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Anti-neutrophil cytoplasmic autoantibodies (ANCA) associated vasculitis (AAV) is

a necrotizing vasculitis mainly involving small blood vessels. It is demonstrated

that T cells are important in the pathogenesis of AAV, including regulatory T cells

(Treg) and helper T cells (Th), especially Th2, Th17, and follicular Th cells (Tfh). In

addition, the exhaustion of T cells predicted the favorable prognosis of AAV. The

immune checkpoints (ICs) consist of a group of co-stimulatory and co-inhibitory

molecules expressed on the surface of T cells, which maintains a balance

between the activation and exhaustion of T cells. CD28, inducible T-cell co-

stimulator (ICOS), OX40, CD40L, glucocorticoid induced tumor necrosis factor

receptor (GITR), and CD137 are the common co-stimulatory molecules, while

the programmed cell death 1 (PD-1), cytotoxic T lymphocyte-associated

molecule 4 (CTLA-4), T cell immunoglobulin (Ig) and mucin domain-

containing protein 3 (TIM-3), B and T lymphocyte attenuator (BTLA), V-domain

Ig suppressor of T cell activation (VISTA), T‐cell Ig and ITIM domain (TIGIT),

CD200, and lymphocyte activation gene 3 (LAG-3) belong to co-inhibitory

molecules. If this balance was disrupted and the activation of T cells was

increased, autoimmune diseases (AIDs) might be induced. Even in the

treatment of malignant tumors, activation of T cells by immune checkpoint

inhibitors (ICIs) may result in AIDs known as rheumatic immune-related adverse

events (Rh-irAEs), suggesting the importance of ICs in AIDs. In this review, we

summarized the features of AAV induced by immunotherapy using ICIs in

patients with malignant tumors, and then reviewed the biological

characteristics of different ICs. Our aim was to explore potential targets in ICs

for future treatment of AAV.
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1 Introduction

Anti-neutrophil cytoplasmic antibody (ANCA) associated

vasculitis (AAV) is a group of life-threatening diseases,

characterized by necrotizing inflammation of small blood vessels,

with pauci-immune complex depositions. According to different

clinical manifestations, it was mainly divided into three types,

including granulomatosis with polyangiitis (GPA), microscopic

polyangiitis (MPA), and eosinophilic granulomatosis with

polyangiitis (EGPA) (1–4). ANCA is composed of series of

autoantibodies identifying their autoantigens in neutrophil plasma,

including proteinase-3 (PR3) and myeloperoxidase (MPO) which

may be expressed on activated neutrophils. GPA, mainly associated

with PR3-ANCA, usually affects the sinuses, the lung, and the kidney

with specific granulomatous inflammation. In contrast to GPA, MPA

frequently damages the lung and the kidney with necrotizing

vasculitis. In general, MPO-ANCA is predominantly detected in

patients with MPA and EGPA. The clinical characteristics of EGPA

include asthma, eosinophilia, and vasculitis (5, 6), but it is much less

common than GPA and MPA. The distribution of AAV might be

influenced by geographical and race. In east Asia, especially in China

and Japan, MPA with MPO-ANCA is the predominant AAV,

whereas in Europe, such as the UK and France, GPA with PR3-

ANCA is the more common AAV (7, 8).

Although the exact etiopathogenesis of AAV remains unclear,

studies have demonstrated that some factors, such as T and B cells,

ANCA, the complement alternative pathway (cAP), and neutrophil

extracellular traps (NETs), might play various important roles in

the pathogenesis (Figure 1). On the genetic background, the

interaction of infections, environmental and other factors might

activate T cells, which could help B cells develop into plasma cells.
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Meanwhile, neutrophils could also be activated and express PR3

and MPO to combine with the ANCA secreted by plasma cells (9–

11). The fragment a of fifth complement (C5a) produced by

activating cAP could connect with the C5a receptor on

neutrophils (12, 13). The combinations of these factors on

neutrophils could activate the neutrophils further to promote

their degranulation and NETs production, intensify respiratory

burst, injury the vascular endothelium, accelerate the

inflammatory response, and ultimately lead to clinical damages of

AAV (11, 13–15).

T cells play essential and pivotal roles in autoimmunity. Studies

have revealed that subgroups of T cells, including regulatory T cells

(Treg) and helper T cells (Th), especially follicular Th cells (Tfh),

Th2 and Th17, were involved in the pathogenesis of AAV (16–19).

The exhaustion of T cells could predict the favorable prognosis of

AAV (20). Notably, the activation of T cells requires two signals.

The first signal is traditional T cell receptor (TCR) signaling

triggered by the recognition between TCR and specific peptides

from the major histocompatibility complex (MHC) on the surface

of antigen-presenting cells (APC). Immune checkpoint (IC)

molecules transmit the second signal. ICs are a class of surface

proteins to provide co-stimulatory or co-inhibitory signals by

combining with the corresponding receptors or ligands on the

surface of APCs (21, 22). Currently, immune checkpoint

inhibitors (ICIs) have been used in treating various malignant

tumors (23–26). However, 3.5% of patients treated with ICIs

occurred rheumatic disease (27), suggesting that targeting ICs

might have potential values in the treatment of rheumatic

diseases. In this review, we summarized the association between

ICIs and AAV, focused on the characteristics of ICs, and explored

the potential therapeutic prospect of targeting ICs in AAV.
FIGURE 1

Pathogenesis of ANCA associated vasculitis. T cells, B cells, and neutrophils were activated by multiple stimulations in the background of genetic
susceptibility. Th and Treg cells differentiated from T cells synergistically promote B cells to develop into plasma cells, and produce ANCA. ANCA
then combined with PR3 or MPO expressed on neutrophils pre-activated by inflammatory cytokines. Also, C5a derived from activated cAP might
combine with the C5a receptor on neutrophils. Neutrophils activated by ANCA, C5a and various cytokines might produce more NETs conducive for
the inflammatory response and adaptive immunity, ultimately leading to clinical damages. Abbreviations: ANCA, anti-neutrophil cytoplasmic
autoantibodies; C5a, fragment a of the fifth complement; cAP, complement alternative pathway; MPO, myeloperoxidase; NETs, neutrophil
extracellular traps; PR3, proteinase-3; Th, helper T; Treg, regulatory T.
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2 The association between
ICIs and AAV

Currently, there are three types of ICIs in blocking co-inhibitory

pathways, targeting programmed cell death 1 (PD-1) (nivolumab,

pembrolizumab and cemiplimab), programmed death ligand 1

(PD-L1) (avelumab, atezolizumab and durvalumab), and

cytotoxic T lymphocyte-associated molecule 4 (CTLA-4)

(ipilimumab and tremelimumab). As the signal transductions of

co-inhibitory were blocked, T cells could be activated, and then the

tumor immunity could be enhanced (28, 29). Consequently, the

inflammatory response might also be increased due to the activation

of T cells, resulting in most patients developing immune-related

adverse events (irAEs). The damages of irAEs could involve

multiple organs, including but not limited to the skin, the

gastrointestinal tract, the lung, and the kidney (29, 30). It is

shown that CTLA-4 inhibitors may induce more irAEs than PD-1

inhibitors, and the combination of these two kinds of inhibitors can

further increase the incidence of irAEs (31, 32).

Despite the rheumatic irAEs (Rh-irAEs) are not common in all

irAEs, rheumatologists are still concerned about these Rh-irAEs. It

was reported that the frequent Rh-irAEs were inflammatory

arthritis and inflammatory myopathy. ICIs-induced vasculitis is

less common than other rheumatic diseases and mainly affects the
Frontiers in Immunology 03
medium and large arteries (27, 29, 33). In Table 1, we summarized

the cases of ICIs-induced AAV reported to date (23–25, 34–40).

Interestingly, even with ICIs treatment, some AAV patients in

remission did not relapse (41–43). Therefore, we speculated that

the ICs molecules might be involved in the pathogenesis of AAV.

What is more, different ICs might dominate in various stages.
3 Co- stimulatory signal pathways

The co-stimulatory molecules expressed on the surface of T cells

contained CD28, inducible T-cell co-stimulator (ICOS), OX40, and

others (Figure 2). They will be discussed in detail below.
3.1 CD28 signal pathway

CD28 is a member of the immunoglobulin (Ig) superfamily

(IgSF) with typical Ig variable (IgV) domains. This transmembrane

protein of 44 kDa is composed of a disulfide-linked homodimer. It

was involved in the formation of immunologic synapses, the

phosphorylation of proteins, and the remodeling of actin in T

cells. Consequently, T cells were activated and produced cytokines

(44–46). CD28 signal transduction is relied on two motifs in its
TABLE 1 Demographic characteristics and clinical data of patients with ICIs-induced AAV.

Case Age/
Gender ICIs Target irAEs Clinical Features Treatments Outcome

Kato, et al.
(34)

N nivolumab PD-1 AAV – – –

Hung, et al.
(35)

66/female
ipilimumab and

nivolumab
CTLA-4
and PD-1

GPA
headache, polyarthralgia, proteinuria, and
hemoptysis

glucocorticoid, rituximab
and one dose of infliximab

chronic
kidney
disease

Uner, et al.
(36)

65/male pembrolizumab PD-1 AAV
diarrhea, increased creatinine, microscopic
hematuria, and proteinuria

glucocorticoid and
rituximab

chronic
kidney
disease

Harada,
et al. (37)

65/male nivolumab PD-1 EGPA
asthma, eosinophilia, dyspnea on exertion,
arthritis.

glucocorticoid remission

Mamlouk,
et al. (38)

70/male tremelimumab CTLA-4 MPA microscopic hematuria, pyuria, and proteinuria
glucocorticoid,
plasmapheresis, and
rituximab

chronic
kidney
disease

Roger, et al.
(23)

34/female nivolumab PD-1 EGPA asthma, eosinophilia, arthritis, and pansinusitis glucocorticoid –

Nabel, et al.
(25)

56/male pembrolizumab PD-1 GPA
arthritis, cough, emesis, and diffuse expiratory
wheezes in the right lung

glucocorticoid and
rituximab

remission

Sibille, et al.
(39)

64/male pembrolizumab PD-1 GPA myositis, dyspnea, and arthritis glucocorticoid remission

Heo, et al.
(24)

56/male pembrolizumab PD-1 GPA
rash, fever, arthralgia, myalgia, increased
creatinine, microscopic hematuria, and
proteinuria

glucocorticoid and
hemodialysis

remission

van den
Brom, et al.
(40)

56/female
ipilimumab and
pembrolizumab

CTLA-4 GPA
fever, arthritis, cutaneous vasculitis, and
pulmonary nodules

glucocorticoid and
cyclophosphamide

remission
fr
AAV, anti-neutrophil cytoplasmic autoantibodies associated vasculitis; CTLA-4, cytotoxic T lymphocyte-associated molecule 4; EGPA, eosinophilic granulomatosis with polyangiitis; GPA,
granulomatosis with polyangiitis; ICIs, immune checkpoint inhibitors; MPA, microscopic polyangiitis; PD-1, programmed cell death 1.
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cytoplasmic tail: YMNM and PYAP. The phosphorylated Src

homology-2 (SH2) domain in the proximal YMNM motif binds

the p85 subunit of phosphatidylinositol 3-kinase (PI3K), the growth

factor receptor-bound protein 2 (GRB2), and the GRB2-related

adapter protein 2. The distal PYAP motif combines with the

lymphocyte cell-specific protein-tyrosine kinase (LCK) and GRB2.

Their bindings could activate the downstream targets, including

nuclear factor-kB (NF-kB), nuclear factor of activated T cells

(NFAT), mammalian target of rapamycin (mTOR), and mitogen-

activated protein kinase to affect cell cycle progression, apoptosis,

and especially interleukin (IL)-2 transcription (47).

CD80 and CD86 are cognate ligands of CD28, which are mainly

expressed on the surface of APCs, such as B cells, dendritic cells

(DCs), and monocytes (17, 22, 48). However, there are some

differences between their features and functions. CD80, which is

existed as a dimer, is expressed rarely on resting B cells whereas the

expression of CD86, which is in the form of a monomer, is higher

than CD80. When B cells were activated, the density of CD86 on its

surface increased early and even more compared with CD80 (49,

50). In animal experiments, it is demonstrated that in CD86-

deficient mice, neither the antibody isotypes were switched nor

germinal centers (GCs) were formed, whereas it is contrary in

CD80-deficient mice (51). Furthermore, because CTLA-4, a co-

stimulatory molecule with highly homologous to CD28, has a

higher affinity for CD80 and CD86, it competitively inhibits the

bindings of CD28 to CD80 and CD86, and actually restrains the

cellular immune responses (52).

CD28 signal pathway plays a vital role in vasculitis. Zhang et al.

constructed human artery-severe combined immunodeficiency

mice chimeras with peripheral blood mononuclear cells from

patients with giant cell arteritis (GCA) to induce vasculitis.
Frontiers in Immunology 04
Blocking the CD28 signal pathway significantly disrupted T-cell

metabolic fitness and inhibited the remodeling of the vessel wall

(53). In Takayasu’s arteritis (TAK), another large vasculitis, the

active patients had higher mRNA levels of CD28 than the inactive

patients (54). In patients with active GPA, T cells had a higher

proliferative response to the stimulation of CD2/CD28 than healthy

controls (HCs) (55). In addition, the expressions of CD80 and

CD86 were also significantly increased in CD19+ B cells from

patients with frequently relapsing EGPA (17). Besides ICs in cell

membranes, soluble ICs have received attention gradually. Soluble

ICs were produced by the proteolytic cleavage of extracellular

regions, or by alternative splicing (56). Elevated soluble CD28

(sCD28) levels was observed in sera samples in patients with

active AAV. Such increase in was significantly positively

correlated with disease activity markers, such as the Birmingham

Vasculitis Activity Score, C-reactive protein, and erythrocyte

sedimentation rate (57). Noteworthy, sCD28 level decreased when

AAV patients from the active state became inactive after treatment

(57) , suggest ing that sCD28 might play a potent ia l

immunopathological role in AAV and could be a novel

biomarker to evaluate disease activity. Therefore, targeting the

CD28 signal pathway may be effective for AAV. Abatacept, a

CTLA-4-Ig fusion protein composed of the ligand-binding

domain of CTLA-4 and the modified Fc portion of IgG, can

block CD28 signal transduction by bindings to CD80 and CD86

(58). An open-label trial reported that Abatacept had improved the

disease condition in patients with non-severe relapsing GPA (59).

We prefer to inhibit the CD28 signal transduction directly. FR104 is

a pegylated antigen-binding fragment (Fab) antibody. In the non-

human primate (NHP) graft-versus-host disease (GVHD) model,

the survival of GVHD-free was improved by FR104/sirolimus. Still,
FIGURE 2

Co-stimulatory signal pathways in T cells. The activation and proliferation of T cells at least need two signals. The first signal is provided by the
binding of TCR to MHC with antigenic polypeptide processed by APC. Co-stimulatory molecules bind to the ligand or receptor presented by APCs,
transmitting the second signal. The molecules in the left box are members of IgSF, activating the signal pathways downstream by different motifs in
the cytoplasmic tail. The members of TNFRSF are represented in the right box. They bind to TRAF to activate the signal pathways downstream.
Abbreviations: APC, antigen-presenting cell; GITR, glucocorticoid induced tumor necrosis factor receptor; ICOS, inducible T-cell co-stimulator; IgSF,
immunoglobulin superfamily; MHC, major histocompatibility complex; TCR, T cell receptor; TNFRSF, tumor necrosis factor receptor superfamily;
TRAF, tumor necrosis factor receptor-associated factor.
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the overall survival was not improved because of the sepsis and a

paralyzed interferon (IFN)-g response in some patients without

GVHD (60). In conclusion, it has clinical significance for targeting

the CD28 signal pathway. Nevertheless, the challenge is to develop a

more effective anti-CD28 antibody with fewer side effects.
3.2 ICOS signal pathway

Even though ICOS and CD28 belong to the same family, they

still have several differences. Firstly, ICOS is expressed on the

surface of activated T cells. The activation of T cells by TCR and

CD28 signal is essential for the expression of ICOS. Then, ICOS can

promote the activation of T cells further (61). Secondly, there is only

one particular YMFMmotif in the cytoplasmic tail of ICOS. YMFM

binds to the p50a and p85 subunits of PI3K and tends to recruit the

former. Subsequently, the AKT signal enhances markedly. The

ICOS-PI3K-AKT pathway promotes the expression of cytokines

as well as induces the formation of Tfh cells. Tfh cells migrate into

the follicles, maintain in GCs, and promote the differentiation of B

cells into plasma cells to secrete ANCA (21, 62–64). Thirdly, ICOS

could combine with the ICOS ligand (ICOSL) instead of CD80 and

CD86 (65).

ICOSL is expressed on the surface of B cells, macrophages,

fibroblasts, muscle cells, podocytes, and other cells (65–68).

Several factors regulated the expression of ICOSL on the surface

of B cells. B cell receptor (BCR) signal reduced the expression of

ICOSL on naïve B cells, which affected the formation of Tfh cells.

The BCR signal was more substantial, and the reduction of ICOSL

was more obvious. This inhibitory response could be reversed by

the CD40 signal (69, 70). Similarly, in both NF-kB–inducing
kinase (NIK) KO mice and B-cell activating factor belonging to

tumor necrosis factor (TNF) receptor (TNFR) family receptor-

deficient mice, Hu et al. revealed that the expression of ICOSL

decreased significantly. They discovered the recombinant ICOSL-

Fc fusion protein could increase the levels of Tfh cells in NIK KO

mice, suggesting ICOSL is a target of the noncanonical NF-kB
pathway (71).

Several studies focused on the differences of ICOS+ Tfh cells in

vasculitis (19, 72, 73). Circulating CD4+ CXCR5+ ICOS+ Tfh cells

were elevated and correlated with disease activity in patients with

Henoch-Schönlein purpura (HSP) (72). The same results were

observed in patients with active MPO-AAV (19) and Behcet’s

disease (73). In patients with active AAV, the serum

concentration of soluble ICOS was also higher than HCs (57). In

addition, the production of pro-inflammatory factors was decreased

by blocking the ICOS signal (73). AMG 557 is a fully human IgG2

monoclonal antibody (mAb) with a higher affinity to ICOSL that

prevents the binding of ICOS and ICOSL. The safety and

tolerability of AMG 557 are acceptable in patients with mild,

stable systemic lupus erythematosus (SLE) (74). In another phase

Ib, randomized, double-blind, placebo-controlled study, the

potential efficacy of AMG 557 was evaluated (75). Fewer patients

receiving AMG 577 (3 of 10 patients) or placebo (1 of 10 patients)

achieved the primary efficacy endpoints. On day 169, compared

with the placebo group, more patients in the AMG 557 group
Frontiers in Immunology 05
showed a ≥4-point improvement in the SLE disease activity index

(SLEDAI) (70.0% vs. 20.0%, p=0.07), indicating the potential

efficacy of AMG 557 (75). As mentioned above, ANCA is thought

to be the pathogenic antibody of AAV, and the secretion of ANCA

by plasma cells is regulated by Tfh cells. Therefore, the

investigations on mAb targeting ICOS molecules on the surface

of Tfh cells will be one of research directions of AAV treatment in

the future.
3.3 OX40 signal pathway

The costimulatory molecule OX40 belongs to the TNFR

superfamily (TNFRSF), also known as TNFRSF4 or CD134.

Similar to other members of TNFRSF, OX40 is a type I

transmembrane glycoprotein with four cysteine-rich domains in

the extracellular region (76). Different from ICOS, OX40 expressed

on CD4+ T cells was driven by the TCR signal. After the activation

of T cells, the expression of OX40 is promoted by CD28 and CD40

signals (77). In the intracellular region, OX40 binds to TNF

receptor-associated factor (TRAF) 2, TRAF3, TRAF 5, and

TRAF6, which activates the NF-kB, PI3K-AKT, and NFAT signal

pathways downstream. It promotes the survival of T cells and the

secretion of cytokines (21, 78).

The only ligand of OX40 is OX40L (also known as TNFSF4,

CD252), which is expressed on the surface of DCs, B cells, T cells,

vascular endothelial cells (VECs), mast cells, Langerhans cells, and

other types of cells (79–84). There is a conserved extracellular TNF

homology domain on the OX40L for trimerization (76). OX40L

trimer combines with three OX40 molecules to polarize T cells to

Th cells, expand Treg cells, sustain the function of memory T cells,

and promote the adhesion of activated T cells to VECs (77, 85).

The OX40 signal pathway is vital in rheumatic diseases. In

patients with SLE or TAK, the expression of OX40L was enhanced

on VECs (82, 86). Besides the expression of OX40, the soluble

OX40L was increased in patients with HSP, and both of them were

associated with disease activity (87). It was observed in patients with

AAV that the expression of CD134 as well as the CD134+ T cells

were increased. The majority of CD134+ T cells mainly secreted

TNF-a (88, 89). The results were consistent with in vitro studies. So

far, several mAbs against OX40 (KHK 4083 and GBR 830) and

OX40L (KY 1005) have been developed. KHK 4083 demonstrated

the safety and tolerability in patients with mild to moderate plaque

psoriasis (90) and moderate to severe ulcerative colitis (UC) (91). In

the phase II a study, GBR 830 showed the therapeutic potential for

patients with moderate to severe atopic dermatitis (AD) (92). The

pharmacological activity of KY 1005 in humans was evaluated. It is

considered that targeting OX40L might be effective (93). These

findings indicated that the OX40 signal pathway might be a

potential therapeutic target in patients with AAV. The problem is

that OX40 blockade might inhibit the function of Treg cells, which

then leads to disease relapse. In the NHP GVAD model, Tkachev

et al. reported that the combined administration with KY 1005 and

sirolimus could control the activation of effector T cells while

maintaining the reconstitution of Treg cells (94). It seems that

combination treatments may be more promising.
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3.4 Other co-stimulatory signal pathways

There are some other co-stimulatory molecules involving in the

activation of T cells as well. We focused on the possibility of

targeting CD40L, glucocorticoid induced TNF receptor (GITR),

and CD137 for therapy in AAV.

CD40L (also known as TNFSF5 or CD154), mainly expressed

in activated T cells and platelets, is the ligand of CD40 (95, 96).

CD40, expressed in B cells, monocytes, DCs, and VECs, has

similar structures to the other members of TNFRSF (96–99).

The connection of CD40 and CD40L regulated Th cells

differentiation, maintained GCs response, activated the CD8+

cytotoxic T lymphocytes (CTL), and sustained memory CTLs

(100). Although the gene polymorphisms of CD40 were not

related to the susceptibility of AAV (101), the levels of CD40L

and soluble CD40L were raised in AAV patients, which was

correlated with disease activity (102). It was a pity that the anti-

CD40 mAb BI 655064 and the polyethylene glycol conjugated

anti-CD40L Fab’ fragment dapirolizumab pegol (DZP) both did

not achieve the expected clinical efficacy in the phase II studies

(103, 104). Furthermore, blocking CD40L could lead to severe

thromboembolic events. Because of the myocardial infarction and

thromboembolic events occurring in patients, the study of

BG9588 was terminated (105). In comparison, the CD40L

binding protein VIB4920, which lacks an Fc domain, may have

more therapeutic potential in AAV. By blocking the downstream

CD40 signal, VIB4920 could inhibit the differentiation of plasma

cells without platelet aggregation. The safety and efficacy of

VIB4920 have been preliminarily demonstrated in patients with

rheumatoid arthritis (RA) (106), and further exploration of the

clinical efficacy is needed.

GITR (also known as TNFRSF18) and CD137 (also known as 4-

1BB or TNFRSF9) are both members of TNFRSF (85). They are

expressed in different types of activated T cells, that is, GITR is

mainly expressed in Treg cells (107) while CD137 is primarily

expressed in CD8+ T cells (108). The stimulations of the GITR

signal as well as the CD137 signal enhanced T cells proliferation,

raised the secretion of cytokines, and eliminated the suppressive

effect of Treg cells (109–111). Compared to HCs, the expression of

GITR was increased in patients with GPA and significantly

correlated with disease activity (88). Giscombe et al. reported

that, similar to animal tests, the expanded CD8+ T cells expressed

more CD137 (89). The anti-GITR mAb exacerbated the disease

severity in the murine model of collagen-induced arthritis (CIA)

(112) and experimental autoimmune encephalomyelitis (EAE)

(113). In contrast, the agonistic anti-CD137 mAb improved the

CIA and EAE maybe by inducing expansion of CD11c+ CD8+ T

cells (114, 115). Among the members of TNFRSF, CD137 was

superior in increasing the secretion of cytokines by CD8+ T cells

(116, 117). So far, the effects of inhibiting or stimulating GITR and

anti-CD137 in the treatment of AAV are unknown. There is no

doubt that this is a tempting field worthy of further exploration for

AAV treatment.
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4 Co-inhibitory signal pathways

The exhaustion of T cells in AAV and other autoimmune

diseases (AIDs) predicts advantageous clinical outcomes. The

expressions of co-inhibitory molecules restrain the differentiation

of non-exhausted T cells, indicating the importance of co-inhibitory

molecules in the exhaustion of T cells (20). At present, the research

on PD-1 and CTLA-4 signal pathways is reported widely, whose

blockers have been used in the treatment of many malignant

tumors. In the previous section, we summarized the association

between AAV and inhibitors of PD-1, PD-L1, and CTLA-4. In this

section, we described more details on the mechanisms and roles of

PD-1 and CTLA-4 signal pathways in AAV. We assessed the

therapeutic potential of other co-inhibitory molecules associated

with the exhaustion of T cells as well (Figure 3).
4.1 PD-1 signal pathway

PD-1 is a co-inhibitory receptor expressed in many types of

activated or exhausted immune cells (118). PD-1, a transmembrane

protein with 288 amino acids, consists of an extracellular domain, a

transmembrane domain, and an intracellular cytoplasmic tail.

Although PD-1 belongs to the CD28 family, it has unique

molecular characteristics. PD-1 has an IgV-like domain in the

extracellular domain whereas an immunoreceptor tyrosine-based

inhibition motif (ITIM) and an immunoreceptor tyrosine-based

switch motif (ITSM) in the cytoplasmic tail (119). ITIM and ITSM

mediated the inhibition signal of PD-1, while ITSM might be more

important. It has been reported that only the mutation of ITSM

affected the transduction of the PD-1 signal (120–122). With the

bindings of PD-1 and its ligand, ITSM was phosphorylated, the SH2-

containing protein tyrosine phosphatase 2 (SHP-2) was recruited, and

the PI3K/AKT signal pathway was inhibited, which suppressed the

activation of T cells and the production of pro-inflammatory cytokines

(119, 123). RAS/MEK/ERK signal pathway, which is responsible for

activating T cells, is another target of the PD-1 signal to suppress the

activity of T cells and concurrent inflammation (119).

PD-L1 and PD-L2 are the ligands of PD-1. Both of them are

members of B7 family, which are known as B7-H1 and B7-DC,

respectively. The expression of PD-L1 is detected on many types of

cells (T and B cells, DCs, VECs, placenta, eyes, and others) whereas

PD-L2 is mainly limited to express on the surface of macrophages,

DCs, and mast cells (119, 124). As PD-L1 and PD-L2 are close in the

distance on the same chromosome, they are regulated similarly by

inflammatory factors (IFN-1, IFN-2, TNF-a and ILs). In addition,

PD-L1 is regulated with post-translational regulation and

microRNAs, including but not limited to miR-513, miR-155,

miR-34a, miR-142-5p, and miR-93 (118, 125, 126). PD-1 is not

the only receptor for PD-L1 and PD-L2. PD-L1 can also bind to

CD80 to inhibit the immune response of T cells (127), while PD-L2

may combine with repulsive guidance molecule B (RGMB) to

impair respiratory tolerance (128). Therefore, targeting PD-L1 or
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PD-L2 is also important immunotherapy, and actually, PD-L1

inhibitors have been developed to treat malignant tumors.

Zhang et al. demonstrated that, in contrast to patients with

GCA, PD-1+ T cells were not enriched at renal lesions in patients

with GPA, suggesting that PD-1 might play a different role in

different diseases (129). Similarly, Zeisbrich et al. measured the

expression of PD-L1 in monocytes and found that the frequency of

PD-L1+ monocytes was not related to renal involvement although

these monocytes tended to decrease in active patients with AAV

(130). A previous study revealed that the expression of PD-1 on Th

cells was lower in patients with localized GPA than that in patients

with systemic GPA (131). We then detected the expression of PD-1

in Tfh cells. Compared to HCs, the expression intensity of PD-1 in

Tfh cells was higher in patients with MPO-AAV. We also found

that the expression of ICOS/PD-1 instead of PD-1 was associated

with the levels of MPO-ANCA (19), indicating that co-stimulatory

and co-inhibitory molecules were involved in the activation of T

cells together. Although the fusion proteins containing an anti-PD-

1 single-chain variable fragment could improve symptoms of type 1

diabetes (TID) and EAE models (132), its effects in AAV have yet to

be explored. Soluble ICs in PD-1 signaling pathway also play an

important role in AAV. It was observed that although the serum

concentration of soluble PD-L2 in active AAV was lower than that

in HCs, its level was significantly increased after treatment (57). In

addition, the levels of serum soluble PD-1 (sPD-1) was higher in

MPO-AAV (133). Noting that sPD-1 could restrain the exhaustion

of T cells by binding to PD-L1 in cell membranes (134), sPD-1 is

therefore likely an effective therapeutic target in MPO-AAV.

Significantly, Targeting the PD-1 signal pathway alone may be

less effective because of the poorer inhibitory impact on PD-1 of T
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cells (131). This may explain why PD-1 inhibitors induce fewer

irAEs than CTLA-4 inhibitors. Compared to PD-1, PD-L1 may be a

better target. The frequency of PD-L1+ monocytes is negatively

correlated with the level of ANCA (130), so increasing the

expression of PD-L1 may reduce the level of ANCA and improve

disease activity. In lupus nephritis mice models, the recombinant

adenovirus containing the full-length PD-L1 gene improved the

renal lesions (135). In the same experiment, the anti-ICOSL mAb

was also added to reinforce this process (135). As the results we

found, targeting both ICOS and PD-1 in patients with AAV may be

more effective.
4.2 CTLA-4 signal pathway

CTLA-4 is transiently expressed in the activated T cells.

Beforehand, it localized in intracellular compartments of naïve T

cells (136, 137). The gene expressing CTLA-4 is located in the same

chromosomal region (2q33-34) as the gene expressing CD28, so

CTLA-4 and CD28 exhibit a significant homology (138). CTLA-4

and CD28 bind to the same ligand but transduce an opposite signal.

CTLA-4 leads to co-inhibitory signaling whereas CD28 provides the

co-stimulatory signal. As a member of IgSF, CTLA-4 is also a

transmembrane protein that contains an IgV-like domain in the

extracellular domain and a YVKM motif in the intracellular

cytoplasmic tail (139, 140). The IgV-like domain is the site that

binding to CD80 and CD86 for CTLA-4, and the YVKM motif is

important for CTLA-4 signal transduction in T cells. The

interaction of the phosphorylated YVKM motif with SHP2 and

serine/threonine protein phosphatase 2A (PP2A) dephosphorylated
FIGURE 3

Co-inhibitory signal pathways in T cells. The co-inhibitory signal pathways induced the exhaustion of T cells. HVEM is a member of TNFRSF. Other
molecules belong to IgSF. Except for LAG-3, VISTA, TIM-3, and CD200, all of them have inhibitory signal motifs in the cytoplasmic tail. LAG-3 has a
unique KIEELE motif whose role is unclear, while VISTA, TIM-3, and CD200 do not have any motifs in the cytoplasmic tail. Abbreviation: APC,
antigen-presenting cell; BTLA, B and T lymphocyte attenuator; CTLA-4, cytotoxic T lymphocyte-associated molecule 4; Gal-9, galactin-9; HVEM,
herpesvirus entry mediator; IgSF, immunoglobulin superfamily; LAG-3, lymphocyte activation gene 3; MHC, major histocompatibility complex; PD-1,
programmed cell death 1; PD-L1, programmed death ligand 1; TCR, T cell receptor; TIGIT, T‐cell immunoglobulin and ITIM domain; TIM-3, T cell
immunoglobulin and mucin domain-containing protein 3; TNFRSF, tumor necrosis factor receptor superfamily; VISTA, V-domain immunoglobulin
suppressor of T cell activation; VSIG-3, V-set and immunoglobulin domain containing 3. .
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the TCR-CD3z complex so that the activated signal from TCR was

suppressive (21). On the other hand, the phosphorylation of the

YVKM motif inhibited the interaction with the clathrin-associated

adaptor complex AP-2, resulting in the internalization of CTLA-4

(141). CTLA-4 expressed on the surface of activated T cells captured

and degraded CD80 and CD86 by trans-endocytosis to inhibit the

co-stimulatory signal from CD28 (142). Ultimately, CTLA-4

suppressed the activation of T cells.

In patients with GPA, the expression of CTLA-4 in T cells was

found to be elevated, and to be related to disease severity. After

stimulating with phytohaemagglutinin (PHA), the expression of

CTLA-4 in T cells in patients with GPA did not increase, suggesting

that the activation of T cells in patients with GPA was persistent

(143). As mentioned above, Abatacept bind to CD80 and CD86 to

inhibit the activation of T cells, and its efficacy in patients with GPA

has been reported (59). Although agonistic CTLA-4 antibodies have

not yet been successfully developed, directly targeting CTLA-4 may

be less effective because of the CTLA-4 endocytosis. It is probably

more effective to inhibit the bindings of CD28 to CD80 and CD86.

In addition, polymorphisms of the CTLA-4 gene were associated

with GPA (144–146), while they were not related to MPA in

Japanese patients (147), indicating that there were race differences

in CTLA-4 polymorphism. A meta-analysis showed that CTLA-4

(AT)86 and CTLA-4 (AT)106 were significantly associated with AAV

in the Caucasian patients instead of the Asian patients (144).

Therefore, when targeting CTLA-4, genetic variation should be

considered to avoid invalid treatment.
4.3 Other co-inhibitory signal pathways

T cell Ig and mucin domain-containing protein 3 (TIM-3), as a

co-inhibitory receptor for Th1, was reported in 2002 to be

associated with the severity of EAE (148). After that, it was

shown that TIM-3 was expressed in Treg cells, DCs, natural killer

(NK) cells, and macrophages (149, 150). Similar to other members

of IgSF, TIM-3 contains an IgV domain, a mucin domain, a

transmembrane domain, and a cytoplasmic tail lacking inhibitory

signaling motifs (151). TIM-3 binds to ligands through the IgV

domain, and five conserved tyrosine residues at the cytoplasmic tails

trigger the signaling downstream (152). Galactin-9 (Gal-9),

phosphatidyl serine (PtdSer), high mobility group protein B1

(HMGB1), and carcinoembryonic antigen cell adhesion molecule

1 (CEACAM-1) are known ligands of TIM-3. Gal-9 is the earliest

discovered as well as the most explored ligand. TIM-3-Gal-9 signal

pathway induced intracellular calcium flux, apoptosis, and the

suppression of Th1 (153). PtdSer and HMGB1 did not directly

suppress the activation of T cells, but rather affected the immune

responses of DCs (154, 155). CEACAM-1 promoted the exhaustion

of T cells through cis- and trans-interactions with TIM-3 (156). In

patients with AAV, the expression of TIM-3 was significantly

reduced on DCs, and blocking TIM-3 enhanced the expression of

DC cytokines. Also, there were no differences in the expression of

TIM-3 on the surface of different T cell subtypes (CD4+ T cells and

CD8+ T cells) between MPO-AAV and HCs (157). Further

explorations might be needed to assess the expression of TIM-3
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on Th and Treg cells. Studies have shown that the serum

concentrations of soluble TIM-3 correlated with the diseases state

of AAV (57, 133), i.e. it was increased in active AAV (57), and could

predict the relapse in PR3-AAV with rituximab treatment (133).

However, the specific mechanism of soluble TIM-3 in AAV remains

to be further examined before considering as a therapeutic target.

Yoon et al. demonstrated that the serum Gal-9 levels were

independently related to disease activity in patients with AAV

(158). In mice models of CIA and SLE, injection of Gal-9

improved symptoms (159, 160). Although targeting the TIM-3

signal pathway has a potential efficacy in AAV, the problem is the

need to clarify in which immune cells the TIM-3 signal pathway is

more dominant to confirm the effectiveness. Another problem is

that TIM-3 is not the only receptor for its ligand, so targeting the

ligands of TIM-3 may not completely enhance TIM-3 signaling.

B and T lymphocyte attenuator (BTLA, also known as CD272)

is mainly expressed in B and T cells, especially in naïve B cells and

Th1 (161). BTLA is a co-inhibitory molecule with similar structures

to PD-1 and CTLA-4 (162). Similar to PD-1, ITSM and ITIM in the

cytoplasmic tail of BTLA inhibit the activation of T cells. However,

unlike PD-1, SHP-1 rather than SHP-2 is mainly recruited by BTLA

(163, 164). The third signal motif in the cytoplasmic tail of BTLA is

the GRB2 association motif, which binds to GRB2 and p85 subunits

of PI3K and induces the activation of T cells (165). Accordingly,

BTLA transmits bidirectional signaling. Herpesvirus entry mediator

(HVEM, also known as TNFRSF14) is a ligand of BTLA. HVEM is a

member of TNFRSF, which is expressed in T cells, B cells, NK cells,

monocytes, and neutrophils (166). There are two types of

interaction between HVEM and BTLA. When BTLA and HVEM

interacted in the same T lymphocyte, a cis complex was formed,

inhibiting HVEM-dependent NF-kB activation (167). When BTLA

or HVEM was expressed in APCs, trans interaction provided a co-

stimulatory signal (168). Therefore, the regulation of the BTLA-

HVEM signal pathway in AIDs is complex. In patients with

remission AAV, the expression of BTLA was decreased only on

double negative T-cells (CD3+CD4-CD8-). In vitro experiments, it

has been shown that agonistic anti-BTLA antibody inhibit the

activation and proliferation of T cells, especially Th17 (169),

suggesting that targeting BTLA to inhibit the activation of T cells

may be one of the future therapeutic directions of AAV.

V-domain Ig suppressor of T cell activation (VISTA), also known

as PD-1 homolog (PD-1H), is a member of IgSF first discovered in

2011 (170). Different from other members of IgSF, VISTA has four

additional invariant cysteines (170, 171). Subsequently, the same

laboratory confirmed that VISTA in humans is a co-inhibitory

molecule, which inhibits the proliferation of T cells and the

production of cytokines (172). VISTA is mainly expressed in

hematopoietic cells, especially in CD11bhi myeloid cells. Within the

T cell compartment, the expression of VISTA was highest in naïve T

cells and FoxP3+ Treg cells (171, 172). It is certain that VISTA is a

ligand for T cells (170, 172). Moreover, it may also be a receptor in T

cells to transmit inhibitory signals (173). Wang et al. demonstrated

that V-set and Ig domain containing 3 (VSIG-3) is a ligand of VISTA.

The binding between VISTA and VSIG-3 induced the inhibitory

effects (174). It is a pity that VSIG-3 is mainly expressed in tumor

cells but not in normal immune cells (174). Currently, targeting
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VISTA is explored in AIDs. It was reported that VISTA KO mice

developed SLE (175) and EAE (176). In mice models with SLE,

agonistic VISTA mAb improved symptoms (175). In patients with

AAV, VISTA was expressed in mononuclear phagocytes, CD4+ T

cells, and CD8+ T cells. Compared to patients with a lower expression

of VISTA, patients with a higher expression of VISTA might have a

higher risk of renal progression (177). Therefore, targeting VISTA

may inhibit disease severity in patients with AAV, which needs more

experiments to confirm.

T‐cell Ig and ITIM domain (TIGIT), CD200, and lymphocyte

activation gene 3 (LAG-3) are popular co-inhibitory molecules in

recent studies. CD155 and CD112 are ligands of TIGIT, binding to

CD226 as well (152). CD200 binds to CD200Rs, especially

CD200R1 (178). Besides MHC-II, fibrinogen-like protein 1 (FGL-

1) was also discovered to be a ligand for LAG-3 (179, 180). These

signal pathways transmit inhibitory signals. As a result, their roles

in AIDs are noted. TIGIT-Ig fusion protein has revealed the

therapeutic effects in mice with SLE (181). In EAE mice models,

agonistic TIGIT mAb as well as CD200-Fc fusion protein improved

disease severity (182, 183). CD200-Fc fusion protein reduced the

disease severity of CIA at the clinical and histologic levels (184).

Remarkably, LAG-3-deficient mice do not induce AIDs. After

exposure to mercury (Hg), it not only had increased susceptibility

to AIDs but also did not respond to tolerance induction (185). In

AAV, there are no relevant reports about the influences of TIGIT,

CD200, and LAG-3, so it is unknown whether targeting these signal

pathways will improve disease severity.
5 Conclusion

The pathogenesis of AAV involves multiple aspects of innate

immunity and adaptive immunity in which the role of T cells is

pivotal and complex. With the understanding of the IC molecules,

its importance will be confirmed further in AAV. Firstly, some ICIs

used for malignant tumors induced the attack or relapse of AAV.

Secondly, inhibiting the co-stimulatory signal pathways or

enhancing the co-inhibitory signal pathways inhibited the

activation and proliferation of T cells so that AIDs could be

improved. In AAV, although it is demonstrated that Abatacept is

effective in clinical trials, the efficacy of targeting other ICs has not
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been demonstrated. Thirdly, since co-stimulatory and co-inhibitory

molecules work together to regulate T cells, it may be more

reasonable to target multiple ICs simultaneously in severe or

refractory cases. The questions to be aware of are that targeting

ICs may increase the risk of tumors and infections, and different ICs

are dominant in different subsets of T cells, so it is required to

precise dosing and localization. In conclusion, targeting ICs has

therapeutic potential, and more preclinical research is needed to

clarify their effectiveness and safety in AAV treatment.
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Glossary

AAV ANCA associated vasculitis

AIDs autoimmune diseases

ANCA anti-neutrophil cytoplasmic antibody

APC antigen-presenting cells

BCR B cell receptor

BTLA B and T lymphocyte attenuator

C5a fragment a of fifth complement

cAP complement alternative pathway

CEACAM-1 carcinoembryonic antigen cell adhesion molecule 1

CIA collagen-induced arthritis

CTL cytotoxic T lymphocytes

CTLA-4 cytotoxic T lymphocyte-associated molecule 4

DCs dendritic cells

EAE experimental autoimmune encephalomyelitis

EGPA eosinophilic granulomatosis with polyangiitis

Gal-9 Galactin-9

GCA giant cell arteritis

GCs germinal centers

GITR glucocorticoid induced TNF receptor

GPA granulomatosis with polyangiitis

GRB2 growth factor receptor-bound protein 2

GVHD graft-versus-host disease

HCs healthy controls

HMGB1 high mobility group protein B1

HSP Henoch-Schönlein purpura

HVEM herpesvirus entry mediator

IC immune checkpoint

ICIs immune checkpoint inhibitors

ICOS inducible T-cell co-stimulator

ICOSL inducible T-cell co-stimulator (ICOS) ligand

IFN interferon

Ig immunoglobulin

IgSF immunoglobulin superfamily

IgV Ig variable

IL interleukin

irAEs immune-related adverse events

LAG-3 lymphocyte activation gene 3

LCK lymphocyte cell-specific protein-tyrosine kinase

mAb monoclonal antibody

MHC major histocompatibility complex

(Continued)
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MNPs mononuclear phagocytes

MPA microscopic polyangiitis

MPO myeloperoxidase

mTOR mammalian target of rapamycin

NETs neutrophil extracellular traps

NFAT nuclear factor of activated T cells

NF-kB nuclear factor-kB

NHP non-human primate

NIK NF-kB–inducing kinase

NIKR tumor necrosis factor receptor

NK natural killer cell

OX40L OX40 ligand

PD-1 programmed cell death 1

PD-L programmed death ligand

PI3K phosphatidylinositol 3-kinase

PR3 proteinase-3

PtdSer phosphatidyl serine

Rh-irAEs rheumatic immune-related adverse events

sCD28 soluble CD28

SH2 Src homology-2

SHP-2 SH2-containing protein tyrosine phosphatase 2

SLE systemic lupus erythematosus

SLEDAI SLE disease activity index

sPD-1 soluble PD-1

TAK Takayasu’s arteritis

TCR T cell receptor

Teff effector T

Tfh follicular helper T cells

Th helper T cells

THD TNF homology domain

TIGIT T‐cell Ig and ITIM domain

TIM-3 T cell Ig and mucin domain-containing protein 3

TNF tumor necrosis factor

TNFR tumor necrosis factor receptor

TNFRSF tumor necrosis factor receptor superfamily

TRAF tumor necrosis factor receptor-associated factor

Treg regulatory T cells

VECs vascular endothelial cells

VISTA V-domain Ig suppressor of T cell activation

VSIG-3 V-set and Ig domain containing 3
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