid

tumors
-Gastroesophageal

Junction
Adenocarcinoma

Combinational
therapy: Oxaliplatin,

Capecitabine

Active, not
recruiting/

I,II
338 Akeso NCT03852251

HCC
Combinational

therapy: Lenvatinib

Active, not
recruiting/

II
32 Akeso NCT04728321

Liver cancer
Combinational

therapy: Lenvatinib
Recruiting/

I,II
30 Akeso NCT04444167

NSCLC
Combinational

therapy: Anlotinib

Active, not
recruiting/

I,II
114 Akeso NCT04646330

NSCLC
Combinational

therapy: Anlotinib

Not yet
recruiting/

II
30

Chinese PLA
General Hospital

NCT04544644

Advanced or
metastatic solid

tumors

Combinational
therapy: AK119
(anti-CD73)

Recruiting/
I

195 Akeso NCT04572152

MGD019

a tetravalent
bispecific (2 ×
2) Fc-bearing
based on
DART
platform

CTLA-4
+ PD-1

-NSCLC
-Prostate cancer

metastatic
-Cutaneous
melanoma

-Colorectal cancer

Combinational
therapy: Lorigerlimab

Active, not
recruiting/I

287 MacroGenics NCT03761017

KN046

Humanized
bispecific

single domain
Fc fusion
protein
antibody

CTLA-4
+ PD-L1

NSCLC

Combinational
therapy: Paclitaxel,

Pemetrexed,
Carboplatin

Unknown/
II

50
Jiangsu Alphamab
Biopharmaceuticals

NCT04054531

Stage IV NSCLC MT
Unknown/

II
149

Jiangsu Alphamab
Biopharmaceuticals

NCT03838848

HER2 positive
solid tumor

Combinational
therapy: KN026
(anti-HER2)

Recruiting/
I

24 Peking University NCT04040699

TNBC
Combinational
therapy: Nab-
paclitaxel

Active, not
recruiting/

I,II
52

Jiangsu Alphamab
Biopharmaceuticals

NCT03872791

Esophageal
squamous cell
carcinoma

MT
Completed/

II
45

Jiangsu Alphamab
Biopharmaceuticals

NCT03925870

Advanced
gastrointestinal

tumors

Combinational
therapy: Donafenib

Tosilate

Recruiting/
I, II

42
Suzhou Zelgen

Biopharmaceuticals
NCT04612712

HCC
Combinational

therapy: Lenvatinib
Recruiting/

II
55

Peking University
Cancer Hospital &

Institute
NCT04542837

Locally advanced
and metastatic

pancreatic cancer

Combinational
therapy:

Gemcitabine,
Albumin-Paclitaxel,

Recruiting/
I,II

60 Changhai Hospital NCT04324307

(Continued)
F
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6 Current landscape and clinical trials

The landscape of clinical anti-CTLA-4 BsAbs immunotherapy

continues to progress promptly. Recently, there have been

numerous illustrations of these BsAbs in clinical and pre-clinical

phases. Rudimentary findings revealed positive clinical outcomes,

which can be classified into three categories, including i) Anti-

tumor immune responses, ii) Immune-related toxicities, and iii)

TME (Figure 2). The following sections summarize the current

landscape and the clinical trials.
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6.1 CTLA-4×PD-1 BsAbs

XmAb20717. XmAb20717 is a heterodimeric antibody

composed of two different protein subunits, designed with a

modified Fc domain that prevents interactions with Fc-gamma

receptor (FcgR). Additionally, the incorporation of Xtend™

technology enhances its pharmacokinetic properties to promote a

longer half-life (21). A human clinical trial is investigating the

effects of XmAb20717 (NCT03517488). Patients with advanced

solid tumors, including melanoma, renal cell carcinoma, non-
TABLE 2 Continued

Name Type and
Structure Targets Indication Treatment

regimen
Status/
Phase Participants Developed by NCT

identifier

Oxaliplatin,
Irinotecan,
Leucovorin,
Fluorouracil

Squamous NSCLC MT
Active, not
recruiting/

III
482

Jiangsu Alphamab
Biopharmaceuticals

NCT04474119

Thymic carcinoma MT
Recruiting/

II
29

Weill Medical
College of Cornell

University
NCT04925947

Thymic carcinoma MT
Recruiting/

II
66

Jiangsu Alphamab
Biopharmaceuticals

NCT04469725

ATOR-1015
Human IgG1

BsAb
CTLA-4
+ OX40

-Solid Tumor
-Neoplasms

MT
Completed/

I
33

Alligator
Bioscience AB

NCT03782467
mAb, Monoclonal antibody; BsAb, Bispecific antibody; Fc, Fragment crystallizable region; CTLA-4, T-lymphocyte-associated protein 4; PD-1, Programmed cell death protein 1; NSCLC, Non-
small cell lung cancer; HCC, Hepatocellular carcinoma; TNBC, Triple-negative breast cancer; MT, Monotherapy; DART, Dual affinity retargeting.
FIGURE 2

BsAbs targeting CTLA-4 at a view of cross-talk between immune and cancer cells. ATOR-1015 can simultaneously target CTLA-4 and OX-40 on
regulatory T cell and effector T cell, respectively, resulting in effector T-cell stimulation and improved cancer immunity. INV322 binds to CD25 and
CTLA-4, which restricts the function of regulatory T cells in the tumor microenvironment. CTLA-4 and PD-L1 are recognized by KN046, eventually
preventing T-cell exhaustion and inducing apoptosis in tumor cells. BsAbs such as XmAb20717, AK104, MEDI5752, and MGD019 inhibit PD-1 and
CTLA-4, revitalizing tumor-specific cytotoxic T lymphocytes. Positive and negative symbols indicate stimulatory and inhibitory role of markers,
respectively. ↑, Increase; ↓, Decrease.
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small cell lung cancer (NSCLC), castration-resistant prostate

cancer, are enrolled in phase 1 multiple doses, ascending dose

escalation clinical trial to determine the pharmacokinetic (PK),

maximum-tolerated dose, safety, and tolerability.

MEDI5752. MEDI5752 is a fully human monovalent bispecific

human IgG1 mAb with an engineered Fc domain designed to

suppress the PD-1 pathway and provide regulated CTLA-4

inhibition, favoring greater blocking of PD-1+ activated T cells.

The variable domains of an anti-PD-1 mAb and tremelimumab (an

anti-CTLA-4 mAb) were combined to generate this BsAb. The

engineering of the IgG1 constant heavy chains also diminished the

Fc-mediated immune effector functions. The higher anti-tumor

activity was stimulated by MEDI5752, which was found to

accelerate PD-1 internalization and degradation and to

accumulate preferentially in tumors. MEDI5752 could fully

saturate CTLA-4 on cells expressing PD-1 and CTLA-4 at lower

doses than those needed to fully saturate CTLA-4 on cells that did

not express PD-1 (51). A phase 1, first-time-in-human, multicenter,

open-label, dose-escalation and dose-expansion clinical trial was

designed to evaluate the safety, tolerability, efficacy, PK, and

immunogenicity of MEDI5752 in participants with advanced

solid tumors, when administered as a single agent or combined

with chemotherapeutic drugs (NCT03530397).

AK104. PD-1 and CTLA-4 are concurrently targeted by the

humanized IgG1 tetrameric BsAb known as AK104. Indeed, AK104

is an IgG1 scaffold Fc-engineered humanized antibody. Early research

revealed that AK104 has promising anti-tumor effectiveness in liver

cancer and a better safety profile than co-administering anti-PD-1 and

anti-CTLA-4 mAbs (17). A phase 2, global, multicenter, open-label,

single-arm study evaluated the efficacy, safety, tolerability, PK,

and immunogenicity of AK104 monotherapy in adult subjects

with previously treated recurrent or metastatic cervical

carcinoma (NCT04380805).

MGD019.Berezhnoy et al. (18) have developed a BsAb in the IgG4

isotype known as MGD019 using a dual-affinity re-targeting antibody

(DART) platform. This BsAb consists of an engineered tetravalent

CTLA-4/PD-1 molecule. Two variable fragments with their variable

heavy chain components switch to form a DART molecule (68). The

PD-1 and CTLA-4 binding domains are derived from retifanlimab and

human mAb 4B6, respectively (18). Compared to bi-single domain

antibodies, this novel structure enables greater conformational

flexibility during antigen-antibody recognition (18). To prevent the

potential depletion of Teff and Tregs, MGD019 carries Fc mutations,

which cause the lack of Fc-mediated effector function and limit the

ability to trigger ADCC. Innovative approaches includemodulating the

Fc effector domain or directing the immune response preferentially

toward TME, which may improve therapy efficacy and minimize

immune-mediated damage (27, 69). Despite increasing human T cell

activation in vitro, MGD019 did not exhibit any Fc-mediated

effector activity. MGD019 showed promising therapeutic efficacy

with acceptable safety in patients with advanced solid tumor cancer,

including ovarian, breast, lung, colon cancer, who had had much pre-

treatment and was well-tolerated in cynomolgus monkeys. Notably, in

animals treated with MGD019, no alterations were observed in either

the tissue-resident or circulating Treg populations (18).
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KN046. KN046 (also known as alphamab), a unique

humanized bispecific single domain Fc fusion protein antibody,

can simultaneously inhibit the PD-1/PD-L1 pathway and the

CTLA-4 pathway. Thus, it reinvigorates the immunological

responses of exhausted T lymphocytes to the tumor. The findings

of both pre-clinical and clinical testing with KN046 have shown

good effectiveness, accompanied by decreased levels of systemic

toxicity. KN046 is now being evaluated in several clinical studies in

phase 1 and 2 as either a single agent or as part of combination

regimens in tumor types and stages (52, 70). In patients with HER2-

positive gastrointestinal tumors, preliminary efficacy and safety

results of KN026 (a BsAb targeting two distinct HER2 epitopes)

and KN046 have been reported. In both treatment-naive and

extensively pretreated HER2-positive gastrointestinal cancers,

KN026 combined with KN046 demonstrated the potential to

improve clinical benefit to the current standard of care (71). A

phase 2 clinical trial of KN046 was investigated in patients with

metastatic NSCLC who failed first-line treatment. Results showed

that KN046 was a successful second-line therapy for advanced

NSCLC and was well-tolerated. In both squamous and non-

squamous NSCLC, KN046 demonstrated a potential overall

survival improvement (19). KN046 and Nab-paclitaxel showed

safety, tolerability, and efficacy results in patients with metastatic

triple-negative breast cancer (72).
6.3 CTLA-4×OX40 BsAb

ATOR-1015. An improved form of the Ig-like V-type domain

of human CD86 was linked to an agonistic OX40 antibody, and

eventually, a BsAb in the IgG1 form known as ATOR-1015 was

generated. This BsAb simultaneously targets CTLA-4 and OX40.

OX40, or CD134, is a powerful immunological co-stimulatory

molecule that can be induced on activated CD4+ and CD8+ T

cells. In vitro, ATOR-1015 stimulated T lymphocyte activation and

Treg reduction. Many syngeneic tumor models, such as those of

bladder, colon, and pancreatic cancer, responded well to treatment

with ATOR-1015, which slowed tumor development and increased

survival. It is further shown that ATOR-1015 increases the response

to PD-1 blockade and generates tumor-specific and long-term

immunological memory. Additionally, ATOR-1015 is localized to

the tumor site, enhancing the frequency and activation of CD8+ T

lymphocytes while decreasing the frequency of Tregs (49). A phase 1

clinical trial investigated the safety and tolerability of ATOR-1015

when administered as repeated intravenous infusions to patients

with advanced and refractory solid malignancies (NCT03782467).
6.4 CTLA-4×GITR BsAb

A receptor called glucocorticoid-induced TNFR family-related

gene (GITR) promotes T lymphocyte activation against tumor cells.

A patent known as WO2018091739 employs a BsAb targeting
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CTLA-4 and GITR to treat colon carcinoma. This BsAb has a basic

structure that includes two binding sites for GITR, which are

formed by the antigen-binding sites of both the heavy and light

chains. In addition, there are two binding sites for CTLA-4, which

are created by a CTLA-4 binding domain that is connected to the

kappa constant region of the light chain through a linker at the

carboxyl end (73). BsAb triggered Teff and tumor inhibition in colon

carcinoma-bearing mice (73). However, no clinical studies still

demonstrate using this BsAb to treat cancer patients.
6.5 CTLA-4×CD25 BsAb

In the clinic, targeting Tregs has shown promise, but current

strategies are constrained by on-target, off-tumor stimulation of

autoimmune-related toxicities linked to global Treg blocking. To

limit these toxicities, a BsAb known as INV322 was engineered to

engage the Tregs of TME preferentially. It is created using Invenra’s B-

Body® platform, which is fully human in origin, and has a wild-type

IgG1 structure that enables Fc-gamma-mediated effector function (74).

INV322 targets CD25 and CTLA-4 on Tregs with lower-affinity

monovalent interactions, supporting the selective blockade of tumor-

restricted Tregs function and depletion by Fc-mediated clearance. In

vivo, the development of anti-tumor memory cells, tumor-protective

activity, Treg depletion, and a rise in the Teff: Treg ratio inside the TME

were associated with INV323 treatment (74).
7 Conclusion, challenges, and
future directions

Over the past three decades, there has been a significant evolution

from the simple development andmodification of mAbs without any

further engineering to more complex antibody derivatives in a wide

range of shapes and sizes, particularly BsAbs (75). Researchers’

interest in BsAb technology has grown significantly over time due

to its outstanding potential for clinical applications. This

development has established a strong basis for BsAb-based cancer

immunotherapy. BsAbs are a novel approach to the fight against

cancer. Overall, BsAbs have represented a significant advancement in

improving clinical results. BsAbsmight play a fascinating function in

treating cancer. IrAEs caused by combining ICIs like ipilimumab and

nivolumab remain a significant obstacle despite the tremendous

success of treating cancers. BsAbs are a viable strategy to overcome

this obstacle because the simultaneous co-blockade of two cancer

antigens, such as CTLA-4 and PD-1, primarily in the TME by BsAbs

may restrict immune responses, particularly to the tumor site. Thus,

healthy cells and tissues are not damaged.

Although BsAbs are well positioned as a safe immunotherapy,

outstanding questions remain open. Elucidating the significant

parameters that determine anti-CTLA-4 BsAbs potency and

persistence will be essential as the field progresses to evolving

strategies to address obstacles specific to each type of cancer.

Remarkably, as the field of cancer immunotherapy, particularly

BsAbs, continues to innovate rapidly, it is important to consider
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potential safety risks linked to BsAbs in humans, as concerns

associated with possible off-target effects might be very relevant.

Establishing multidisciplinary approaches to sketch a holistic path

to the clinical translation of anti-CTLA-4 BsAbs will also be crucial.

Nevertheless, despite the advantages discussed above, there are

still several challenges and obstacles, such as immunogenicity and

chain mispairing issues in the commercial production and

development of anti-CTLA-4 BsAbs. More specifically, it takes

time and funds to manufacture BsAbs. Obtaining the necessary

products necessitates using suitable, secure, and economical cell line

manufacturing processes and analytical and purifying techniques

(76). Furthermore, before patients may benefit from anti-CTLA-4

BsAbs, some post-antibody production problems, such as

degradation, aggregation, denaturation, fragmentation, and

oxidation of BsAbs, must be addressed (76). Further clinical trials

are necessary to investigate the most effective dose and mode of

administration that can result in controlled release formulations,

lower systemic adverse effects, and greater concentrations in target

tissues. Besides, the unavoidable negative consequences on healthy

organs such as neurotoxicity or other intricate aspects, such as an

immunotolerant cancer stroma, disrupted neovasculature, and

insufficient penetration of BsAbs, make BsAbs targeting solid

tumors deserving of additional study (77, 78). Notably, the

suppressive TME, which restricts T cell activation and causes

immunological insufficiency (79), is a significant barrier to anti-

CTLA-4 BsAbs in advanced solid tumors. Thus, there is a genuine

eagerness for the continuing investigations of anti-CTLA-4 BsAbs

in solid tumors, which are predicted to provide positive outcomes

soon, even if developing these BsAbs from bench to bedside may

take a long time and involve a huge endeavor.
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